Price Signals
 in Trade Execution

Robert Almgren

SwissQuote
Nov 2019

qb quantitative

Trade execution

Execute order as agent for institutional client $\mathrm{QB}=$ futures and interest rate markets
Goal: "best" final average execution price Evaluate relative to benchmark
benchmark defines an "ideal" trade
different benchmarks give different strategies

Slippage

Difference of final average execution price and benchmark execution - benchmark for buys benchmark - execution for sells
Positive slippage is bad, negative is good For agency execution, minimize this

Different benchmarks and algorithms

Bolt: arrival price
Strobe: average price on interval (TWAP orVWAP)
Closer: settlement price
Legger: multi-leg target price
Roll: multi-day roll benchmark (in progress)

Bolt: arrival price

Report execution price
and slippage
SELL 40 GCZ7 BOLT relative to benchmark

Strobe: average price on interval

or Strobe, execution approximately follows
volume curve, but also opportunistic when can improve performance

[^0]
Settlement price algorithm

BUY 181 ESU8 CLOSER

Legger: multi-asset strike price

BUY 112 FGBL
SELL 129 FBTP

BUY 112 FGBLZ7 LEGGER

SELL 129 FBTPZ7 LEGGER

Business drivers

Good average execution price relative to benchmark Also manage risk relative to benchmark
Reliable systems and broad global coverage large investments in data and technology, and support
Transparent processes and algorithms
Must be able to explain to clients
Pictures are very helpful

Correlation and regression

Nick Patterson

[30:06] "...I joined a hedge fund, Renaissance Technologies. ... our most important statistical tool was simple regression with one target and one independent variable. ... nobody tells you what the variables you should be regressing [are]. What's the target? Should you do a nonlinear transform before you regress? What's the source? Should you clean your data? Do you notice when your results are obviously rubbish?"

Outline

What is performance? Best execution How do we achieve performance? Signals and infrastructure Signal framework and signals
Three particular topics in semi-detail
Smart order router using machine learning
Y-means consensus framework
Treasury roll forecasting

What matters for performance

Passive fills

many futures products are large-tick
Short-term price prediction aggress or pull back based on price forecast
Use simulator to evaluate algorithm improvements simulator uses real data to capture fills and signals

Determinants of slippage

Passive fills

buy at bid, sell at ask
be patient, unless price will move away

*** Short term pricing signals price will go up or down? pick when to execute

What is a signal?

- Signal $=$ short-term price forecast

Computed from past market data Forecast on time horizons seconds to minutes Use them conditional on market state variables

- Signals are independent of order being executed objective statement of market properties
- Biggest ingredient in execution performance Speed up or slow down depending on direction

Time frames of signals

Bar is lower for execution signals than for alpha trading not competing with HF firms
no round-trip trading, so small signals add value

How do we compute signals?

- Computed in real time from streaming market data
- Latency is important
not to get signals extremely rapidly
but to not fall behind
- May be complex calculations
- Rest on simple ingredients
- Need flexible platform to develop new signals

Trading architecture

What does not work?

Master Thesis - Luca Rona
 S\&P500 Short-Term Price Prediction using Machine Learning

Spring 2018
Luca Rona
Master in Finance
Princeton University
lrona@princeton.edu

In this paper we investigate whether S\&P500 mean reverts after sharp moves over different time horizons ranging from 10 seconds to 5 minutes. After verifying that statistically significant mean-reversion properties which are too small for active trading exist, we find that that Machine Learning methods obtain increased forecasting power over forward returns when combined with a rich enough feature set. We notice that including too many variables results in sub-optimal models and that a forward variable selection method works better than backward. Linear Methods with Shrinkage provide good baseline, but have overall lower accuracy than SVR, Random Forest and Gradient Boosting in the testing set. Ensembling predictions from different models makes the model more stable, but does not provide substantial accuracy gains. A simple trading strategy based on the predictions is developed and proves profitable in the testing set. However, we are cautious about these findings as they are not statistically significant and based on a test-set that is not large enough to be representative of different trading regimes.

At the end of each bin we record the following quantities:

- TimeStamp: date and time
- Bid/Ask: bid and ask price
- VWAP: volume weighted average price in the previous bin
- Volume: quantity of asset traded in the previous bin
- Number of trades: number of separate trades in the previous bin
- Volume buy/sell: volume of trades marked as buy and sell respectively by the exchange
- Number of buy/sell: number of separate buy/sell trades in the previous bin

Data does not automatically tell you: need to construct signals using reasoning.

