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Abstract

This paper outlines our point of view regarding the applicability, state of the art, and potential of quantum computing
for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in
finance that are computationally challenging classically and for which quantum computing algorithms are promising.
In the main part, we describe in detail quantum algorithms for specific applications arising in financial services, such
as those involving simulation, optimization, and machine learning problems. In addition, we include demonstrations of
quantum algorithms on IBM Quantum back-ends and discuss the potential benefits of quantum algorithms for problems
in financial services. We conclude with a summary of technical challenges and future prospects.

1. Introduction

In the financial services industry there are many com-
putationally challenging problems arising in applications
across asset management, investment banking and retail
& corporate banking. Quantum computing holds the
promise of revolutionizing how we solve such computation-
ally challenging problems. With the first, noisy quantum
devices - leveraging the principles of quantum mechan-
ics - available publicly today, the applicability of quan-
tum computing for problems in finance and demonstrating
quantum advantage in first applications are active topics
of current research.

In this report, we provide an introduction to quantum
computing and the necessary foundational concepts to un-
derstand this new technology and its implications to the
financial services industry [1]. We extend previous sum-
maries [2, 3, 4] in multiple directions: The report reviews
the main algorithms, the benefits they bring as well as the
technical challenges they pose, and how to approach prob-
lems from a quantum perspective. It also highlights the
economic benefits that applying quantum computing may
bring to financial institutions in improving operations, rev-
enues, and quality. Algorithms are categorized based on
the type of problems they solve and mapped to the finan-
cial solutions they can be applied to. It showcases real-
life examples of using quantum computing algorithms, ex-
plaining how the problems are solved and the solutions ob-
tained. Overall, it is a holistic, practical guide to quantum
computing and its applicability to financial problems for

1The authors are with IBM Quantum. Corresponding author:
Martin Mevissen, email: martmevi@ie.ibm.com

financial institutions in Banking, Financial Markets and
Insurance.

All computing systems rely on a fundamental ability
to store and manipulate information. Todays classical
computers manipulate individual bits, which store infor-
mation as binary 0 and 1 states. Millions of bits work
together to process and display information with a speed
that everyone is familiar with on smart phones, laptops,
and the servers in the cloud. Quantum computers use
the physical phenomena of nature to manipulate informa-
tion via quantum mechanics. At this fundamental level
we have quantum bits, or qubits. Unlike a bit that has
to be a 0 or a 1 (or, their probabilistic combination), a
qubit can be in a complex-value-weighted combination of
states called a superposition. Multiple qubits may be pur-
posefully entangled into linear combinations of (complex-
valued-weighted) states across the qubits, which ”corre-
lates” them so their quantum state cannot be described in-
dependently, i.e., entangled states. The potential amount
of information that may be represented is staggering: an
entanglement of k qubits can potentially represent 2k − 1
items of information. To put that in perspective: 50 qubits
can represent over one quadrillion data values simultane-
ously. Three hundred qubits could represent more values
than there are atoms in the observable universe. Quantum
computers are not a replacement for classical ones. They
complement the traditional systems by possibly being able
to solve some forms of intractable problems that blow up,
or become extremely large or time-consuming during com-
putation. Remarkable progress in the control and con-
struction of quantum computing hardware in recent years
has led to the development of systems with 10’s of physi-
cal qubits, that in the absence of quantum error correction
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are dubbed noisy quantum processors. This has sparked
strong interest in the pursuit of quantum advantage – the
exploration of computational tasks that are accessible to
noisy quantum computers and yet intractable to classical
computation. This is also a step on the way to the devel-
opment of Fault-Tolerant Universal Quantum Computers
(FTQC), which require error correction and which will al-
low for arbitrary quantum algorithms backed by theory
such as proven quantum speedup compared to classical al-
gorithms.

The quantum computing hardware pursued by IBM
involves superconducting quantum circuits. The funda-
mental building blocks of the hardware are Josephson
junction-based qubits called transmons. When cooled
to ca. 10mK these transmons behave as artificial atoms,
where the two lowest energy levels may be employed as the
computational 0 and 1 states. Over the last two decades,
progress with superconducting qubit technology has been
driven by tremendous improvements in coherence, control
and fabrication capabilities. A metric that has been
proposed and employed by IBM to measure progress in
development in quantum computing is quantum volume
[5]. Quantum volume indicates the relative complexity of
a problem that can be solved on a quantum computer,
and it depends on a number of factors such as number
of qubits, coherence time, measurement errors, device
cross talk, circuit compiler efficiency, and others. IBM
currently has 16 superconducting processors available
via the cloud with up to 53 qubits, and we anticipate
a roadmap of superior devices with increasing quantum
volume.

In the near-term future, quantum computers will con-
tinue to rely on noisy qubits with relatively high error rates
and limited coherence times. In this era of noisy quantum
devices, we will reach Quantum advantage once we are
able to solve a number of significant real-world problems
more efficiently with the help of quantum devices when
compared with solving them on a classical computers only.
The problem classes where we expect to demonstrate ad-
vantage first include (i) modelling physical processes of
nature, (ii) efficient techniques for scenario simulations,
(iii) obtaining better solutions to optimization problems,
and (iv) finding better patterns within machine learning
processes.

At a basic level, any solution built on a quantum com-
puter will comprise three fundamental steps:

The Loading Step. The solution must load its data from a
classical computer into the quantum computer in a small
number of steps. This results in a superposition which
combines the fundamental states described above in a way
that reflects the data set being loaded. While loading data
into a computer is often ignored as a triviality in classi-
cal computing, quantum data loading can be a substantial
aspect of solution design. While there are loading tech-
niques which are linear in the size of the data set, this

can often eclipse the coherence times of the physical su-
perposition, and techniques are often employed to reduce
the input data before loading or encode the data into the
computational steps.

The Compute Step. Once data is loaded, the solution must
rapidly perform a computation on the loaded data within
the quantum computer. This involves manipulation of the
qubits in a manner that changes the fundamental states
in a way that reflects the outcome of a desired computa-
tion. There is an increasing body of research into quantum
algorithms that solve problems that are considered com-
putationally difficult or intractable classically. Quantum
computations often compute their results as an approxima-
tion to an optimal value within a high dimensional search
space, and often exploit the nature of quantum superpo-
sitions to simultaneously consider vast numbers of possi-
bilities. The computed ”output” superposition reflects a
probabilistic distribution of possible outcomes, with the
preferred outcomes associated with higher probabilities in
the distribution.

The Measurement Step. The measurement step makes an
observation of the computed ”output” superposition and
reports it back to a classical computer. However, the act of
observation snaps the superposition back to a basis state,
so the computation step must be designed in such as way
that the solution is often encoded in a narrow decision
space. Quantum algorithms are often repeated multiple
times, with each repetition called a shot. Each shot re-
ports an output among the distribution of possible out-
puts from the compute step. With multiple repetitions, a
probabilistic picture emerges of which output has received
the highest probability within the superposition, and an
”answer” may be read. Typically hundreds or thousands
of shots are used. It should be noted that the higher the
number of qubits, the higher requirements on precision,
and hence the higher the requirements on the number of
measurements.

2. Problems in Financial Services

Financial services are a forward-looking industry that
has always been in the lookout to leverage new technolo-
gies to increase profits. Broadly, this industry covers three
vertical sectors (c.f. also Table 1 for segments):

• Banking: Banking products are mainly bank ac-
counts, investments, loans for commercial and retail
customers. Their main challenges are to balance cash
with interest rates, while controlling threats related
to liquidity, fraud, money laundry, or non-performing
loans.

• Financial Markets: Focused mainly on future gains
and the marketplace to sell and buy assets by dealers,
exchanges, brokers, or clearing houses. Their main
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Table 1: Segments of the financial services industry

Banking Financial Markets Insurance

Monetary Authorities Commodities Health Insurance
Retail Banking Stock Exchanges Property &

Casualty Insurance
Commercial Bond Markets Life Insurance
Banking & Annuity
Investment Banking Money Markets Reinsurance
Non-Banking FIs Derivatives

challenges are to manage geographic time-zones, im-
mediacy needs, and counter-party risk.

• Insurance: Health insurance, automobile & prop-
erty, life insurance & annuity and re-insurance. The
main challenge here is to maximize premiums and
manage threats related to unplanned risks such as
catastrophes or market crashes.

The digital financial services revolution is full blast dis-
rupting the industry and opening the door to new play-
ers threatening the current status quo: FinTechs and In-
surTechs with new digital-style offerings, RegTech with au-
tomatized regulation processes, and new competition from
other industry corporations that can now offer digital fi-
nancial services to their customers. In addition, clients
are demanding customized offerings based on their behav-
ioral data, for example, personalized insurance premiums
based on their life-events or targeted loan offers for smaller
customer segments. The regulatory environment poses
an operational challenge by requiring risk mitigation and
strict compliance. All these trends have created new fi-
nancial services experiences: Smooth global supply-chains
for trade finance asset management, AI augmentation with
trusted decision making for investment banking, and bank-
ing platforms that become finance ‘as-a-service’.

In this paper, we consider the regulatory framework
given by the Basel III rules, which is being implemented by
regulators world-wide. Under Basel III, a key performance
indicator for both the regulator and regulated entities is
capital adequacy ratio (CAR), which is a ratio of the com-
bined tier-1 and tier-2 capital and risk-weighted holdings.
In particular, the minimum is 8%, while the required ratio
is 10.5%.

Moreover, the Liquidity Coverage Ratio (LCR) reform
[6], with the aim of improving short-term resilience, pro-
motes the holding of unencumbered high-quality liquid as-
sets (HQLA), whose amounts are tested in the so-called
30 calendar day liquidity stress scenario. By January 1st,
2019, the LCR, i.e., the proportion of the value of the stock
of HQLA in stressed conditions to total net cash outflows
in the same scenario, has risen to 100%. Within HQLA,
“Level 1” assets include cash and certain state-backed se-
curities, as well as select other safe assets. “Level 2”
include further state-backed securities and bonds of non-
state and non-bank entities with long-term rating AA- or

Digital & 
Omnichannel

Digitalize 
Processes

Personalization 
through Data + AI

Open Banking 
Ecosystems

Self-driving  
Banking 

Secure and Trusted Cloud 
Platform

Enterprise AI
for Smart Processes 

Blockchain-powered 
Ecosystems

Figure 1: Transformative technologies in support of digital themes
in financial services [7].

better. “Level 2” assets can only comprise up to 40% of the
stock of HQLA. Further, the same LCR reform introduced
diversification requirements on the stock of HQLA. These
extensions complicate both risk assessment and portfolio
management problems considerably.

Indeed, many problems, such as risk management and
portfolio management, rely on various risk measures that
we now introduce for future reference. Volatility captures
the risk in a portfolio of assets. It is the standard deviation
of the returns which can be calculated from the variance
ωᵀΣω. Here, ω is a (column) vector made of the weights of
each asset in the portfolio and Σ is the covariance matrix
of the returns of the assets.

Risk management often uses Value at Risk (VaR) as a
risk measure. VaRα of a random variate X is the 1 − α
quantile of the loss distribution Y = −X. VaR is, there-
fore, the minimal γ such that the probability that X ex-
ceeds γ is α, i.e.,

VaRα(X) := −inf{γ such that FX(γ) > α}, (1)

where FX(x) is the cumulative distribution function of X.
Since VaR is a quantile it has the short-coming that it
is not sensitive to extreme losses in the tail of X. The
conditional value at risk CVaR is, therefore, often used as
an additional risk metric. CVaRα, sometimes also called
expected shortfall, is the expectation value of all losses up
to the VaRα. In the financial services challenges discussed
in the remainder of this paper, we are assuming a market
environment operating under the Basel III regulations.

