
A deep learning algorithm for optimal investment strategies

Daeyung Gim ∗and Hyungbin Park †

Department of Mathematical Sciences and Research Institute of Mathematics

Seoul National University

1, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea

February 1, 2021

Abstract

This paper treats the Merton problem how to invest in safe assets and risky assets to maxi-
mize an investor’s utility, given by investment opportunities modeled by a d-dimensional state
process. The problem is represented by a partial differential equation with optimizing term:
the Hamilton–Jacobi–Bellman equation. The main purpose of this paper is to solve partial dif-
ferential equations derived from the Hamilton–Jacobi–Bellman equations with a deep learning
algorithm: the Deep Galerkin method, first suggested by Sirignano and Spiliopoulos (2018). We
then apply the algorithm to get the solution of the PDE based on some model settings and
compare with the one from the finite difference method.

1 Introduction

Consider the following expected utility maximization problem:

max
(πu)u≥t

1

p
E [(Xπ

T)p |Xt = x, Yt = y] ,

where π is a portfolio, Xπ a wealth process and Y a state variable with the utility function
(1/p)xp =: U(x). This kind of problem is first suggested by Merton (1969), which is the most
fundamental and pioneering in economics. The Merton problem has played as a key for an
investor’s wealth allocation in several assets under some market circumstances. Since then
there have been lots of studies about Merton problem under various conditions. Benth et al.
(2003) studied Merton problem under the Black-Scholes setting by using the OU type stochastic
volatility model. Kühn and Stroh (2010) studied optimizing portfolio of Merton problem under
a limit-ordered market in view of a shadow price. The research on the optimal investment
based on inside information and drift parameter uncertainty was conducted by Danilova et al.
(2010). Nutz (2010) studied the utility maximization in a semimartingale market setting with the
opportunity process. Hansen (2013) suggested an optimal investment strategies with investors’
partial and private information. Pedersen and Peskir (2017) applied the Lagrange multiplier to

∗gbe375@snu.ac.kr
†hyungbin@snu.ac.kr, hyungbin2015@gmail.com

1

ar
X

iv
:2

10
1.

12
38

7v
1

 [
q-

fi
n.

PM
]

 2
9

Ja
n

20
21

solve nonlinear mean-variance optimal portfolio selection problem. Also there was research on
the optimal portfolio strategies using over-reaction and under-reaction by Callegaro et al. (2017).
Liang and Ma (2020) researched a robust Merton problem using the constant relative/absolute
risk aversion utility functions under the time-dependent sets of confidence.

In this paper we follow the overall market setting in Guasoni and Robertson (2015) and
induce the so-called Hamilton–Jacobi–Bellman equation under time variable t, variable x rep-
resenting wealth process and variable y = (y1, . . . , yd) from the d-dimensional state variable.
We can optimize the portfolio by means of finding a solution to the HJB equation. By using
some properties including homotheticity and concaveness, we eliminate the optimizing term to
change the HJB equation into a nonlinear partial differential equation.

Under this circumstance we face with the problem of solving nonlinear PDEs. Because in
general most PDEs do not have analytic solutions, there exists several well-known numerical
tools. These classical approaches can be found in Achdou and Pironneau (2005) and Burden
et al. (2010).

At the same time there has been some studies about solving PDEs with a deep neural
network. Lee and Kang (1990), Lagaris et al. (2000) suggested the neural network algorithm on
a fixed mesh. Malek and Beidokhti (2006) also suggested the numerical hybrid DNN optimizing
method. However in case of the higher dimension of PDEs, these grid-based methods would be
computationally inefficient: a curse of dimensionality.

Recently there have been several researches to get rid of the curse of dimensionality using
machine learning techniques. Han et al. (2018) and Weinan et al. (2019) suggested a deep
backward stochastic differential equation method with the Feynman–Kač formula.