Signal architecture

Implemented in Kdb+

Features

- Features are simple computations of market data that are useful to a variety of signals
- Are computed synchronously--must be fast
- Examples:

Average quote size
Traded volume
Volatility
Average price

Signals

Trade-at-Settlement (Kenan Si)
useful for Closer (settlement price)
Cointegration for Treasuries (Reza Gholizadeh) more complex than for short-term rates
Variance Risk Premium (Shankar Narayanan) compare VIX with realized volatility
Sweep (whole team) rapid directional motions will revert
Bubble (Shankar Narayanan) directional motions will persist
Smart Order Routing (Isaac Carruthers)

Trade at Settlement

TAS for Crude Oil
 and price direction during settlement (QB Closer algorithm)

Signal validity during settlement window

Cointegration for Treasury futures

For STIRS, we use an intraday rolling average For Treasuries, we need a longer-term calculation Look at 6 Treasury futures across 20 previous days Store principal components overnight

Price forecast for each Treasury futures

Threshold= 0.75 ticksize

Variance Risk Premium

VRP $=(\text { Implied vol) })^{2}-(\text { Realized vol })^{2}$
VRP is forecast of price changes
Well-known at daily and slower time scales
Novel at intraday trading
Data sources:
Implied Vol from CBOE VIX futures (or traded options)
Real-time realized vol from new QB indicator
Use for SP500 futures, and other products

VRP alone as signal

Use average quote size (a feature) as conditioning variable

Use average quote size (a feature) as conditioning variable

- Cluster (k-means) historical observations based on these two variables
- Compute average forward return in each cluster
- Substantially increases predictive power.

ES VRP and Avg. Quote Size Clusters (Next 15 min Return)

depends on other market state variables
 Conditioning: significance of signal pends on other market state variables

Sweep (reversion) signal

BUY 23 GCQ4 BOLT

To make this work: condition on several other variables describing market state

Intraday bubbles

The Detection of Intra-Day Bubbles

- Test is a generalized version of Augmented-Dickey Fuller test of unit root
- The prototypical model takes the following form:

$$
y_{t}=\rho\left(y_{t-1}-\bar{y}\right)+\delta_{1} \Delta y_{t-1}+\cdots+\delta_{p-1} \Delta y_{t-p+1}+\varepsilon_{t}
$$

$H_{0}: \hat{\rho}=1$
$H_{1}: \hat{\rho}>1$

- When $\hat{\rho}>1$ the price is believed to be in an explosive state

Example Buy Signal

- The market was trending up
- Our model correctly identified this and produced a signal about 2 minutes after the rally started (around 2:39 am)
- The signal expired after the price flattened out (around 2:44 am).

Shankar Narayanan, Quantitative Brokers

To make this work: condition on several other variables describing market state

Condition on 5 different features to improve performance

Cluster 7 auxiliary features
(Voronoi cells in 7 dimensions)

E-mini SP500
Wk-means Algorithm Output (Mar 2016-Jun 2017)

Return by cluster

Sweep vs bubble

Sweep = reversion
Bubble $=$ momentum

Importance of "consensus" layer, to make specific prediction to algorithm.

Consensus framework for signal combination

Yiming Peng, QB and Northwestern
"Y-means" algorithm: Like K-means, but cluster based on dependent variable (supervised learning)

Voronoi cells of Y-means clustering: GEU9

Option implied prices

Options trade in wide range of strikes
Complex combinations also have bid-ask quotes
Arithmetic relationships give indicative prices

Option pricing methods have persistent errors

SABR model has consistent errors at different parts of strike curve
\square Ask \square Mid $\square \quad$ Bid \square Fit ---- Error

Implied pricing

Familiar in futures contracts based on calendar spreads

Implied OUT: Real spread and outright orders create an implied order in an outright book

$[A]=[B]+[A-B]$
Calendar spreads are I:I, so prices just add and subtract: prices are always on grid.

CME displays some implied quotes but not all. Important to compute independently for best prices

Option user-defined spreads

OZNN9 C at 2019.06.07D13:59:03 CDT

Implied price compared with direct

Two examples

Smart Order Routing
Renyuan Xu, Isaac Carruthers
Y-means clustering approximation algorithm
Yiming Peng, Mengya Hu

Smart Order Routing

Multiple venues to trade same security
Equities: dozens
US Treasuries: BrokerTec, eSpeed, FENICS, + a few
All have same bid-ask quotes -- where to send limit order
Maximise probability of fill in short time.