Planned updates to the framework, upcoming under
Basel IV, focus on the approach to calculate Risk weighted
assets (RWA) regardless of risk type. Banks will need to
change their projection models towards forward-looking
statements which are statements that are not solely based
on historical facts and therefore have more assumptions.
This will require more scenario building to comply with
the new requirements for Capital lower limits (72.5% ”out-
put floor”), credit risk with common approach rather than
internal, market risk sensitivity-driven analysis as a stan-
dard, and operational risk measured by unadjusted busi-
ness indicator leveraging historical loss data. Overall
Basel IV will reshape banks trading activities and port-
folio structures.

In this paper, the focus is in three areas of financial ser-
vices, where problems challenging for classical computers
arise today:
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Engaging 
Customers New Business 

Models
Re-define the Bank’s internal 
operations and external role

Drivers Mobile adoption, new 
digital touchpoints

New data sources, threat 
from tech providers

Internal: Need for OPEX reduction
External: Banking ecosystems

Key Business 
Areas Customer interactions 

SMB Lending, Asset 
Management, Usage-based 

insurance

Risk, Compliance, KYC, AML, Financial 
ecosystems 

Tech Solutions AI AI, IoT AI, IoT, Blockchain, Cyber-security, API

Figure 2: Finance industry transformation in waves driving to a digital future [7].

1. Asset Management;

2. Investment Banking;

3. Retail and Corporate Banking.

A few examples of new technologies leveraged in these
areas include, use of AI for asset management through bots
as the new user interfaces, adoption of algorithmic trad-
ing that changed the stock market with High Frequency
Trading for investment banking, and the increased use of
mobile devices for payments impacting financial transac-
tions in retail banking. See also Figure 1 for transformative
technologies in financial services.

Moreover, the adaption of new technologies and evolu-
tion of financial services can be traced in waves leading to
a digital future. As illustrated in Figure 2, the first wave
focused on mobile adoption to engage customers. This
was followed by the exploration of new business models to
leverage new data sources and the threat from technology
providers. The third, current wave is driven by combi-
nation of challenges including cost pressures, technology
disruptions and regulatory changes, causing a fundamen-
tal redefinition of the financial institution, both its inter-
nal operations and how it engages externally. For further
background, an industry viewpoint of the financial services
challenges and innovation opportunities to advance smart
financial services to meet the economic, societal and indi-
vidual needs, is provided by [7].

Within the three vertical sectors, quantum computing
algorithms can be applied to diverse activities through the
customer life cycle (see Figure 3). Here, a customer can
be a corporation, fund, financial institution, government,
or individual.

Figure 3: Customer life cycle conceptual design.

The benefits of quantum computing for businesses can
be measured across a set of key business metrics:

• Reduce regulatory penalty costs or avoidable human
labor.

• Improve customer satisfaction and brand perception.

• Increase customer interaction and financial activity.

• Reduce capital levels and improve cash-flow.

Each algorithm category is applied on tasks and calcu-
lations that affect one or more phases of the customer life
cycle, and we describe the specific business benefits it can
bring.

In the following sections, we group specific problems
arising in the financial services focus areas, where clas-
sical computers face challenges or are insufficient, in
three classes, Simulation, Optimization and Machine
learning, introduce the quantum algorithms applicable
to them, and discuss results obtained on IBM Quantum
back-ends for some specific problems.

3. Simulation

In this section we discuss simulation problems, where
quantum computing may be beneficial. There are simula-
tion problems at each stage of the customer life cycle (see
Figure 3):

1. Customer identification Obtain new revenue
sources for value-added services such as derivative
pricing using sophisticated quantum computing algo-
rithms. This offering can help compensate for the
monetary losses of MiFIDII new transparency mea-
sures in trading, estimated to cost $ 240 Million [8].

2. Financial products Better manage Value at Risk
and the Economic Capital Requirement providing
more accurate estimates to improve liquidity manage-
ment by actively managing the balance sheet, increase
capital to maintain a 7% equity capital ratio to its
riskier assets and avoid Basel III related compliance
fines [9] that are up to 10% of Banks turnover (rev-
enue).

3. Monitor transactions Allow for a more precise ap-
proach to incorporating market volatility into an insti-
tution’s Tier 1 reporting [10], optimizing risk weighted
assets results through a much more accurate/precise
calculation process.

4. Customer retention Improve risk analysis for the
new Net Stable Funding Ratio time-frames require-
ments that will impact the cost of doing business for
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Prime Brokers and hedge funds. The stable funding
for securities Lending Transactions shifts from 0% to
10% for Level 1 collateral and to 15% for other col-
lateral [11].

Overall, Basel regulation implementation and the new
needs of risk management is of mandatory interest for
financial institutions, with an estimated technology cost
between EUR 45 million and EUR 70 Million [12].

Simulation focuses on creating scenarios of potential
outcomes, such as the impact of volatility on risk, eval-
uating asset values for pricing, or monitoring economic
system impacts in the market.

One key task in the finance industry, where simulation
is crucial is the pricing of financial instruments and esti-
mating their risk. For example, the buyers and sellers of
complex financial instruments gain a competitive advan-
tage when they can price such instruments with a bet-
ter accuracy than their competition. Regulations such as
Basel III require banks to perform stress tests and to hold
an amount of capital that depends on their risk-weighted
assets. However, pricing and estimating the risk of many
financial instruments is computationally intensive. Ana-
lytical models are often too simplistic to capture the com-
plex dependencies between financial instruments or can-
not take into account some of their features such as path-
dependency. Monte Carlo (MC) simulations are, there-
fore, used to estimate risk metrics, to price financial in-
struments, and to perform scenario analysis that can be
used in stress tests. In a MC simulation M samples are
drawn from the model input distributions and are used
to construct an estimation of a quantity of interest. The
confidence interval of this estimation scales as O(1/

√
M)

making MC computationally intensive. For instance, de-
creasing the size of the confidence interval by an order of
magnitude requires increasing the computational cost by
a factor of 100. In this section, we briefly discuss MC
for option pricing (see Sec. 3) and risk calculations (see
Sec. 3) and then discuss how such tasks can be performed
on quantum computers using amplitude estimation (see
Sec. 3.1).

Option Pricing. Options are financial derivative contracts
that give the buyer the right, but not the obligation, to
buy (call option) or sell (put option) an underlying as-
set at an agreed-upon price (strike) and time-frame (ex-
ercise window). In their simplest form, the strike price
is a fixed value and the time-frame is a single point in
time, but exotic variants may be defined on more than
one underlying asset, the strike price can be a function
of several market parameters and could allow for multiple
exercise dates [13]. Options provide investors with a ve-
hicle to profit by taking a view on the market or exploit
arbitrage opportunities and are core to various hedging
strategies. As such, understanding their properties is a
fundamental objective of financial engineering. Due to the

stochastic nature of the parameters options are defined on,
calculating their fair value can be an arduous task. Ana-
lytical models exist for the simplest types of options [14]
but the simplifying assumptions on the market dynamics
required for the models to provide closed-form solutions
often limit their applicability [15]. Hence, more often than
not, numerical MC simulations are employed for option
pricing since they are flexible and can generically handle
stochastic parameters [16, 17]. Option pricing with MC
generally proceeds by simulating many paths of the time
evolution undergone by the underlying assets to build a
distribution of the option payoff at maturity. The option
price is then obtained by discounting the expected value of
this distribution. Classical MC methods require extensive
computational resources to provide accurate option price
estimates, particularly for complex options. Because of
the widespread use of options in the finance industry, ac-
celerating the methodology to price them can significantly
impact the operations of a financial institution.

Risk Management. Risk management plays a central role
in the financial system. It allows companies, institutions,
and individuals to avoid monetary losses and grow their
business. Financial risk, which comes in many forms such
as credit risk, liquidity risk, and market risk, is often es-
timated using models and simulations. The accuracy of
these models has a direct impact on the operations of
the entity using them. For instance, the capital require-
ments imposed on banks under the Basel accords depend
on the accuracy of risk models [18]. Therefore, banks with
more accurate models can make better use of their capital.
Value at risk (VaR) [19], a quantile of the loss distribution,
is a widely used risk metric. For example, the Basel III reg-
ulations require banks to perform stress tests using VaR
[20]. Monte Carlo simulations are the method of choice
to determine VaR and CVaR. They are done by building
a model and computing the loss/profit distribution for M
different realizations of the model input parameters. Many
different runs are needed to achieve a representative distri-
bution of the loss/profit distribution. Classical attempts to
improve the performance are variance reduction or Quasi-
Monte Carlo techniques [21, 17, 22]. The first aims at
reducing the constants while not changing the asymptotic
scaling; whereas, the latter improves the asymptotic be-
havior, but only works well for low-dimensional problems.

In section 3.1 we discuss how Quantum Amplitude Es-
timation can provide a quadratic speed-up over classical
Monte Carlo (MC) simulations and highlight the steps
needed to calculate value at risk in section 3.2. We then
employ these methods in the context of credit risk as al-
ready discussed in [23] and summarized here in section 3.3.
For a detailed discussion on how Quantum Amplitude Es-
timation can provide an advantage for options pricing, we
refer to [24, 25, 26].
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(m− 1) |0〉 H •

F†
m

... . .
. ...

(j) |0〉 H •
... . .

. ...

(0) |0〉 H •

|0〉n
A Q20 Q2j Q2m−1

|0〉
· · · · · ·

Figure 4: Quantum circuit for amplitude estimation as introduced in

[27]. H is the Hadamard gate and F†m denotes the inverse Quantum
Fourier Transform on m qubits.

3.1. Quantum Amplitude Estimation

Amplitude estimation (AE) is a quantum algorithm
that can estimate a parameter a with a convergence rate
O(1/M) where M is the number of quantum samples.
This corresponds to a quadratic speed-up compared to
classical MC. AE is based on a unitary operator A act-
ing on a register of (n + 1) qubits such that A |0〉n+1 =√

1− a |ψ0〉n |0〉+
√
a |ψ1〉n |1〉 for some normalized states

|ψ0〉n and |ψ1〉n, where a ∈ [0, 1] is unknown. AE allows
the efficient estimation of a, i.e., the probability of mea-
suring |1〉 in the last qubit [27]. This is done using an
operator Q defined as

Q=A(I− 2 |0〉n+1 〈0|n+1)A†(I− 2 |ψ0〉n |0〉 〈ψ0|n 〈0|),

where I denotes the identity operator, and Quantum Phase
Estimation [28] to approximate certain eigenvalues of Q.
AE requires m additional qubits and M = 2m (controlled)
applications of Q. The m qubits are first put into equal
superposition by applying Hadamard gates. Then, they
are used to control different powers of Q. And last, after
an inverse Quantum Fourier Transform has been applied,
their state is measured, see the circuit in Fig. 4. This
results in an integer y ∈ {0, ...,M −1}, which is classically
mapped to the estimator ã = sin2(yπ/M) ∈ [0, 1]. The
estimator ã satisfies

|a− ã| ≤ 2
√
a(1− a)π

M
+

π2

M2

≤ π

M
+

π2

M2
= O

(
M−1

)
, (2)

with probability of at least 8/π2. This represents a
quadratic speedup compared to the O

(
M−1/2

)
conver-

gence rate of classical Monte Carlo methods [19].
Recently, several variants of AE have been proposed

that simplify the required quantum circuits [29, 30, 31].
They leverage the same underlying structure, but allow
to remove the m additional qubits as well as the Quan-
tum Fourier Transform. For a comparison of available AE
variants, we refer to [31].