The deep learning algorithm mainly used in this paper is the Deep Galerkin method suggested
by Sirignano and Spiliopoulos (2018). It is computationally efficient since there does not need
to make any mesh or grid. We define a loss functional to minimize L2-norm about the desired
differential operator and other conditions from the PDE. To make the loss small enough as we
want, we sample random points from the domain and optimize by means of stochastic gradient
descent. After deriving surfaces, we also apply the finite difference method(FDM) in order to
compare surfaces from both algorithms: DGM and FDM. For further research on the Deep
Galerkin method, see Al-Aradi et al. (2018) and Al-Aradi et al. (2019).

This paper is organized as follows. In section 2, we start by describing the general setting of
this paper, and induce the partial differential equation with optimizing term: the HJB equation.
The Deep Galerkin method algorithm and neural network approximation theorem from Sirig-
nano and Spiliopoulos (2018) are presented in section 3, with some part of code for each step
of DGM algorithm. Numerical test of the algorithm is presented in section 4. Specifically, we
model 2 dimensional state process by the OU process and the CIR process, return process by the
Heston model. Then we use the calibrated parameters from Crisóstomo (2014) and Mehrdoust
and Fallah (2020). We display the solution surface at each fixed time in some pre-determined
domain of the state variable. We finally analyze surfaces from the Deep Galerkin method and
those from the finite difference method. Conclusions can be found in section 5, and proofs of
neural network approximation theorem are in appendix A.

2 Optimal Investment Problem

In the case that an economic agent is in time interval [0, T], the problem is that he or she has to
decide how to invest in several risky assets or safe assets as time goes by, starting with the initial
wealth. This problem was first suggested by Merton in the 1960s: Merton problem, known as a
utility maximization problem. The aim of the agent is to establish a portfolio strategy in such a
way of maximizing utility under some conditions. In this section we describe the general setting
of this paper, and induce the HJB equation. We finally reach to a nonlinear PDE by using some

2

properties. The above problem is equivalent to a matter of finding a solution of the equation.

2.1 Market with the Merton Problem

We first start by describing market with the following framework. Assume that the market has
n+ 1 assets S(0), S(1), . . . , S(n), where S(0) is safe and S(1), . . . , S(n) are risky. One can make a
decision to the investment by a d-dimensional state variable Y = (Y (1), . . . , Y (d)) satisfying:

dYt = b(Yt) dt+ a(Yt) dWt, (2.1)

where W = (W (1), . . . ,W (d)) denotes a standard Brownian motion.
Let r be the interest rate, µ be the excess returns, and σ be the volatility matrix. We also

assume that the prices of the assets satisfy:

dS
(0)
t = rS

(0)
t dt, (2.2)

dS
(i)
t

S
(i)
t

= rdt+ dR
(i)
t 1 ≤ i ≤ n, (2.3)

where R = (R(1), . . . , R(n)) denotes the cumulative excess return satisfying:

dR
(i)
t = µi(Yt)dt+

n∑
j=1

σij(Yt) dZ
(j)
t 1 ≤ i ≤ n. (2.4)

ρ = (ρij) = d 〈Z, W 〉t /dt denotes the cross correlations between the n-dimensional Brownian
motion Z and W . Σ = σσT = d 〈R, R〉t /dt is the matrix of quadratic covariance of returns, and
Υ = σρaT = d 〈R, Y 〉t /dt denotes the correlation between the return and the state process.

In the market, an investor buys the risky assets by a portfolio π = (π
(1)
t , . . . , π

(n)
t)t≥0. The

wealth process Xπ = (Xπ
t)t≥0 corresponding to the portfolio satisfies

dXπ
t

Xπ
t

= r dt+ πTt dRt, Xπ
0 ≥ 0. (2.5)

Observe first that the portfolio process (πt)t≥0 is Ft-measurable, where the filtration F = (Ft)t≥0

is generated by the return R and state variable Y . It might be clear in light of the investor’s
eyes: he or she has all informations about state and asset return from time t = 0 to the current
time. Note also the portfolio process is integrable with respect to the return process R. By the
Merton problem, we assume the investors’ utility function is defined by the following:

U(x) =
1

p
xp, 0 < p < 1.