Optimal order placement in limit order markets

RAMA CONT* $\dagger \ddagger$ © and ARSENIY KUKANOV§
\dagger Department of Mathematics, Imperial College, London, UK
\ddagger Laboratoire de Probabilités et Modèles Aléatoires, CNRS - Université Pierre \& Marie Curie, Paris, France §AQR Capital Management LLC, Greenwich, CT, USA
Quantitative Finance, 2016
(Received 5 May 2015; accepted 28 April 2016; published online 17 June 2016)

> To execute a trade, participants in electronic equity markets may choose to submit limit orders or market orders across various exchanges where a stock is traded. This decision is influenced by characteristics of the order flows and queue sizes in each limit order book, as well as the structure of transaction fees and rebates across exchanges. We propose a quantitative framework for studying this order placement problem by formulating it as a convex optimization problem. This formulation allows the study of how the optimal order placement decision depends on the interplay between the state of order books, the fee structure, order flow properties and the aversion to execution risk. In the case of a single exchange, we derive an explicit solution for the optimal split between limit and market orders. For the general case of order placement across multiple exchanges, we propose a stochastic algorithm that computes the optimal routing policy and study the sensitivity of the solution to various parameters. Our algorithm does not require an explicit statistical model of order flow but exploits data on recent order fills across exchanges in the numerical implementation of the algorithm to acquire this information through a supervised learning procedure.

Need explicit model for joint distribution
of order arrivals on all venues,
then compute optimal strategy.
Better to do nonparametric construction directly for optimal action

Order is filled when queue depletes
Limit order L_{k}

Figure 1. Limit order execution on exchange k depends on the order size L_{k}, the queue Q_{k} in front of it, total sizes of order cancellations C_{k} and marketable orders D_{k}, specifically on $\xi_{k}=C_{k}+D_{k}$.

Problem 1 (Optimal order placement problem) An optimal order placement is a vector $X^{*} \in \mathbb{R}_{+}^{K+1}$ solution of

$$
\begin{equation*}
\min _{X \in \mathbb{R}_{+}^{K+1}} V(X) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
V(X)=\mathbb{E}[v(X, \xi)]=\int_{\mathbb{R}^{d}} F(\mathrm{~d} y) v(X, y) \tag{7}
\end{equation*}
$$

is the expected execution cost for the allocation X and the expectation is taken with respect to the distribution F of order outflows $\left(\xi_{1}, \ldots, \xi_{K}\right)$ at horizon T.

Market order volume

Robert Almgren ${ }^{1}$, Renyuan Xu^{2}
${ }^{1}$ Quantitative Brokers, New York, NY 10008, USA,
ralmgren@quantitativebrokers .edu
${ }^{2}$ Unversity of California at Berkeley, Berkeley CA 94704, USA,
Quantitative Brokers, New York, NY 10008, USA,
renyuanxu@berkeley.edu

5.1 Basic features

$F_{1}=\left\{P_{k}^{a s k}, P_{k}^{b i d}, Q_{k}^{a s k}, Q_{k}^{b i d}\right\}_{k=1}^{K}$
5.2 Time-insensitive set
$F_{2}=\left\{P_{k}^{a s k}-P_{k}^{b i d}, \frac{P_{k}^{a s k}+P_{k}^{b i d}}{2}, \frac{P_{k}^{a s k} * Q_{k}^{b i d}+P_{k}^{b i d} * Q_{k}^{a s k}}{Q_{k}^{b d}+Q_{k}^{a s k}}, \frac{Q_{k}^{b i d}-Q_{k}^{a s k}}{Q_{b i d}^{b}+Q_{a, k}^{k}}\right\}_{k=1}^{K}$

5.4 Time-dependent set

Denote $t=1,2, . ., s$ as the number of look-back period with look-back window $\Delta w=60 s$, denote $F_{4}^{t}=\left\{f_{41}^{t}, f_{42}^{t}, f_{43}^{t}, f_{44}^{t}\right\}$, where
5.3 Time-sensitive set