3.2. Estimating value at risk with AE

The discussion above shows that to efficiently estimate
a parameter a we need the corresponding operator A. We
make use of AE in finance by building the A operator
for each quantity of interest, such as a risk measure, of a
random variate X. We represent the distribution of X as
an n-qubit quantum state

|ψ〉n =

N−1∑
i=0

√
pi |i〉n (3)

by discretizing the outcomes of X and mapping them to
i ∈ {0, ..., N − 1} where N = 2n. Here, pi ∈ [0, 1] is the
probability of measuring the state |i〉n which is a binary
representation of i. By adding an ancilla qubit to the n-
qubit register and applying the operator

F : |i〉n |0〉 → |i〉n
(√

1− f(i) |0〉+
√
f(i) |1〉

)
, (4)

for some function f(i), to the state |ψ〉n |0〉 results in the
quantum state

N−1∑
i=0

√
pi
√

1− f(i) |i〉n |0〉+

N−1∑
i=0

√
pi
√
f(i) |i〉n |1〉 . (5)

By comparing this state to A |0〉n+1 =
√

1− a |ψ0〉n |0〉 +√
a |ψ1〉n |1〉 we find that the probability of measuring |1〉

in the ancilla qubit is a =
∑N−1
i=0 pifi. We can therefore

obtain an estimate for VaRα(X) by choosing

f(i) =

{
1 i ≤ l
0 otherwise

(6)

for some level l. With this definition of f(i) the probability

of measuring |1〉 in the ancilla qubit is
∑l
i=0 pi = P[X ≤ l].

With a binary search over l we find the smallest lα such
that P[X ≤ lα] ≥ 1−α. The smallest lα corresponds to the
value at risk. This estimation of VaRα(X) has accuracy
O(M−1), i.e. a quadratic speed-up compared to classical
Monte Carlo methods (omitting the additional logarithmic
complexity of the bisection search).

3.3. Credit risk

The quantum method to calculate value at risk, outlined
in the previous sections, can be applied in the context of
credit risk to determine the economic capital requirement
(ECR) associated to holding a portfolio of K loans [23].
The ECR is the amount of capital that needs to be held
on the balance sheet to protect against unexpected losses.
It is therefore defined as the value at risk less the expected
value of the loss distribution L, i.e.

ECRα(L) = VaRα(L)− E(L) (7)

where α is the confidence level. Estimating the value at
risk is often a computationally intensive task requiring
classical MC simulation. However, quantum amplitude
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estimation can achieve the same result with a quadratic
speed-up. We illustrate amplitude estimation for a port-
folio of K assets for which the multivariate random vari-
able (L1, ..., LK) ∈ RK≥0 denotes each possible loss associ-
ated to each asset. The expected value of the total loss
L =

∑K
k=1 Lk is E[L] =

∑K
k=1 E[Lk]. The value at risk for

a given confidence level α ∈ [0, 1] is defined as the smallest
total loss that still has a probability greater than or equal
to α, i.e.,

VaRα[L] = inf
x≥0
{x | P[L ≤ x] ≥ α} . (8)

Common values of α for ECR found in the finance in-
dustry are around 99.9%. We assign a Bernoulli random
variable Xk to each asset to indicate if it is in a default
state such that Lk = λkXk where λk > 0 is the loss
given default (LGD). The probability that Xk = 1, i.e.,
a loss for asset k, is pk. The expected loss of the portfo-
lio E[L] =

∑K
k=1 λkpk is easier to evaluate than VaRα[L],

which usually requires a Monte Carlo simulation. The de-
faults Xk are usually correlated which we model following
a conditional independence scheme [32]. Given a realiza-
tion z of a latent random variable Z, the Bernoulli random
variables Xk | Z = z are assumed independent, but their
default probabilities pk depend on z. We follow [32] and
assume that Z has a standard normal distribution and
that

pk(z) = Φ

(
Φ−1(p0

k)−√ρkz√
1− ρk

)
, (9)

where p0
k denotes the default probability for z = 0, Φ is

the cumulative distribution function (CDF) of the stan-
dard normal distribution, and ρk ∈ [0, 1) determines the
sensitivity of Xk to Z. This scheme is similar to the one
used for regulatory purposes in the Basel II (and follow-
ing) Internal Ratings-Based (IRB) approach to credit risk
[33, 20], and is called the Gaussian conditional indepen-
dence model [32].

To estimate VaR, we use AE to efficiently evaluate the
CDF of the total loss, i.e., we will construct A such that
a = P[L ≤ x] for a given x ≥ 0, and apply a bisection
search to find the smallest xα ≥ 0 such that P[L ≤ xα] ≥
α, which implies xα = VaRα[L] [34].

Mapping the CDF of the total loss to a quantum oper-
ator A requires three steps. Each step corresponds to a
quantum operator. First, U loads the uncertainty model.
Second, S computes the total loss into a quantum register
with nS qubits. Last, C flips a target qubit if the total
loss is less than or equal to a given level x which is used
to search for VaRα. Thus, we have A = CSU and the cor-
responding circuit is illustrated in Fig. 5 on a high level.

We now discuss the operators U , S, and C in more detail.
The loading operator U loads the distribution of Z and
prepares the Xk of each asset. To include correlations be-
tween the default events we represent Z in a register with
nZ qubits. We use a truncated and discretized approxima-
tion with 2nZ values, where we consider an affine mapping

Z-register |0〉nZ

U
X-register |0〉K

S
sum-register |0〉nS

C
objective qubit |0〉

Figure 5: High level circuit of the operator A used to evaluate
the CDF of the total loss: the first qubit register with nZ qubits
represents Z, the second qubit register with K qubits represents the
Xk, the third qubit register with nS qubits represents the sum of
the losses, i.e., the total loss, and the last qubit is flipped to |1〉 if
the total loss is less than or equal to a given x. The operators U , S,
and C represent the loading of uncertainty, the summation of losses,
and the comparison to a given x, respectively.

zi = azi+ bz from i ∈ {0, ..., 2nZ − 1} to the desired range
of values of Z. Since Z follows a standard normal distri-
bution we can efficiently load it to a quantum register with
controlled rotations [35]. We encode the Xk of each asset
in the state of a corresponding qubit by applying to qubit
k a Y -rotation RY (θkp), controlled by the qubit register

representing Z, with angle θkp(z) = 2 arcsin
(√

pk(z)
)

. For

simplicity, we use a first order approximation2 of θkp(z) and
include the affine mapping from z (a value of the normal
distribution) to i (an integer represented by nZ qubits),
i.e., θkp(zi) ≈ aki + bk. This prepares qubit k in the state√

1− pk |0〉+√pk |1〉 for which the probability to measure
|1〉 is pk. The |1〉 state of qubit k thus corresponds to a
loss for asset k.

Next, we need to compute the resulting total loss for
every realization of the Xk. Therefore, we use a weighted
sum operator

S : |x1, · · · , xK〉K |0〉nS

7→ |x1, · · · , xK〉K |λ1x1 + · · ·+ λKxK〉nS
, (10)

where xk ∈ {0, 1} denote the possible realizations of Xk.
We set the size of the sum register to nS = blog2(λ1 + · · ·+
λK)c+ 1 qubits to represent all possible values of the sum
of the losses given default λk, assumed to be integers. To
implement S we apply a divide and conquer approach and
first sum up pairs of assets, then pairs of the resulting sums
and so on until we computed the total sum. This implies
that we start with a weighted-sum operator, discussed in
detail in [25], and then continue with adder circuits [36] to
iteratively combine the intermediate results.

Last, we need an operator that compares a particular
loss realization to a given x and then flips a target qubit
from |0〉 to |1〉 if the loss is less than or equal to x. This

2Higher order approximations of θkp(z) can be implemented using
multi-controlled rotations. Furthermore, by using quantum arith-
metic one could also compute θkp(z) directly [34].
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Figure 6: Loss distribution of the two-asset portfolio. The green and
orange dashed lines show the expected value and the 95% value at
risk of the distribution, respectively.

operator is defined by

C : |i〉nS
|0〉 7→

{
|i〉nS

|1〉 if i ≤ x,
|i〉nS

|0〉 otherwise.
(11)

A fixed value comparator, i.e., a comparator that takes a
fixed value to compare to as a classical input, can be based
on adder circuits [37]. Here, a logarithmic scaling can be
achieved by adding a linear number of ancilla qubits.

We now show the performance of the quantum algorithm
for an illustrative example with K = 2 assets. Each as-
set is defined by the triplet (λk, p

0
k, ρk), i.e. the loss given

default, the default probability for z = 0, and the sensitiv-
ity of Xk to Z, respectively. We chose (1, 0.15, 0.1) and
(2, 0.25, 0.05) for asset one and two, respectively, which
results in the loss distribution shown in Fig. 6. From the
chosen λk’s it follows that the sum register requires nS = 2
qubits to represent all possible losses. We represent Z with
nZ = 2 qubits. Thus, A is operating on seven qubits that
represent this problem on a quantum computer, including
the objective qubit.

To simulate our algorithm we input the circuit for A to
the AE sub-routine implemented in Qiskit [38] and per-
form the bisection search using the result to find xα. We
use m = 4 evaluation qubits giving us 16 quantum sam-
ples. Our implementation requires one additional ancilla
qubit to create Q. Therefore, this experiment requires a
total of 12 qubits that we simulate on classical computers
using the statevector simulator back-end provided by
Qiskit Aer. Since nS = 2, the bisection search requires at
most two steps, as shown in Fig. 7. To ensure that the en-
tire probability distribution is captured by the initial lower
and upper bounds of the bisection search we set them at
losses of -1$ and 3$, respectively. The simulations, shown
in Fig. 7, properly identify the 95% value at risk, located
at a loss of 2$, on the first iteration of the bisection search.

3.4. Distribution loading

Replacing a MC simulation with QAE requires effi-
ciently loading the distributions of the random variables
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Figure 7: Cumulative distribution function (left) of the total loss L
(blue), shown in Fig. 6, for a two-asset portfolio. The red dashed
line is the target value at risk level α = 95%. Bisection search to
compute VaR (middle and right) using m = 4 sampling qubits, i.e.
16 quantum samples: orange and blue represent the lower and upper
bounds of the search interval, respectively, and green is the resulting
midpoint. The red dashed line shows the exact value.

in the model to the quantum computer to avoid dimin-
ishing the potential quantum advantage. This is feasible,
e.g. for efficiently integrable probability distributions such
as log-concave distributions for which the loading opera-
tor can be built from controlled rotations [35]. The load-
ing of arbitrary states into quantum systems, however, re-
quires exponentially many gates [39], making it inefficient
to model arbitrary distributions as quantum gates. Since
the distributions of interest are often of a special form, the
limitation may be overcome by using quantum Generative
Adverserial Networks (qGAN). These networks allow us
to load a distribution using a polynomial number of gates
[40].

