

T Fox School of Business

MIS2502: Data Analytics The Things You Can Do With Data The Information Architecture of an Organization

Jaclyn Hansberry jaclyn.hansberry@temple.edu

Why Data Analytics?

 Of decisions by managers are made by using their "gut"

40%

61%

72%

 Say this is because there is "no good data"

 Want to increase their organization's use of business intelligence

Source: http://advice.cio.com/thomas_wailgum/to_hell_with_business_intelligence_40_percent_of_execs_trust_gut

Data versus information

Data

Discrete, unorganized, raw facts

Information

The transformation of those facts into meaning

Examples of Data

So then how do you turn data *into* information?

IDENMINE DESCRIPTION REAL FORM

REFRESHER PRACTICE Import all property offenses from the Policee Data facel file and save as "Property: Offenses". 12243) Filter this data to inclinde only April and Assess offenses and save as "Apr-Aug Property Offense". (5.903)

ulfall Blie CRUSH offenses from Visions for optember 17 - October 14, 2007. Save as 800ffenses". (3,822)

Example: Memphis Police

- Used historical crime data
- Place police where and when

crime was likely to occur http://www-03.ibm.com/press/us/en/pressrelease/32169.wss

Example: New **York Mets** Look at fan ticket purchase, social media, and mobile data – Personalize communications and promotions -Growth in corporate sales; ticket base now 14000 +

http://www.sas.com/en_us/insights/articles/analytics/New-York-Mets-sign-

Two types of data

Transactional

- Captures data describing and event
- An exchange between actors
- Real-time

Analytical

- Captures data to support analysis and reporting
- An aggregated view of the business
- Historical

Explain the role of transactional and nalytical data in the examples on the previous slides.

The Information Architecture of an Organization

But this is changing rapidly....

Components of an information infrastructure

Supports management of an organization's data

For everyday transactions

Analytical Data Store

Supports managerial decision-making

For periodic analysis

This is what is commonly thought of as "database management"

This is the foundation for business intelligence

The Transactional Database

Stores real-time, transactional data

In business, a transaction is the exchange of information, goods, or services.

For databases, a transaction is an action performed in a database management system.

Operational databases deal with both: they store information about business transactions using database transactions

- Examples of transactions
 - Purchase a product
 - Enroll in a course
 - Hire an employee
- Data is in real-time
 - Reflects current state
 - How things are "now"

The Relational Paradigm

- How transactional data is collected and stored
- Primary Goal: Minimize redundancy
 - Reduce errors
 - Less space required

Which of these do you think 'is more important today

 Most database management systems are based on the relational paradigm

- Oracle, Microsoft Access, SQL Server

The Relational Database Online Retailer Example

- A series of tables with logical associations between them
- The associations (relationships) allow the data to be combined

Why more than one table?

- Every review has an associated product
- Every product *can* have a review
- Products and reviews have a unique ID number
- Split the details off into separate tables

Analyzing transactional data

- Can be difficult to do from a relational database
- Having multiple tables is good for storage and data integrity, but bad for analysis
 - Tables must be "joined" together before analysis can be done
- The solution is the Analytical Data Store

Operational databases are optimized for storage efficiency, not retrieval

Analytical databases are optimized for retrieval and analysis, not storage efficiency and data integrity

The Analytical Data Store

- Stores historical and summarized data

 "Historical" means we keep everything
- Data is extracted from the operational database and reformatted for the analytical database

The Dimensional Paradigm

Dimensional Data and the Data Cube

...or it can be expanded in detail like this so that data mining (complex statistical analysis) can be done.

Sales (ID S	Qty. Sold	Total Price	Prod. ID	Prod. Name	Prod. Price	Prod. Weight	Store ID	Store Address	Store City	Store State	Store Type	Time ID	Day	Month	Year
1000															
1001															
1002															

Sales Fact

Product Dimension

Store Dimension

Time Dimension

Comparing Operational and Analytical Data Stores

Operational Data Store	Analytical Data Store
Based on Relational paradigm	Based on Dimensional paradigm
Storage of real-time transactional data	Storage of historical transactional data
Optimized for storage efficiency and data integrity	Optimized for data retrieval and summarization
Supports day-to-day operations	Supports periodic and on-demand analysis

The agenda for the course