Denote $F_{3}=\left\{f_{31}, f_{32}, f_{33}\right\}$, where
$-f_{31}=\left\{\frac{d P_{k}^{a s k}}{d d t}, \frac{d P_{k}^{b i d}}{d t}, \frac{d V_{k}^{a s k}}{d t}, \frac{d V_{k}^{b i d}}{d t}\right\}_{k=1}^{K}$
$-f_{32}=\left\{\lambda_{k, \Delta t}^{l a}, \lambda_{k, \Delta t}^{l b}, \lambda_{k, \Delta t}^{m a}, \lambda_{k, \Delta t}^{m b}, \lambda_{k, \Delta t}^{c a}, \lambda_{k, \Delta t}^{c b}\right\}_{k=1}^{K}$
$-f_{33}=\left\{\lambda_{k, \Delta T}^{l a}, \lambda_{k, \Delta T}^{l b}, \lambda_{k, \Delta T}^{m a}, \lambda_{k, \Delta T}^{m b}, \lambda_{k, \Delta T}^{c a}, \lambda_{k, \Delta T}^{c b}\right\}_{k=1}^{K}$
$-f_{34}=\left\{\mathbf{1}_{\lambda_{k, \Delta t}^{l a}>\lambda_{k, \Delta T}^{l a}}, \mathbf{1}_{\lambda_{k, \Delta t}^{l b}>\lambda_{k, \Delta T}^{l b}}, \mathbf{1}_{\lambda_{k, \Delta t}^{m a}>\lambda_{k, \Delta T}^{m a}}^{m a}, \mathbf{1}_{\lambda_{k, \Delta t}^{m b}>\lambda_{k, \Delta T}^{m b}}, \mathbf{1}_{\lambda_{k, \Delta t}^{c a}>\lambda_{k, \Delta T}^{a}}, \mathbf{1}_{\lambda_{k, \Delta t}^{c b}}>\lambda_{k, \Delta T}^{c b}\right\}_{k=1}^{K}$

5.4 Time-dependent set

Denote $t=1,2, . ., s$ as the number of look-back period with look-back window $\Delta w=60 s$, denote $F_{4}^{t}=\left\{f_{41}^{t}, f_{42}^{t}, f_{43}^{t}, f_{44}^{t}\right\}$, where
$-f_{42}^{t}=\left\{\bar{P}_{k}^{a s k}, \bar{P}_{k}^{b i d}, \max _{n}\left(P_{k, n}^{a s k}\right), \max _{n}\left(P_{k, n}^{b i d}\right), \max _{n}\left(\left|P_{k, n}^{a s k}-P_{k, n}^{b i d}\right|, \text { Vol }_{k}^{m}, \text { Vol }_{k}^{b i d}, \text { Vol }_{k}^{a s k}\right)\right\}_{k=1}^{K}$
$-f_{43}^{t}=\left\{\bar{Q}_{k, t}^{a s k}, \bar{Q}_{k, t}^{b i d}\right\}$
$-f_{44}^{t}=\left\{\mathbf{1}_{T V_{k, t}^{m a}}>Q_{k}^{m a}, \mathbf{1}_{T V_{k, t}^{m b}>Q_{k}^{m b}}\right\}$

Variable Importance on venue 1

Smart Order Routing

quantitativebrokers

MACHINE LEARNING FOR LIMIT-ORDER ROUTING IN CASH TREASURY MARKETS

RENYUAN XU
ISAAC CARRUTHERS
APRIL 25, 2018
\[\begin{aligned} \max _{X \in \mathbb{Z}_{+}^{k}} \mathbb{E} \& {\left[\sum_{i=1}^{k} \min \left(X_{i},\left(\xi_{i}-Q_{i}\right)_{+}\right) \mid M^{*}(X)\right] }
s.t. \& \sum_{i=1}^{k} X_{i}=S . \end{aligned} \]

MARKET-DATA FEATURES

To establish a set of predictive market-data features, we designed and implemented a set of 52 different features per venue. This set contained a wide variety of calculations based on the recent history of market data, including recent price change, queue size change, signed volume, etc. From this set, we then selected a subset of 9 features per exchange, plus a single feature for aggregated quote imbalance across exchanges. We drew this subset by training an gradient boosting tree regressor on the data, and then selecting the features which provided the greatest improvement in accuracy on average.

Consensus framework

Conflicting signals
Sweep = reversion
Bubble $=$ momentum
"Consensus" layer makes specific predictions to algorithm. Also condition on market state variables.

Generic problem

$$
\begin{array}{ccl}
y=F(x) & y \text { scalar } \\
x \in R^{\mathrm{d}}
\end{array} \begin{aligned}
& x=\text { signal outputs, and market state, } \mathrm{d} \sim 10-15 \\
& y=\text { forward return }
\end{aligned}
$$

N observations x_{\mid}, \ldots, x_{N} how to model F ?

What combination of signals gives the best prediction of future price changes, in what market conditions?