3.5. Summary

We have shown how AE can be used to estimate the
ECR for a portfolio of loans. This results in a quadratic
speed-up (omitting the logarithmic cost of the bisection
search in VaR) over classical MC simulations. The exam-
ple also shows that the quantum circuit needed to imple-
ment A depends on the task at hand. Therefore, extending
this work to other financial simulation tasks requires task
specific quantum circuits to implement A.

4. Optimization

In this section we discuss optimization problems, where
quantum computing may be beneficial. As in the case of
simulation, there are optimization problems at each stage
of the customer life cycle (see Figure 3):

1. Customer identification (and assesment) Im-
prove Financial Supply Chain Efficiency [41] in pro-
curement and payment focusing on customers and
suppliers to increase to reduce working capital lev-
els, enhance liquidity, minimize risk and avoid late
payments (47% of suppliers are paid late [42]).

2. Financial products Accelerate trade settlement ca-
pacity [43, 44] (i.e. from 45% transactions to 90%) to
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reduce associated capital requirements, systemic risk,
and operational costs.

3. Monitor transactions Keep investment portfolios
relevant by re-balancing aligned to market changes
[45], while handling all the associated fees (taxes,
commissions, etc.). This can reduce transaction costs
by 50% and lead to $ 600k savings in trading costs for
an example of 4 asset $ 1billion portfolio [46].

4. Customer retention Improve the process of match-
ing companies to potential buyers to avoid current
customer churn towards automated investment bank-
ing. This can reduce current work losses, in 2015,
26% of the $1B+ merger and acquisitions were done
without involvement of financial advisors [47].

Overall, investment banks are increasingly applying
technology to automate the trading pipeline, hiring tech-
nologists, which are 20% to 40% job openings on the main
investment banks [48]. Also, JPMorgan spends the most
a year on technology with $ 10.8 billion [49].

Many financial services firms may want to take actions
that result in the best possible outcome for a given goal.
In the language of mathematical optimization, finding the
best decision or action with respect to maximizing or min-
imizing given goals or objectives, is cast as maximizing
or minimizing an objective function in a decision variable,
subject to constraints, often given again by functions of
a decision variable. This has extensive applications, e.g.,
finding the best supply-chain route for delivery, determin-
ing the best investment strategy for a portfolio of assets, or
increasing productivity with a number of fixed resources
in operations.

Optimization problems in finance may consider a sin-
gle period, where all information are available at time 0
and one takes a one-off decision, or their generalizations.
In multi-stage problems, information become available at
multiple points in time, and also the decisions can be made
at multiple points in time (stages). In optimal control
problems, one optimizes over policies, which drive the re-
peated decisions. Throughout, one can work with either
discrete decisions (e.g., yes/no, number of round lots), or
real-valued decisions (e.g., price). Throughout, one can
enforce the constraints given by the Basel III regulatory
framework directly, or produce the decision that would be
optimal without the constraints, and test whether these
constraints are satisfied using simulation tools, as intro-
duced above.

Correspondingly, there is a breadth of approaches, which
model active and passive investment management. Within
active investment management, one often tries to find the
optimal investment strategy striking a balance between the
expected profit and some measure of risk involved. Within
passive investment management, one can imagine index-
tracking funds and their “calibration problems”, which are
based on portfolio diversification, and aim at representing
a portfolio with a large number of assets by a smaller num-
ber of representative assets. Within auction mechanisms,

the clearing of so-called combinatorial auctions, where bids
on a subset of items are accepted, is an example of a diffi-
cult discrete-valued optimization problem. In this section,
we introduce idealized versions of these problems, where
only the decision in the next period is considered, trans-
action costs are ignored, and Basel III constraints are not
enforced, and the corresponding quantum algorithms.

4.1. Problem classes: convex problems

We now discuss the mathematical classes of optimiza-
tion problems, and associated quantum algorithms.

First, we consider convex optimization, which encom-
passes linear programming (LP), quadratic programming
(QP), and semidefinite programming (SDP). Convex op-
timization [55] is a sub-class of continuous optimization
problems, where the decision variables are continuous, and
it has been advocated for a large variety of applications.

Not surprisingly, much of the recent interest in quantum
algorithms for continuous optimization has focused on ap-
proaches to solving convex optimization problems, and in
particular semidefinite programming (SDP). A SDP can
be mathematically modelled as:

inf 〈C,X〉 s.t. AX = b,X �K 0 (12)

where cone K is the cone of positive semidefinite
symmetric n × n matrices Sn+, i.e., {X = Xᵀ ∈
Rn×n| X is positive semidefinite}, and A : Sn → Rm is
a linear operator between Sn+ and Rm:

X 7→

 〈A1, X〉
. . .

〈Am, X〉


This is a proper generalization of linear programming
(LP), second-order cone programming (SOCP), and con-
vex cases of quadratically-constrained quadratic program-
ming (QCQP), and hence of considerable practical inter-
est.

Within classical algorithms, there exist polynomial-time
algorithms that can solve SDP. In particular, there are
classical upper bounds on the run time as

O(m(m2 + nω +mnz)polylog(m,n,P, 1/ε)),

whereO(·) indicates the big-O notation, n is the dimension
of the problem, ω ∈ [2, 2.373) is the exponent for matrix
multiplication, m is the number of constraints, and nz is
the maximal number of non-zero entries per row of the
input matrices. P is an upper bound on the trace of an
optimal primal solution of an SDP, which could be seen as
bound on a diameter of a ball outscribed to feasible solu-
tions, in a suitable norm. This bound shows that SDPs can
be approximated to any ε in polynomial time classically.

As for quantum algorithms, the early papers of [50] and
[52] and [53] quantized the so-called multiplicative-weight-
update (MWU) algorithm of Arora and Kale and variants
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Table 2: An overview of recently proposed quantum algorithms for convex optimization. See Section 4.1 for the notation, but note that Õ
hides polylogarithmic terms in the upper bound.

Ref. Quantum run-time Comment

[50] Õ(
√
mns2P32/δ18) to error 1± δ, where P is linear in n in general

[51] Õ(s2poly(PD/ε)(
√
m/ε10 +

√
n/ε12)

[52] Õ(
√
mns2(PD/ε)8) where P is linear in n in general

[53] Õ((
√
mns(PD/ε)4) where P is linear in n in general, and quantum-read/classical-write

RAM can be accessed in constant time

[54] Õ(n2.5µκ3 log 1/ε) where κ goes to infinity for all instances

by Hazan. As it has been shown in [52, Appendix E], in
the MWU algorithm, PD

ε should be seen as an important
parameter (D being the dual counterpart of P), as one
can trade-off dependence on one of the three individual
parameters for the dependence on the others.

Subsequently, the work in [54] attempted a translation
of primal-dual interior-point methods to quantum com-
puters, but due to their reliance on solving linear systems,
ended up with a bound dependent on the condition number
κ of the Karush-Kuhn-Tucker (KKT) system, which goes
to infinity for all instances, by the design of the method,
which may be not ideal in practice.

Finally, in [56], the authors study the relationship of
several oracles useful in subgradient algorithms, but do
not claim a run-time of a particular algorithm for SDPs.

The key results are summarized in Table 2. As
it can be observed, some of the quantum algo-
rithms listed report scaling with O(

√
mn) [50] or even

O(
√
m poly(log(m), log n)) [51]. However, these these up-

per bounds hide the diameters of balls outscribed to the
primal and dual solutions. That is: these upper bounds
assume that parameters P and D are constants indepen-
dent of dimension, which could be however hard to satisfy
in practice.

In fact, if ones assumes that P and D are dependent on
the dimension of the problem, then lower bounds on the
run-time of quantum algorithms can be derived, e.g., for
continuous Markowitz portfolio optimization problems in
Section 4.2.

4.2. Modern Portfolio Management - Active Investment
Management: continuous case

Let us now consider modern portfolio management, and
develop lower bounds on the run-time of any quantum al-
gorithm in the quantum query model of Beals et al. [57],
where quantum computation with T queries is a sequence
interleaving T unitary and T query (oracle) transforma-
tions, with a measurement at the end. These lower bounds
on the run-time are generally based on lower bounds on
parameters P,D = Θ(min{n,m}2), as discussed in Sec-
tion 4.1, and suggest that the quantum speed-up of MWU
algorithms [50, 52, 53] may be limited in practice.

In modern portfolio theory, one often assumes that there
are n possible assets, and a number m of forecasts of their

returns bi ∈ Rn, 1 ≤ i ≤ m based on some historical
returns c ∈ Rn, with a known covariance matrix Σ ∈ Rn×n
of the returns. Minimization of the risk subject to lower
bounds µi on the forecast returns leads to:

min
w∈Rn

+

wᵀΣw s.t. bᵀi w ≥ µi, ∀ 1 ≤ i ≤ m (13)

possibly with normalization such as
∑n
j=1 wi = 1 or simi-

lar. In the spirit of Markowitz, one may consider a linear
combination of the returns and the risk:

max
w∈Rn

+

cᵀw − qwᵀΣw s.t. bᵀi w ≥ µi, ∀ 1 ≤ i ≤ m. (14)

One can also formulate a Lagrangian of the Markowitz
model above and maximize cᵀw−qwᵀΣw, where the higher
q ≥ 0, the more risk-averse the portfolio will be.

In any case, due to the general result that there exist
problem instances for which complexity of every quantum
LP-solver (and hence also SDP-solver) is the same as clas-
sical [52], there are instances of Markowitz Portfolio Man-
agement (14) with n assets and m forecasts of the returns,
for which a quantum algorithm has the same complexity
of a classical one. This has to be taken as an understand-
ing that quantum algorithms may help in some instances
of Markowitz Portfolio Management but not in others, de-
pending on the actual input data.

4.3. Problem classes: combinatorial problems

We move now to overview combinatorial problems and
quantum algorithms that have been advocated for them.
Combinatorial optimization problems are the ones for
which the decision variables can be also discrete. Com-
binatorial problems are in general non-convex and not
solvable with polynomial-time algorithms, classically. In
the quantum domain, variational algorithms for gen-
eral mixed-binary constrained optimization problems have
been studied, and we will overview them as well as ap-
ply them for financial problems. Firstly, we will look at
Quadratic Binary Unconstrained Optimization (QUBO),
where VQE/QAOA heuristic approaches have been advo-
cated on noisy quantum devices. VQE stands for varia-
tional quantum eigensolver, while QAOA stands for quan-
tum approximate optimization algorithm. Then, we will
explore how the classical alternating direction method of
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multipliers (ADMM) can help solving certain classes of
mixed-binary constrained optimization problems. We note
that, currently, there is no theoretical guarantee that vari-
ational algorithms on quantum devices can achieve signif-
icant speed-ups for QUBOs and the algorithms reported
in this section are used as heuristics. On the other hand,
variational algorithms do have non-trivial provable guar-
antees and they are not efficiently simulatable by classical
computers. They are thus appealing algorithms to explore
on near-term quantum machines [58].

