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Background & motivation
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Replication & hedging

◮ Replicating and hedging an option position is fundamental in
finance

◮ The core idea of the seminal work by Black-Scholes-Merton
(BSM):
◮ In a complete and frictionless market there is a continuously

rebalanced dynamic trading strategy in the stock and riskless
security that perfectly replicates the option (Black and Scholes
(1973), Merton (1973))

◮ In practice continuous trading of arbitrarily small amounts of
stock is infinitely costly and the replicating portfolio is
adjusted at discrete times
◮ Perfect replication is impossible and an optimal hedging

strategy will depend on the desired trade-off between
replication error and trading costs
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Related work I
While a number of articles have considered hedging in discrete time
or transaction costs alone,

◮ Leland (1985) was first to address discrete hedging under
transaction costs
◮ His work was subsequently followed by others1
◮ The majority of these studies treat proportionate transaction

costs

◮ More recently, several studies have considered option pricing
and hedging subject to both permanent and temporary market
impact in the spirit of Almgren and Chriss (1999), including
Rogers and Singh (2010), Almgren and Li (2016), Bank,
Soner, and Voß (2017), and Saito and Takahashi (2017)

◮ Halperin (2017) applies reinforcement learning to options but
the approach is specific to the BSM model and does not
consider transaction costs
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Related work II
◮ Buehler et al. (2018) evaluate NN-based hedging under

coherent risk measures subject to proportional transaction
costs

1See, for example, Figlewski (1989), Boyle and Vorst (1992), Henrotte
(1993), Grannan and Swindle (1996), Toft (1996), Whalley and Wilmott
(1997), and Martellini (2000).
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What we do
In these articles we:
◮ Show how to build a reinforcement learning (RL) system which

can learn how to optimally hedge an option (or other
derivative securities) in a fully realistic setting
◮ Discrete time
◮ Nonlinear transaction costs
◮ Round-lotting

◮ Method allows the user to “plug-in” any option pricing and
simulation library, and then train the system with no further
modifications

◮ The system learns how to optimally trade-off trading costs
versus hedging variance for that security
◮ Uses a continuous state space
◮ Relies on nonlinear regression techniques to the “sarsa targets”

derived from the Bellman equation
◮ Method extends in a straightforward way to arbitrary portfolios

of derivative securities
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Reinforcement learning
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Brief introduction to RL I

◮ RL agent interacts with its environment. The “environment” is
the part of the system outside of the agent’s direct control

◮ At each time step t, the agent observes the current state of the
environment st and chooses an action at from the action set

◮ This choice influences both the transition to the next state, as
well as the reward Rt the agent receives

Environment

Reward ActionState

RL Agent
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Brief introduction to RL II
◮ A policy π is a way of choosing an action at , conditional on

the current state st
◮ RL is the search for policies which maximize the expectation of

the cumulative reward Gt

E[Gt ] = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . ]

where γ is discount factor (such that the infinite sum
converges)

◮ Mathematically speaking, RL is a way to solve multi-period
optimal control problems

◮ Standard texts on RL includes Sutton and Barto (2018) and
Szepesvari (2010)
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Brief introduction to RL III
◮ The action-value function expresses the value of starting in

state s, taking an arbitrary action a, and then following policy
π thereafter

qπ(s, a) := Eπ[Gt | St = s,At = a] (1)

where Eπ denotes the expectation under the assumption that
policy π is followed

◮ If we knew the q-function corresponding to the optimal policy,
q∗, we would know the optimal policy itself, namely
◮ We choose a in the action set that maximizes q∗(st , a)

This is called the greedy policy
◮ Hence the problem is reduced to finding q∗, or producing a

sequence of iterates that converges to q∗
◮ Methods for producing those iterates are based on the Bellman

equations

11 / 36



A visual example

YouTube example

12 / 36

https://www.youtube.com/watch?v=W_gxLKSsSIE&list=PL5nBAYUyJTrM48dViibyi68urttMlUv7e&index=1


Supervised learning vs. RL?

Training signals ≡ target output from training set

Supervised
learning

Inputs Outputs

Training signals ≡ rewards

Reinforcement
learningStates Actions
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RL has a feedback loop

Environment

Training signals ≡ rewards

Reinforcement
learningStates Actions
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Is RL worth the trouble?
RL is often harder than supervised learning
◮ Joint learning and planning/optimizing from correlated samples
◮ The distributions of the data changes with the choice of

actions
◮ Need access to the environment for training

So when may it be a good idea to use RL?
◮ Data comes in the form of trajectories (i.e. non-IID sequences)
◮ We need to make a sequence of decisions (i.e. non-IID

decisions)
◮ We are able to observe feedback to state or choice of actions.

This information can be partial and/or noisy
◮ There is a gain to be made by optimizing action choice over a

portion of the trajectory (i.e. time consistency needed for the
Bellman equation to hold)

Other ML techniques cannot easily deal with these situations
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Common challenges when solving RL problems

◮ Specifying the model
◮ Representing the state
◮ Choosing the set of actions
◮ Designing the reward

◮ Acquiring data for training
◮ Exploration / exploitation
◮ High cost actions
◮ Time-delayed reward

◮ Function approximation (random forests, CNNs)
◮ Validation / confidence measures
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Reinforcement learning for hedging

17 / 36



Automatic hedging in theory I

◮ We define automatic hedging to be the practice of using
trained RL agents to handle hedging

◮ With no trading frictions and where continuous trading is
possible, there may be a dynamic replicating portfolio which
hedges the option position perfectly, meaning that the overall
portfolio (option minus replication) has zero variance