Classic problem of supervised learning

Regression
Clustering and partition
support vector machines
K-means
etc
Combination methods
random forest, etc

K-means

Gareth James • Daniela Witten • Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R
© Springer Science+Business Media New York 2013 (Corrected at 4 printing 2014)

Determine clusters based on distribution of x (ignoring y) Fit a constant function in each cluster

Hierarchical clustering is similar

Y-means makes two innovations

Determine Voronoi clusters based on residuals in y rather than distances in x
Use linear approximation in each cluster rather than constant function

Resulting approximation is very accurate and very quick to evaluate

$$
F_{k}(x)=\bar{y}_{j}+\beta_{j}^{\prime}\left(x-\bar{x}_{k}\right), \quad \text { for } x \in C_{k}
$$

$$
\min _{C_{k}, \ldots, C_{K}} \sum_{j=1}^{N} \frac{1}{2}\left(y_{j}-F_{k}\left(x_{k}\right)\right)^{2}
$$

$$
C_{k}, \ldots, C_{K}=\text { Voronoi cells }
$$

Cells are parameterized by node locations

Difficulty is optimizing node locations Use simulated annealing: slow and finicky, but results are good Very fast to evaluate in real time

edward Teller, * Department of Physics, University of Chicago, Chicago, Illinois (Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-spher ystem have been obtained on the Los Alamos MANIAC and are presented here. These results are compared the free volume equation of state and to a four-term virial coefficient expansion.

Optimization by
Simulated Annealing
S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecch

Summary. There is a deep and useful connection between statistical mechanics the behavior of systems with many degrees of freedom in thermal equilibrium at a inite temperature) and multivariate or combinatorial optimization (finding the mini mum of a given function depending on many parameters). A detailed analogy with mealing in solids provides a framework for optimization of the properties of ver formation and provides an unfamiliar perspective on traditional optimization prob ems and methods.

One-dimensional example: linear approximation vs constant

ESM9 Feb 01 - May 01. 2019

Quote imbalance

quantitative
brokers

k-means

2-d example

Kmeans clusters

Forward return
0.4
-0.4
Realized
Volatility

Treasury roll forecasting

Price Difference between Active and Deferred

Predicting Changes in the U.S. Treasury Futures Spread During the Roll Period

Samuel Russell
Robert Almgren

June 2018

SHANKAR NARAYANAN
REZA GHOLIZADEH
NOVEMBER 15, 2018

爱 PRINCETON UNIVERSITY

Sam Russell thesis

~80 features

- Features of One Variable
- Current Value
- Standard Deviation
- Change in value over past 5 days
- (Standard Deviation over past 10 days) / Standard Deviation
- Exponential moving average over past 10 days
- (Current Value) / (Moving average over past 10 days)
- Value of b when time series is fit to $Y=a * \exp (b * X)$
- Features of Two Variables
- Correlation
- Difference in Z scores

Technique: iterative regression

Frequency of Selected Variables for

 Predicting Raw Value of Price Difference

Sam Russell thesis

Price reversion is the single most important predictive variable

Reversion in the 10 Yr. Spread

Reversion in the 10 Yr. Spread

QB model

Linear predictor

$$
\mathrm{S}_{-10,0}=\alpha+\beta_{1} \mathrm{P}_{1}+\beta_{2} \mathrm{P}_{2}+\beta_{3} \mathrm{P}_{3}+\varepsilon
$$

The first predictor P1 in the multivariate model to forecast $\mathrm{S}_{(-10,0)}$ is a reversion signal.

The second predictor $\mathbf{P 2}$ is obtained from the COT. The COT report is released every Friday by the CFTC and includes around 90 variables such as open interests, longs, shorts and spreads of various securities broken down by asset managers, dealers, levered funds and retail investors. (Commitments of traders)

We define net position imbalance for each future as: net imbalance $=($ long open interest $\boldsymbol{-}$ short open interest) $/$ total open interest.

The third predictor P3 is $(\rho-1)$ where ρ is the implied ratio between the near and far prices of the outrights. For illustration, Figure 3 shows the scatter plot of near vs. far
$\begin{array}{r}\text { FIGURE } 6 \\ \hline\end{array}$
The calendar spread
all the futures
all the futures except the 30 -Year

futures from around August $16^{\text {th }}$, which was the tenth | was the tenth |
| :--- | the first intention day of August $30^{\text {th }}$ ($\mathrm{t}=0$). Our initial prediction was that the spreads would narrow. The 30-Year ended flat during the roll period but the rest ended lower from the beginning of the roll period

September 2018 roll from M8 to U8

Conclusions

- High frequency trading is computationally demanding
- Short-term price prediction is key to performance
- Machine learning is a tool, but not automatic
- Combine ML methods with market understanding

[^0]: CST on Tue 14 Nov 2017