4.4. Variational approaches for Quadratic Binary Uncon-
strained Optimization (QUBO)

The attempts to solve mathematical optimization prob-
lems on early generation of universal quantum computers
have mainly focused on variational approaches [59, 60, 61].
In broad terms, a variational approach works by choosing
a parametrization of the space of quantum states that de-
pends on a relatively small set of parameters, then using
classical optimization routines to determine values of the
parameters corresponding to a quantum state that maxi-
mizes or minimizes a given utility function. Typically, the
utility function is given by a Hamiltonian encoding the
total energy of the system, to be minimized. The vari-
ational theorem then ensures that the expectation value
of the Hamiltonian is greater than or equal to the mini-
mum eigenvalue of the Hamiltonian. A large problem class
tackled by such variational approaches is that of quadratic
unconstrained binary optimization problems (QUBO):

min
x

cᵀx+ xᵀQx

s.t.: x ∈ {0, 1}n, with c ∈ Rn, Q ∈ Rn×n

Each QUBO can be transformed into an Ising model with
Hamiltonian constituted as a summation of weighted ten-

sor products of Z Pauli operators, i.e., Z =

(
1 0
0 −1

)
,

by mapping the binary variables x to spin variables y ∈
{−1, 1}, i.e., x = y+1

2 . In case equality constraints
Ax = b are present in the mathematical programming
formulation, a QUBO can still be devised by adding a
quadratic penalization α‖Ax − b‖2 to the objective func-
tion, as a soft-constraint in an Augmented Lagrangian
fashion [62, 63, 64].

A typical variational approach on quantum devices, such
as VQE [65] would involve the following two key steps in
solving a QUBO, given its Ising Hamiltonian H ∈ Cn×n.
First, one would parametrize the quantum state via a
small set of rotation parameters θ: each state can then
be expressed as |ψ(θ)〉 = U(θ)|0〉, where U(θ) is the
parametrized quantum circuit applied to the initial state
|0〉. The variational approach would then aim at solving
minθ〈ψ(θ)|H|ψ(θ)〉. Such optimization can be performed
in a setting that uses a classical computer running an it-
erative algorithm to select θ, and a quantum computer
to compute information about 〈ψ(θ)|H|ψ(θ)〉 for given θ

(e.g., its gradient). The algorithm outline of VQE is re-
ported in Algorithm 1.

Algorithm 1 Outline of VQE

Require: Hamiltonian H. Set θ = θ0

1: while Error tolerance is unmet: do
2: Quantum part:

• Form variational state |ψ(θ)〉 = U(θ) |0〉

• Compute information about λ = 〈ψ(θ)|H|ψ(θ)〉

3: Classical part:

• Update θ via a classical optimization algorithm
(e.g., COBYLA, SPSA, etc.)

• Compute the error metric

4: end while
5: return λ, θ

Another variational approach on quantum devices is
QAOA (or Quantum Approximate Optimization Algo-
rithm) [58], which can be seen as a generalization of VQE.
First, one would define rotation parameters θ = [θ1, . . . , θd]
and β = [β1, . . . , βd] together with the Ising Hamiltonian
H ∈ Cn×n, and a mixing Hamiltonian HX ∈ Cn×n defined
as a summations of X Pauli operators. Then, one would
construct the quantum state as

|ψ(θ, β)〉 = exp(−iβdHX) exp(−iθdH) · · ·
exp(−iβ1HX) exp(−iθ1H) |0〉 = U(θ, β) |0〉 . (15)

The variational approach would then aim at solving
minθ,β〈ψ(θ, β)|H|ψ(θ, β)〉. Such optimization can be per-
formed in a setting that uses a classical computer running
an iterative algorithm to select θ, β, and a quantum com-
puter to compute information about 〈ψ(θ, β)|H|ψ(θ, β)〉
for given θ, β (e.g., its gradient). The algorithm outline of
QAOA is reported in Algorithm 2.

4.5. Combinatorial Application 1: Active Investment
Management, Portfolio Optimization

To illustrate the VQE and the QAOA in the context
of portfolio optimization we solve a combinatorial opti-
mization problem in which we seek to allocate capital to
a subset of B = 3 assets selected from a larger investment
universe with size n = 6 [61]. In particular, we will solve
the combinatorial problem:

min
x∈{0,1}n

qxᵀΣx− µᵀx, subject to: 1ᵀx = B, (16)

where we use the following notation:

• x ∈ {0, 1}n denotes the vector of binary decision vari-
ables, which indicate which assets to pick (xi = 1)
and which not to pick (xi = 0);
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Algorithm 2 Outline of QAOA

Require: Hamiltonian H, mixer Hamiltonian HX . Set θ = θ0,
β = β0

1: while Error tolerance is unmet: do
2: Quantum part:

• Form variational state |ψ(θ, β)〉 = U(θ, β) |0〉

• Compute information about λ = 〈ψ(θ, β)|H|ψ(θ, β)〉

3: Classical part:

• Update θ, β via a classical optimization algorithm
(e.g., COBYLA, SPSA, etc.)

• Compute the error metric

4: end while
5: return λ, θ, β

• µ ∈ Rn defines the expected returns for the assets;

• Σ ∈ Rn×n specifies the covariances between the assets;

• q > 0 controls the risk appetite of the decision maker;

• and B denotes the budget, i.e. the number of assets
to be selected out of n.

We also assume the following simplifications: i) all assets
have the same price (normalized to 1), ii) the full budget
B has to be spent, i.e. one has to select exactly B assets.
To map the problem (16) to a QUBO, the equality con-
straint 1ᵀx = B is mapped to a penalty term (1ᵀx − B)2

which is scaled by a parameter and subtracted from the
objective function. The resulting problem can be mapped
to a Hamiltonian whose ground state corresponds to the
optimal solution.

We use the statevector simulator in Qiskit Aer [38] as
backend and compare the results to a diagonalization of
the Ising Hamiltonian which encodes the portfolio opti-
mization problem. The VQE and QAOA both produce
variational states, which, when sampled from, result with
high probability in an asset selection that respects the bud-
get constraint and is either optimal or near optimal, see
Table 3. For such a small problem size the diagonalization
runs in less time than simulations of the VQE and the
QAOA. Performing VQE and QAOA on quantum hard-
ware would require even more time. However, we expect
that as the problem size increases such classical brute force
search methods will not scale favorably.

In a second example, we optimize the portfolio for dif-
ferent values of the risk-return trade-off parameter q with-
out the budget constraint. We compare solutions obtained
with VQE and solutions obtained from a classical brute-
force search. The most probable asset selections obtained
from the state of the VQE closely follow the efficient fron-
tier, therefore maximizing return and minimizing risk.

Table 3: Comparison of the VQE solution, obtained with an Ry

variational form of depth 3, a depth p = 4 QAOA solution, and
a diagonalization of the Hamiltonian of the portfolio optimization
problem. The energy is the energy of the selected state and the
probability shows the likelihood of sampling the selected assets from
the quantum state created by the quantum algorithm.

Assets selected Energy Probability

Diagonalization
[1 0 1 0 1 0] -0.0036 1.0000

VQE

[0 1 0 0 1 1] -0.0021 0.4431
[0 1 0 1 1 0] -0.0021 0.3660
[1 1 0 0 1 0] -0.0036 0.1154

QAOA

[1 1 0 0 1 0] -0.0036 0.0487
[1 0 1 0 1 0] -0.0036 0.0486
[1 0 0 1 1 0] -0.0031 0.0485

Figure 8: Reconstruction of the efficient frontier using a classical
brute force search (blue line) and the VQE (green triangles). Both
methods find the optimal portfolios out of the 64 possible asset com-
binations (black dots).

4.6. Combinatorial Application 2: Passive Investment
Management, Portfolio Diversification

In passive investment management one of the main chal-
lenges is to build a diverse portfolio with a relatively small
number of assets that track the dynamics of a portfolio
with a much larger number of assets. This portfolio di-
versification makes it possible to mimic the performance
of an index (or a similarly large set of assets) with a lim-
ited budget, at limited transaction costs. The purchase of
all assets in the index may be impractical for a number
of reasons: the total of even a single round lot per asset
may amount to more than the assets under management,
the large scale of the index-tracking problem with inte-
grality constraints may render the optimization problem
difficult, and the transaction costs of the frequent rebal-
ancing to adjust the positions to the weights in the index
may render the approach expensive. Thus, a popular ap-
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proach is to select a portfolio of q assets that represent
the market with n assets, where q is significantly smaller
than n, but where the portfolio replicates the behavior of
the underlying market. To determine how to group assets
into q clusters and how to determine which q assets should
represent the q clusters amounts to solving a large-scale
optimization problem.

As discussed in [66], we describe a mathematical model
that clusters assets into groups of similar ones and selects
one representative asset from each group to be included
in the index fund portfolio. The model is based on the
following data, which we will discuss in more detail later:

ρij = similarity between stock i and stock j.

For example, ρii = 1, ρij ≤ 1 for i 6= j and ρij is larger for
more similar stocks. An example of this is the correlation
between the returns of stocks i and j. It allows for simi-
larity measures between time-series beyond the covariance
matrix. Consider, for instance, a company listed both in
London and New York. Although both listings should be
very similar, only parts of the time series of the prices of
the two listings will overlap, because of the partial overlap
of the times the markets open. Instead of covariance, one
can consider, for example, dynamic time warping of [67]
as a measure of similarity between two time series, which
allows for the fact that for some time periods, the data are
captured by only one of the time series, while for others,
both time series exhibit the similarity due to the parallel
evolution of the stock price.

The problem that we are interested in solving is:

(M) f = max
xij ,yj

n∑
i=1

n∑
j=1

ρijxij

subject to the clustering constraint:

n∑
j=1

yj = q,

to consistency constraints:

n∑
j=1

xij = 1, ∀ i = 1, . . . , n,

xij ≤ yj , ∀ i = 1, . . . , n; j = 1, . . . , n,

xjj = yj , ∀ j = 1, . . . , n,

and integral constraints:

xij , yj ∈ {0, 1}, ∀ i = 1, . . . , n; j = 1, . . . , n.

The variables yj describe which stocks j are in the index
fund (yj = 1 if j is selected in the fund, 0 otherwise). For
each stock i = 1, . . . , n, the variable xij indicates which
stock j in the index fund is most similar to i (xij = 1 if j
is the most similar stock in the index fund, 0 otherwise).

The first constraint selects q stocks in the fund. The
second constraint imposes that each stock i has exactly one

representative stock j in the fund. The third and fourth
constraints guarantee that stock i can be represented by
stock j only if j is in the fund. The objective of the model
maximizes the similarity between the n stocks and their
representatives in the fund. Different cost functions can
also be considered.

From (M) one can construct a binary polynomial op-
timization with equality constraints only, by substituting
the xij ≤ yj inequality constraints with the equivalent
equality constraints xij(1 − yj) = 0. Then the problem
becomes:

max
xij ,yj

n∑
i=1

n∑
j=1

ρijxij (17a)

s. t.:

n∑
j=1

xij = 1, ∀ i = 1, . . . , n (17b)

xij(1− yj) = 0, ∀ i = 1, . . . , n;

∀ j = 1, . . . , n, (17c)

xjj = yj , ∀ j = 1, . . . , n. (17d)

We can now construct the Ising Hamiltonian (QUBO)
by penalty methods (introducting a penalty coefficient A
for each equality constraint) as

H =

n∑
i=1

n∑
j=1

ρijxij+A
( n∑
j=1

yj−q
)2

+

n∑
i=1

A
( n∑
j=1

xij−1
)2

+

n∑
j=1

A(xjj − yj)2 +

n∑
i=1

n∑
j=1

A (xij(1− yj)) . (18)

For the simulation in Qiskit, we use three assets (n = 3)
and two clusers (q = 2), this leads to a 12-qubit Hamilto-
nian. We solve the problem classical with CPLEX and on
the quantum computer with VQE (with depth 7 and full
entanglement).