◮ With frictions and where only discrete trading is possible the
goal becomes to minimize variance and cost
◮ We will use this to define the reward
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Automatic hedging in theory II
◮ This suggest we can seek the agent’s optimal portfolio as the

solution to a mean-variance optimization problem with
risk-aversion κ

max
!
E[wT ]−

κ

2
V[wT ]

"
(2)

where the final wealth wT is the sum of individual wealth
increments δwt ,

wT = w0 +
T#

t=1

δwt

We will let wealth increments include trading costs
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Automatic hedging in theory III
◮ In the random walk case, this leads to solving

min
permissible strategies

T#

t=0

!
E[−δwt ] +

κ

2
V[δwt ]

"
(3)

where
−δwt = ct

and ct is the total trading cost paid in period t (including
commissions, bid-offer spread cost, market impact cost, and
other sources of slippage)

◮ With an appropriate choice of reward function the problem of
maximizing this mean-variance problem can be recast as a RL
problem
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Automatic hedging in theory IV
◮ We choose the reward in each period to be2

Rt := δwt −
κ

2
(δwt)

2 (4)

◮ Thus, training reinforcement learners with this kind of reward
function amounts to training automatic hedgers who tradeoff
costs versus hedging variance

2See Ritter (2017) for a general discussion of reward functions in trading.
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Automatic hedging in practice I

◮ Simplest possible example: A European call option with strike
price K and expiry T on a non-dividend-paying stock

◮ We take the strike and maturity as fixed, exogenously-given
constants. For simplicity, we assume the risk-free rate is zero

◮ The agent we train will learn to hedge this specific option with
this strike and maturity. It is not being trained to hedge any
option with any possible strike/maturity

◮ For European options, the state must minimally contain (1)
the current price St of the underlying, (2) the time
τ := T − t > 0 remaining to expiry, and (3) our current
position of n shares

◮ The state is thus naturally an element of3

S := R2
+ × Z = {(S , τ, n) | S > 0, τ > 0, n ∈ Z}.

22 / 36



Automatic hedging in practice II
◮ The state does not need to contain the option Greeks, because

they are (nonlinear) functions of the variables the agent has
access to via the state
◮ We expect the agent to learn such nonlinear functions on their

own

◮ A key point: This has the advantage of not requiring any
special, model-specific calculations that may not extend
beyond BSM models

3If the option is American, then it may be optimal to exercise early just
before an ex-dividend date. In this situation, the state must be augmented with
one additional variable: The size of the anticipated dividend in period t + 1.
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Let’s put RL at a disadvantage

◮ The RL agent is at a disadvantage: It does not know any of
the following information:
◮ the strike price K
◮ that the stock price process is a geometric Brownian motion

(GBM)
◮ the volatility of the price process
◮ the BSM formula
◮ the payoff function (S − K )+ at maturity
◮ any of the Greeks

Thus, it must infer the relevant information, insofar as it
affects the value function, by interacting with a simulated
environment
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Simulation assumptions I

◮ We simulate a discrete BSM world where the stock price
process is a geometric Brownian motion (GBM) with initial
price S0 and daily lognormal volatility of σ/day

◮ We consider an initially at-the-money European call option
(struck at K = S0) with T days to maturity

◮ We discretize time with D periods per day, hence each
“episode” has T · D total periods

◮ We require trades (hence also holdings) to be integer numbers
of shares

◮ We assume that our agent’s job is to hedge one contract of
this option

◮ In the specific examples below, the parameters are
σ = 0.01, S0 = 100,T = 10, and D = 5. We set the
risk-aversion, κ = 0.1
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Simulation assumptions II
◮ T-costs: For a trade size of n shares we define

cost(n) = multiplier × TickSize × (|n|+ 0.01n2)

where we take TickSize = 0.1. With multiplier = 1, the term
TickSize × |n| represents a cost, relative to the midpoint, of
crossing a bid-offer spread that is two ticks wide. The
quadratic term is a simplistic model for market impact

◮ All of the examples were trained on a single CPU, and the
longest training time allowed was one hour

◮ Baseline agent = RL agent trained in a friction-less world
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Example: Baseline agent (discrete & no t-costs)
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Figure 1: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent’s position tracks the delta
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Example: Baseline agent (discrete & t-costs)
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Figure 2: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent trades so that the position in the next
period will be the quantity −100 ·∆ rounded to shares
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Example: T-cost aware agent (discrete & t-costs)
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Kernel density estimates of total cost & volatility
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Figure 3: Kernel density estimates for total cost (left panel) and volatility
of total P&L (right panel) from N = 10, 000 out-of-sample simulations.
The “reinf” policy achieves much lower cost (t-statistic = −143.22) with
no significant difference in volatility of total P&L.
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Kernel density estimates of total P&L
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Figure 4: Kernel density estimates of the t-statistic of total P&L for each
of our out-of-sample simulation runs, and for both policies represented
above (“delta” and “reinf”). The “reinf” method is seen to outperform in
the sense that the t-statistic is much more often close to zero and
insignificant. 31 / 36



Conclusions I
We have introduced a RL system that hedges an option under
realistic conditions of discrete trading and nonlinear t-costs

◮ The approach does not depend on the existence of perfect
dynamic replication. The system learns to optimally trade off
variance and cost, as best as possible using whatever securities
it is given as potential candidates for inclusion in the
replicating portfolio

◮ It accomplishes this without the user providing any of the
following information:
◮ the strike price K
◮ the fact that the stock price process is a geometric Browning

motion
◮ the volatility of the price process
◮ the Black-Scholes-Merton formula
◮ the payoff function (S − K )+ at maturity
◮ any of the Greeks
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Conclusions II
◮ A key strength of the RL approach: It does not make any

assumptions about the form of t-costs. RL learns the
minimum variance hedge subject to whatever t-cost function
one provides. All it needs is a good simulator, in which t-costs
and options prices are simulated accurately
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