In Figure 9, we report the results that we obtain. Solu-
tion shows the selected stocks via the stars and in green
the links (via similarities) with other stocks that are rep-
resented in the fund by the linked stock. As we see, both
classical and quantum, we can find a feasible solution for
our diversification, although the classical algorithm here
finds a slightly better solution. This is reasonable for such
small problem instances, since the classical solver is here
exact, while VQE is a heuristic.

4.7. Multi-block ADMM heuristic for Mixed-Binary Opti-
mization

We move on to Mixed-Binary Optimization (MBO) for-
mulations. In a general MBO problem, the decision maker
faces binary and continuous decisions, subject to equality
and inequality constraints.
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Figure 9: Portfolio selection for classical and quantum algorithm.

We consider the following reference problem (P ):

min
x∈X ,u∈U⊆Rl

q(x) + ϕ(u) (22a)

s.t. : Gx = b, g(x) ≤ 0 (22b)

`(x, u) ≤ 0, (22c)

with the corresponding functional assumptions.

Assumption 1. The following assumptions hold:

• Function q : Rn → R is quadratic, i.e., q(x) = xᵀQx+
aᵀx for a given symmetric squared matrix Q ∈ Rn ×
Rn, Q = Qᵀ, and vector a ∈ Rn;

• The set X = {0, 1}n = {x(i)(1−x(i)) = 0,∀i} enforces
the binary constraints;

• Matrix G ∈ Rn × Rn′ , vector b ∈ Rn′ , and function
g : Rn → R is convex;

• Function ϕ : Rl → R is convex and U is a convex set;

• Function ` : Rn × Rl → R is jointly convex in x, u.

In order to solve MBO problems, [68] proposed heuris-
tics for (P ) based on the Alternating Direction Method of
Multipliers (ADMM) [69]. ADMM is an operator splitting
algorithm with a long history in convex optimization, and

Algorithm 3 3-ADMM-H mixed-binary heuristic

Require: Initial choice of x0, x̄0, y0, λ0. Choice of %, β, c > 0,
tolerance ε > 0, and maximum number of iterations Kmax.

1: while k < Kmax and ‖A0xk −A1x̄k − yk‖ < ε, do
2: First block update (QUBO) on the quantum device:

xk = arg min
x∈{0,1}n

q(x) +
c

2
‖Gx− b‖22+

+ λᵀ
k−1A0x+

%

2
‖A0x+A1x̄k−1 − yk−1‖2 (19)

3: Second block update (Convex) on the classical device:

x̄k = arg min
x̄∈Rm

f1(x̄) + λᵀ
k−1A1x̄+

%

2
‖A0xk +A1x̄− yk−1‖2 (20)

4: Third block update (Convex+quadratic) on the classical
device:

yk = arg min
y∈Rn

β

2
‖y‖22 − λᵀ

k−1y +
%

2
‖A0xk +A1x̄k − y‖2

5: Dual variable update on the classical device:

λk = λk−1 + %(A0xk +A1x̄k − yk)

6: Compute merit value:

ηk = q(xk) + φ(x̄k)+

+ µ(max(g(xk), 0) + max(l(xk, x̄k), 0)) (21)

7: end while
8: return xk∗ , x̄k∗ , yk∗ , with k

∗ = mink ηk.

it is known to have residual, objective and dual variable
convergence properties, provided that convexity assump-
tions are holding [69].

The method of [68] (referred to as 3-ADMM-H, and
displayed in Figure 10) leverages the ADMM operator-
splitting procedure to devise a decomposition for certain
classes of MBOs into:

• a QUBO subproblem to be solved by on the quan-
tum device via variational algorithms, such as VQE
or QAOA, described in Section 4.4;

• a continuous convex constrained subproblem, which
can be efficiently solved with classical optimization
solvers [55].

Algorithm 3 reports the 3-ADMM-H algorithm, along with
stopping criteria and evaluation metrics. A comprehen-
sive discussion on the conditions for convergence, feasibil-
ity and optimality of 3-ADMM-H is out of the scope of the
present document and can be found in [68]. Combinato-
rial auction (A) belongs to the class of MBOs represented
by (P) and can be solved by 3-ADMM-H. Simulations on
representative instances are conducted in Section 4.8.
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Figure 10: Illustration diagram of the 3-ADMM-Happroach. There are two nested loops for the selected implementation, specifically the
outer ADMM loop, and the inner VQE loop (Note VQE can be substituted via QAOA seamlessly).

4.8. Combinatorial Application 3: Auctions

Both governments and private issuers finance its activi-
ties, in part, by the sale of marketable securities. The is-
suer often uses an auction process to sell such marketable
securities and determine their parameters (such as yield).
For example, the United States (U.S.) treasury issued over
$10T (ten trillion U.S. dollars) in securities in 2018. Many
further auction mechanisms abound in electrical energy
markets, pollution management, and within airport oper-
ations (airport landing slots). Some of these auctions may
be combinatorial, in the sense that the value that a bidder
has for a set of items may not be the sum of the values
that he has for individual items. It may be more or it may
be less.

Combinatorial auctions allow the bidders to submit bids
on subsets (combinations) of items. Specifically, let M =
{1, 2, . . . ,m} be the set of items that the auctioneer has
to sell. A bid is a pair Bj = (Sj , pj) where Sj ⊆ M
is a non empty set of items and pj is the price offer for
this set. Suppose that the auctioneer has received n bids
B1, B2, . . . , Bn. How should the auctioneer determine the
winners in order to maximize his revenue? This can be
formulated as an integer program. To render the problem
a bit more interesting, we consider the case in which (as in
some auctions) there are multiple indistinguishable units
of each item for sale. A bid in this setting is defined as
Bj = (λj1, λ

j
2, . . . , λ

j
m; pj) where λji is the desired number of

units of item i and pj is the price offer. Let xj be a binary
variable that takes the value 1 if bid Bj wins, and 0 if it
loses. The auctioneer maximizes his revenue by solving
the integer program (A):

max
xj

n∑
j=1

pjxj (23)

s.t.:
∑
j:i∈Sj

λjixj ≤ ui, for i = 1, . . . ,m (24)

xj ∈ {0, 1}, for j = 1, . . . , n, (25)

where ui is the number of units of item i for sale [66].
The presence of inequality constraints (24) makes a re-

formulation of (A) into a QUBO not possible, hence the

VQE algorithm described in Section 4.4 is not directly ap-
plicable. We here report results obtained by solving (A)
with the 3-ADMM-H heuristic described in Section 4.7.

For simulation purposes, an instance with m = 3 items
and n = 16 bids with randomly generated profits has been
created. For each item, 6 units are available. The number
of units of the items in each bid has been randomly sam-
pled from the interval [1, 6]. This means that not all bids
are necessarily feasible if more than one object is in the
bid. Because the decision of accepting a bid j is a binary
decision xj , the number of bids is the number of qubits
the algorithm 3-ADMM-H necessitates. The optimal so-
lution, found by solving Problem (A) via the classical op-
timization solver IBM ILOG CPLEX, consist of accepting
bids B0 = {0}, B1 = {1}, B4 = {1, 2} with a profit of
24. The 3-ADMM-H algorithm has been tested on the in-
stance by choosing VQE as quantum solver in Qiskit Aqua
and Constrained Optimization By Linear Approximation
(COBYLA) [70] as classical VQE optimizer with 20 max-
imum iterations. The qasm simulator has been used as
Qiskit Aer backend for the simulations on quantum de-
vices. The ADMM parameters ρ and β have been set to
12 and 11 respectively: this is to leverage the convergence
properties described in [68] for ρ > β. When run on clas-
sical devices, the first block update is performed with the
CPLEX solver.

The 3-ADMM-H solution with CPLEX as QUBO solver
is B1 = {1}, B3 = {0, 2}, B4 = {1, 2}, with a profit
of 27, and a violation of constraints (24) of 2. Set-
ting VQE as QUBO solver makes 3-ADMM-H converge
to the same solution in 43 iterations. The residuals
rk = A0xk −A1x̄k − yk are reported for the classical and
quantum simulations, in Figures 11a and 11b. Residuals
are not guaranteed to decrease in each ADMM iteration,
but converge to 0.

The 3-ADMM-H algorithm proposes a decomposition of
a mixed-binary optimization problem, in which the most
computationally demanding part is solving the QUBO sub-
problem (19). The advantage of using 3-ADMM-H algo-
rithm over classical optimization solvers, such as CPLEX,
lies in leveraging quantum algorithm to tackle QUBO sub-
problems.
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(a)

(b)

Figure 11: Convergence of the residuals for 3-ADMM-H algorithm,
in the classical and quantum simulations.

5. Machine Learning

Finally, in this section we discuss machine learning prob-
lems where quantum algorithms may demonstrate an ad-
vantage.

Machine learning focuses on finding relations in data and
building assumptions around them for (i) prediction by an-
ticipating future events from historic data, or to (ii) clas-
sify data by dividing an end result into different categories,
or to (iii) find patterns by the discovery of regularities or
anomalies in data. In finance, such approaches are impor-
tant in many financial problems that deal with uncertainty
in the future evolution of asset prices and risk. For exam-
ple, the investment management strategies and optimiza-
tion in the previous section make use of the estimation
of future risks and asset prices that can be obtained from
the output of machine learning algorithms. Banks can esti-
mate the risk level of their customers’ loans by credit scor-

ing which can be formulated as classification [71] and/or
regression problem based on the rich features of customers,
such as, age, salary, historical payment, micro and macro
economic indicators and so on. Financial institutions can
also detect frauds by finding patterns that deviates greatly
from normal behavior by classification and/or anomaly de-
tection [72, 73]. Such machine learning tasks are known to
face the curse of dimensionality as there are much more
features available to model customers. Principle compo-
nent analysis (PCA) and variational autoencoder (VAE)
[74] are some of the popular methods for dimensionality
reduction when dealing with high-dimensional features.

To summarize machine learning problems at each stage
of the customer life cycle (see Figure 3):

1. Customer identification (and scoring) Refine
customer rating and segmentation to improve KYC
(Know Your Customer) and avoid non-compliance an-
nual penalties, that have grown to $ 8.3 Million an-
nually by 2018 [75].

2. Financial products Increase credit scoring realism
to improve customer targeting and align product of-
fering:

• Avoid NPL (Non-Performing Loan) costs that
are still increasing in many European economies
[76].

• Increase customer interaction with the bank re-
sulting in more profits.

• Improve recommendation techniques to target
customers prone to accept them.

3. Monitor transactions Improve suspicious transac-
tion signals to decrease false alerts, that today cost $
4 trillion due to 75% to 90% false positives in AML
(Anti Money Laundering) and credit card fraud alerts.

4. Customer retention Maximize engagement to avoid
customer churn rates to new entrants, 25% of SMBs
(Small-Medium Business) are turning to FinTech
companies for ease and speed of completing loan ap-
plications [77].

Overall, Artificial Intelligent (AI) and Machine Learning
(ML) are of deep interest for financial institutions, with a
current investment of $ 3.3 Billion in 2018 [78] with the
hopes to build better classification models that will im-
prove customer service in external facing and internal ac-
tivities.

In the following, we discuss how quantum-enhanced fea-
ture space can be used in a simple task of binary clas-
sification that can be applied to financial applications,
such as, fraud detection (for transaction monitoring) and
credit risk scoring (for customer identification). There are
many other tasks addressable by quantum machine learn-
ing techniques, e.g., see [2, 79] for more tasks and applica-
ble quantum techniques. We focus in supervised learning
using Support Vector Machine (SVM): we have access to
labeled training data S to classify test data T and labels
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of unseen future data (with assumption that all data come
from the same underlying distribution).

Assume that we are given the training data S =
{(x1, y1), (x2, y2), . . . , (xmS

, ymS
)}, where each xi ∈ Rd

and yi ∈ {−1, 1}. The goal of learning a binary classifier
from S is to construct a function f(x) so that f(x)yi > 0.
The simplest form of such function is a linear classifier
f(x) = wᵀx + b, where (w, b) ∈ Rd+1. S is called linearly
separable if there is a (w, b) ∈ Rd+1 satisfying f(x)yi > 0.
Such function, if exists, can be found by solving an opti-
mization problem known as Hard-SVM.

In general, the dataset may not be linearly separable.
In such case we can still find a classifier that predicts the
training dataset with some error margin. The fomulation
is know as Soft-SVM, as shown below, and can be solved
efficiently by techniques such as Stochastic Gradient De-
scent (SGD).

(w0, b0) = arg min
(w,b)

‖w‖2 + C

mS∑
i=1

εi

subject to : yj (wᵀxj + b) ≥ 1− εj for j ∈ [mS ]

εj ≥ 0 for j ∈ [mS ]

The slack variables {εi} determine the quality of the
classifier: the closer they are to zero the better the classi-
fier. For this purpose, we can embed the data {xj} into a
larger space by pre-processing the data, namely, by finding
a map x : Φ(x) ∈ Rn for n > d. The classifier f(x) is now
defined as f(x) = wᵀΦ(x) + b. When Φ(x) is an embed-
ding of data non-linearly to quantum state |Φ(x)〉 then we
can use quantum-enhanced feature space for the classifier.
There are two techniques to construct such a quantum-
enhanced feature space that may lead to a quantum ad-
vantage: Variational Quantum Classification (VQC) and
Quantum Kernel Estimation (QKE).

The VQC is similar to SGD for finding the best hyper-
plane (w, b) that linearly separates the embedded data. At
VQC, the data x ∈ Rd is mapped to (pure) quantum state
by the feature map circuit UΦ(x) that realizes Φ(x). This
means, that conditioned on the data x, we apply the circuit
UΦ(x) to the n-qubit all-zero state |0n〉 to obtain the quan-
tum state |Φ(x)〉. A short-depth quantum circuit W (θ) is
then applied to the quantum state, where θ is the hyper-
parameter set of the quantum circuit that can be learned
from the training data. Finding the circuit W (θ) is akin to
finding the separating hyperplane (w, b) in the Hard-SVM
and Soft-SVM, with the path to quantum advantage stems
from the fact that there is no efficient classical procedure
to realize the feature map Φ(x). While the size of the hy-
perparameter set θ is polynomial in the number of qubits
and can be tuned with variational methods similar to Al-
gorithm 1 and 2, it controls an exponentially large space of
the feature map. The binary decision is obtained by mea-
suring the quantum state in the computational basis to
obtain z ∈ {0, 1}n, and linearly combining the measure-

ment results, say with g =
∑
z∈{0,1}n g(z) |z〉 〈z|, where

g(·) ∈ {−1, 1}.
A quantum circuit that realizes the quantum feature

map as well as the variational classifier is shown in Fig. 12.
We can see that the probability of observing z is given as

|〈z|W (θ) |Φ(x)〉|2 = 〈Φ(x)|W †(θ) |z〉 〈z|W (θ) |Φ(x)〉 .

By linear combination of the measurement results z with g,
we can obtain the function f(x) as below, which resembles
the linear classifier f(x) = wᵀΦ(x) + b:

f(x) = 〈Φ(x)|W †(θ) g W (θ) |Φ(x)〉+ b.

The predicted label of f(x) is then simply its sign. The
hyperplane (w, b) is now parametrized by θ. The i-th el-
ement of w(θ) is wi(θ) = tr

(
W †(θ)gW (θ)Pi

)
, where Pi is

a diagonal matrix whose elements are all zeros except at
the i-th row and column which is 1, and the i-th element
of Φ(x) is Φi(x) = 〈Φ(x)|Pi |Φ(x)〉.

Learning the best θ can be obtained by minimizing the
empirical risk R(θ) with regards to the training data S =
{(x1, y1), (x2, y2), . . . , (xmS

, ymS
)}. Namely, the empirical

risk (or, cost function) to be minimized is

R(θ) =
1

|S|
∑
i∈[mS ]

|f(xi)− yi| . (26)

The above empirical risk can then be approximated with a
continuous function using sigmoid function as detailed in
[80]. This enables applying variational methods as in Algo-
rithm 1 and 2 with stochastic gradient descent algorithms
(such as, COBYLA or SPSA) for tuning θ to minimize the
cost function.

The binary classification with VQC now follows from
first training the classifier to learn the best θ∗, that mini-
mizes the empirical risk R(θ), to obtain (w(θ∗), b∗). This
can be done with Algorithm 1 with the Hamiltonian re-
placed by the empirical risk. The classification against
unseen data x is then performed according to the clas-
sifier function f(x) with (w(θ∗), b∗). Both training and
classification need to be repeated for multiple times (or,
shots) due to the probabilistic nature of quantum compu-
tation. The former may need significant number of shots
proportional to the size of S but it can be performed in
batch offline. One the other hand, the latter needs much
less number of shots, and may be performed online (or,
near real time) as long as the quantum feature map for
non-linear embedding can be computed efficiently.

In the conventional SVM, there are many known meth-
ods of non-linear embedding of data x : Φ(x) ∈ Rn for
n > d, such as, Polynomial-SVMs. For example, in
a Polynomial-SVM, the 2-dimensional data (x1, x2) can
be embedded into a 3-dimensional (z1, z2, z3) such that,
z1 = x2

1, z2 =
√

2x1x2, and z3 = x2
2. On the other hand,

in the quantum-enhanced SVM, the embedding of data
to n-qubit feature space can be performed by applying
the unitary UΦ(x) = UΦ(x)H

⊗nUΦ(x)H
⊗n, where H is the
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Figure 12: Quantum circuit for Variational Quantum Classifier
(VQC) that consists of fixed quantum feature mapping UΦ(x) and
the separator W (θ) trained with variational methods.

Hadamard gate, and UΦ(x) denotes a diagonal gate in the
Pauli-Z basis as below

UΦ(x) = exp

i ∑
S⊆[n]

φS(x)
∏
k∈S

Zk

 , (27)

where the coefficients φS(x) ∈ R are fixed to encode the
data x. For example, for n = d = 2 qubits, φi(x) = xi
and φ1,2(x) = (π − x1)(π − x2) were used in [80]. In
general the UΦ(x) can be any diagonal unitary that can
be implemented efficiently with short-depth quantum cir-
cuits. In total, one needs at least n ≥ d qubits to con-
struct such quantum-enhanced feature map. There are
other proposed methods promising quantum advantage for
non-linear embedding of data into quantum feature space,
such as, squeezing in continuous quantum systems [81] that
guarantees linear separability, or amplitude encoding [82]
that can exploit tensorial feature map, or density-operator
encoding [83]. A recent paper studies the embedding in
the context of metric learning [84].

Classification models in real-world datasets often also
depend on binary features, such as, gender and yes-no an-
swers to questions, in addition to (discrete) categorical and
qualitative features, such as, zip code, age, and color. Such
discrete features have to be encoded into continuous fea-
tures before they can be used effectively in machine learn-
ing models that rely on continuity of their inputs, such as
VQCs. There have been many proposed encodings, with
one-hot encoding as one of the most populars, for such
purposes [85]. It is known that the encodings can heavily
impact the performance of the learning models. Efficient
mapping of such discrete features into quantum-enhanced
feature space is very important in finance models with
structured data. A recent study [86] reports the possibility
of using Quantum Random Access Coding(QRAC) [87] to
map discrete features into the quantum-enhanced feature
space resulting in faster training and better classification
accuracy due to using less number of qubits and hence less
hyperparameters in the VQC models. The idea is to split
the encoding of x into that for the discrete and continu-
ous parts, each represented as x(b), and x(r). The discrete
parts x(b) are obtained from the encoding of categorical

Figure 13: Quantum Circuits for Variational Quantum Classifier
with Quantum Random Access Coding for encoding discrete fea-
tures. Latent qubits may be included to add the dimension of the
embedding in the Hilbert space.

features into binary strings using determined techniques
such as one-hot encoding, or into integer numbers for or-
dinal features. Fig. 13 depicts a VQC with QRAC for
encoding discrete features.

In particular, let us consider the case of classifying credit
card transactions into fraudulent or not from a synthe-
sized dataset from [88], that was generated with state ma-
chines in simulated world to be representative for the US
customers. For our purpose, the synthesized credit card
transaction data was prepared to contain 100 records of
purchase transactions. The i-th transaction xi contains
the transaction time, the transaction amount, the transac-
tion method, the transaction location (in ZIP code), and
the Merchant Category Code (MCC). The first two are
in real numbers, and the rest are categorical; there are 3
types of transaction methods, 10 different locations, and
10 different MCCs. Each i-th transaction is labeled as ei-
ther fraudulent (yi = −1), or normal (yi = 1). A similar
study on the same data set has also been carried out using
Variational Quantum Boltzmann Machines, an alternative
approach to VQC or QKE, and we refer to [89] for more
details.

We applied the VQC as in Fig. 12 by regarding all fea-
tures as real values to use the feature mapping in Eq. 27
with second-order expansion. On the other hand, we ap-
plied the VQC as in Fig. 13 by the QRAC of the one-hot
encoding of the transaction method, and the rest simi-
lar to the VQC. The latter is denoted as VQCwQRAC.
Both models used 5 qubits and were trained with varia-
tional circuits W (θ) defining the separating hyperplanes
that consists of the RXRY variational gates and 1 layer
of full-connected entangler as implemented in Qiskit[38].
Both classification models were run on qiskit simulators
and tested with 5-fold Cross Validation of the dataset. The
average training losses, where Eq. 26 is approximated with
the cross entropy, are shown in Fig. 14. We can see that
using QRAC for encoding binary features can result in bet-
ter training losses. The accuracy of VQCwQRAC is better
than the VQC using real-valued quantum feature mapping
as shown in Table 4, and is comparable to Support Vector
Classifier with RBF kernel (SVC2 in the Table).

18



Table 4: The average and standard deviation of accuracy of classifiers on 5-fold Cross Validations of the synthetic credit-card transaction
dataset. LR, SVC1, and SVC2, are respectively, the Logistic Regression, the SVC with Linear, and RBF Kernel. VQC and VQCwQRAC are
quantum-enhanced SVMs with the latter using QRAC for encoding the transaction method.

LR SVC1 SVC2 VQC VQCwQRAC

train 0.79± 0.02 0.80± 0.03 0.87± 0.02 0.74± 0.05 0.85± 0.03

test 0.77± 0.06 0.81± 0.07 0.82± 0.07 0.64± 0.09 0.83± 0.06
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Figure 14: Comparison of the training loss of VQC against that with
QRAC (VQCwQRAC) for encoding discrete features on a synthetic
credit-card transaction dataset.

Finally, we note that the possible quantum advantage
for machine learning task is somewhat speculative; there
is no known theoretical proof that the quantum feature
map, which is hard to compute classically, can result in
better accuracy than any classical classifiers. Also, the
underlying variational methods, as in Algorithm 1 and 2,
are heuristics that may only find local optima instead of
the global one, and thus can lower the accuracy of the
resulting quantum-enhanced SVM.

6. Technical challenges in quantum computing

In the following section we outline some of the technical
challenges to address when solving computationally chal-
lenging problems on a quantum computer.

6.1. Loading data

To understand constraints on quantum computing both
near-term and long-term, it may be useful to contrast
quantum computers against classical computers. Classical
computing utilises the well-known von Neumann model:
there is a central processing unit (CPU), which performs
non-reversible computation, including branching, and this
is connected by a system bus to volatile memory (RAM)
and non-volatile memory (such as a hard drive). Loading
data from the non-volatile memory to RAM and accessing
the data in RAM from the CPU is taken for granted. In
contrast, there are no quantum (memory) hard drives at
the current level of hardware technology, most blueprints

do not involve any RAM, and all of the computations are
reversible without branching (excepting post-selection).

The key difference lies in the time complexity of “loading
data”. A quantum state can be seen as a volatile memory
of substantial capacity, but with non-trivial issues in ad-
dressing it. With k qubits, we work with 2k × 2k density
matrices 3, but working with these matrices is limited to
a certain set of one- and two-qubit gates (unitary matri-
ces applied to the quantum state). The quantum circuit
complexity of state preparation, i.e., minimum number of
gates required in order to “load” a given quantum state U
using any sequence of one- and two-qubit gates, is greater
or equal than 4k for almost all U . Notice that this is not a
worst-case result: this holds generically for all states and it
applies to the best possible sequence of one- and two-qubit
gates. Consider a dimension-counting argument. There
are also explicit constructions showing that this is tight.

There are two ways of reading this result: the flat-
tering way is to say that preparation of 4k-dimensional
state has O(4k) quantum circuit complexity, which is lin-
ear in the dimension. The less flattering way is to say
that state preparation for a k-qubit system has quantum
circuit complexity exponential in k. That is: whereas in
classical computing, we usually assume that we can load
the data in time linear in the number of bits (representing
floating-point approximation of real numbers) and then
worry about the run-time (circuit complexity of process-
ing) on the loaded data, in quantum computing, almost all
states can be prepared only in quantum circuit complex-
ity exponential in the number of qubits. In other words:
The quantum circuit complexity of state preparation is
the same as the quantum circuit complexity of any circuit
whatsoever, asymptotically. Preparation of an arbitrary
state hence is feasible only once we have quantum error
correction, if ever. The complexity of generic state prepa-
ration can impede a potential quantum advantage, since
for some algorithms, loading the data can become com-
putationally as expensive as using a classical algorithm to
solve the problem [90].

There are multiple ways of circumventing this issue. One
is to allow j-qubit gates, where j may grow with k, which
poses a major challenge in quantum optimal control. One

3A density matrix is a representation of a quantum state. A
density matrix can represent both pure states (i.e. states represented
by a state vector |ψ〉) and mixed quantum states (i.e. a statistical
ensemble of pure states).
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is to “split” the state preparation into an independent sys-
tem, such as circuitry of some potential qRAM [91], and
utilise quantum optimal control there, perhaps across all
of the k qubits. Given the (quantum circuit complexity)
equivalence [92] of state preparation and an arbitrary cir-
cuit, it seems unlikely that it would be possible to imple-
ment one way of circumventing the quantum circuit com-
plexity without being able to implement the other, and
without being able to utilise the same quantum optimal
control in the execution of the quantum circuit. Indeeed,
it is believed the physical realization of qRAM model may
be even much more difficult than the fault-tolerant quan-
tum computers [79, 90].

In some cases, the problem can also be circumvented
because the data to be loaded has structure or properties
that can be exploited for efficient loading, e.g., if the data
can be described by a log-concave probability distribution
[35]. Alternatively, and depending on the application, we
may drop the goal of loading the data exactly and try to
prepare a quantum state that at least is close to our origi-
nal data. This enables approximate data loading schemes
which have some potential to work around this problem
[40]. It is also possible to exploit periodic properties in cer-
tain data sets, for example. time series data which exhibits
periodic properties. By extracting periods in the data via
classical techniques such as FFT, we may then load only
the dominant periods via a small number of steps onto
the quantum machine, then recover an approximation of
the original data in the quantum machine via an inverse
quantum Fourier transform (QFFT−1) algorithm.

6.2. Quantum error correction

As has been suggested in Section 1, a key watershed
between noisy quantum computers and universal fault-
tolerant quantum computers is the availability of quantum
error correction (QEC).

The key technical challenge within QEC is the trade-off
between the overhead of the QEC and the so-called er-
ror threshold. The overhead is, essentially, the numbers
of physical qubits required to protect a certain number of
logical qubits against errors. The error threshold comes
from the famous (quantum) threshold theorem [93, 94],
which shows that if the errors on individual qubits are not
correlated and the error of the physical qubits falls below
a certain threshold, QEC schemes can correct the remain-
der of the error, at a cost of the overhead. Actually, the
dissertation of Gottesman [93] shows that there is a sim-
ple construction, starting with classical error correcting
codes, which makes it possible to estimate the threshold.
For one of the best-known classes of QEC, it is sometimes
assumed [95] that a 0.1% probability of a depolarizing er-
ror would require more than 1,000 physical qubits per pro-
tected qubit – although the details of the calculation are
also often disputed. There is a substantial interest in fur-
ther classes of QEC (e.g., hyperbolic surface codes), which
could perform substantially better.

For the same QEC mentioned above [95], one should
notice that there need not be a substantial increase in the
depth of the circuit: for gates within the Clifford alge-
bra, which includes the Hadamard gate (H), controlled not
(CNOT), and S = diag(1, eiπ/2), we can apply the gate to
all the physical qubits in order to apply the same gate to
the protected qubit. The increase in depth of the circuit
is hence only due to gates outside of the Clifford algebra.

6.3. Precision and sample complexity

Generally, the higher probability of outputting the cor-
rect answer is required, the more “shots”, or repetitions
of the execution of quantum circuit followed by measure-
ment, are needed. In some cases (e.g., HHL), because
the solution is encoded in the probability amplitudes of
the quantum states, one may need to perform quantum
state tomography to obtain the complete solution. The
quantum state tomography requires exponential number
of shots in the number of qubits involved, and hence can
diminish the exponential advantages of the subroutines.
In many algorithms, the error also depends on the number
of qubits used in the output register.

For example for the phase estimation mentioned in Sec-
tion 3.1, the probability of not determining phase angle
to an accuracy of s bits, i.e., up to error 2−s, using s + p
qubits for the output is:

ε(s, p) = 1− 1

22(p+s)−2

2p−1∑
l=1

1

1− cos π(2l−1)
2p+s

(28)

While the expression may be difficult to read, it is es-
sentially positive, in that it suggests that the error rate
decays exponentially with the extra p qubits. Especially
when many instances of phase estimation are used sequen-
tially, the error propagation may still be a cause for con-
cern, though, and it may get progressively more difficult
to analyze the error. Still, estimates of forward error of
more complex algorithms [96] are available.

7. Conclusion

There are a number of computationally challenging
problems in financial services that are demanding in terms
of required precision or run-time. For these we have out-
lined three problem classes:

• One class are optimization problems that scale ex-
ponentially limiting their resolution in a given time
frame. The holistic problem-solving approach to op-
timization problems of quantum computers, raises the
potential to find better solutions in a smaller number
of steps.

• A second class are machine learning problems, where
one faces complex data structures that hinder classifi-
cation or prediction accuracy. The multi-dimensional
data modeling capacity of quantum computers may
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Table 5: Algorithms can improve computational efficiency, accuracy, and addressability for defined use case.

Quantum Algorithm Description Impact Needs

S
im

u
la

ti
on

O
p

ti
m

iz
at

io
n

M
L

VQE Variational Quantum Eigensolver Use energy states to calculate the func-
tion of the variables to optimize

Procedure to assign compute-intensive
functions to quantum and those of con-
trols to classical

Qubit number increases significantly
with problem size

x

QAOA Quantum Approximate Optimization Optimize combinatorial style problems
to find solutions with complex con-
straints

Simplify analysis clauses for constraints
and provide robust optimization in com-
plex scenarios

Uncertain ability to expand to more op-
timization classes

x

QAE Quantum Amplitude Estimator Create simulation scenarios by estimat-
ing an unknown property, Monte Carlo
style

Handle random distributions directly,
instead of only sampling, to solve dy-
namic problems quadratically speeding
up simulations

High quantum volume required for good
efficiency

x x x

QSVM Quantum Support Vector Machines Supervised machine learning for high di-
mensional problem sets

Map data to quantum-enhanced feature
space to enable separation and better
separate data points to achieve more
accuracy

Runtime can be slowed by kernel com-
putation and data structure

x

HHL Harrow, Hassidim, and Lloyd Estimate the resulting measurement of
large linear systems

Solve high dimensional problems speed-
ing up exponentially calculations

Hard to satisfy prerequisites and high
measurement costs to recover solutions

x x

QSDP Quantum Semidefinite Programming Optimize a linear objective over a set of
positive semidefinite matrices

Estimate quantum system states with
less measurements to exponentially
speedup in terms of dimension and con-
straints

High quantum volume required for good
efficiency

x

Table 6: Financial services focus areas and algorithms.

Financial Services Example Problems Solution Approach Quantum
Algorithm

Asset Management Option Pricing Simulation QAE
Portfolio risk

Investment Portfolio Optimization Optimization Combinatorial:
VQE,
QAOA

Banking Portfolio Diversification Continuous:
QSDP

Issuance: Auctions QAE

Retail & Corporate Financial Forecasting Machine Learning QSVM
Banking Credit Scoring (e.g. SME Banking) HHL

Financial Crimes: Fraud + AML QAE

allow to find better patterns, with increasing accu-
racy.

• A third class are simulation problems, where there
are time-limits to perform sufficient scenario tests to
find the best potential solution. Efficient sampling
methods leveraging quantum computers may require
less samples to reach a more accurate solution faster.

For each of them we have introduced quantum algo-
rithms, which can be applied to specific problems in there.
Table 5 summarizes the quantum algorithms introduced,
their applicability for the three problem classes, their ad-
vantages and challenges. In addition, for the three initial
focus areas in financial services, Asset Management, In-
vestment Banking, Retail & Corporate Banking, example
problems and applicable quantum algorithms are summa-
rized in Table 6.

Quantum computers and the algorithms that leverage
them may help to solve hurdles and challenges arising in
the financial industry given increasing demand for more
sophisticated risk analysis, dynamic client management,
constant updates to market volatility, and faster transac-

tion speeds.

Finally, we have also demonstrated the performance of
quantum algorithms on IBM Quantum backends for three
specific applications. In general, simulation, optimization
and machine learning are among the areas where we may
demonstrate an advantage of quantum computing over
classical computing for certain applications first.
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