For fixed wealth x and state y = (y1, . . . , yd) satisfying (2.1) and (2.5), our aim is to maximize
the conditional expectation of terminal wealth utility given wealth and state at time t, that is

max
(πu)u≥t

1

p
E [(Xπ

T)p |Xt = x, Yt = y] .

2.2 The Hamilton–Jacobi–Bellman Equation

Now we substitute the problem of utility maximization to that of solving the PDE, namely the
Hamilton–Jacobi–Bellman equation. There needs to be some definitions before approaching to
the HJB equation.

3

Definition 2.1. A portfolio process π = (πt)t≥0 is called an admissible portfolio if

• For every t ∈ [0, T] and (x, y) ∈ D ⊂ R×Rd, π(t, x, y) ∈ U , where U ⊂ R is a fixed subset.

• For any given initial points (t, x) and y = (y1, . . . , yd), the following SDE has a unique
solution:

dXπ
s = rXπ

s ds+ πTs dRs,

Xπ
t = x.

(2.6)

• For any given initial point (t, y) = (t, y1, . . . , yd), the following SDE has a unique solution:

dYs = b(Ys) ds+ a(Ys) dWs,

Yt = y.
(2.7)

By now we assume the portfolio π is admissible.

Definition 2.2. Let U be an investor’s utility function.

• For each π, we define the expected value function Vπ as

Vπ(t, x, y) = E[U(Xπ
T)|Xt = x, Yt = y],

given (2.6) and (2.7).

• We define the optimal value function V as

V (t, x, y) = sup
π
Vπ(t, x, y).

The following theorem justifies a conversion from the way of finding optimal portfolio to that
of solving PDEs having optimizing term. Heuristic process for deriving the HJB equation is in
chapter 19, Björk (2009), in the way of limiting procedures in dynamic programming.

Theorem 2.1. Assume the following.

• The market has a safe asset S(0) whose dynamics is expressed in (2.2).

• The market has n risky assets satisfying (2.3), with the return process R following the
diffusion (2.4).

• There exists an optimal portfolio π̂ = (π̂
(1)
t , . . . , π̂

(n)
t)t≥0.

• The optimal value function V is regular, that is, V ∈ C1,2,2 with respect to (t, x, y), y =
(y1, . . . , yd).

Then the following hold:

1. V satisfies the Hamilton–Jacobi–Bellman equation

Vt + bT (∇yV) +
1

2
tr[aT (∇2

yV) a] + rxVx

+ sup
π

[
πT (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ

TΣπ

]
= 0, (t, x, y) ∈ [0, T]×D,

V (0, x, y) = U(x), (x, y) ∈ D.

2. An optimizing term in the above equation can be achieved by π = π̂:

sup
π

[
πT (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ

TΣπ

]
= π̂T (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ̂

TΣπ̂.

4

If we define the optimal value function as

V (t, x, y1, . . . , yd) = sup
(πu)u≥t

E
[

1

p
(Xπ

T)p |Xπ
t = x, Y

(1)
t = y1, . . . , Y

(d)
t = yd

]
, (2.8)

by Theorem 2.1 with the Itô formula, one can derive the Hamilton–Jacobi–Bellman equation
from (2.8):

Vt + bT (∇yV) +
1

2
tr[aT (∇2

yV) a] + rxVx

+ sup
π

[
πT (µVx + Υ(∇yVx))x+

1

2
x2Vxxπ

TΣπ

]
= 0,

(2.9)

where the terminal condition of (2.9) is V (T, x, y) = (1/p)xp. ∇yV = (Vy1 , . . . , Vyd) and∇2
yV =(

Vyiyj
)

1≤i,j≤d stand for the gradient and the Hessian of V with respect to y = (y1, . . . , yd),

respectively. Because of the concaveness of V in x and supπ(πT b + 1
2π

TAπ) = −1
2b
TA−1b for

negative definite matrix A, (2.9) becomes

Vt + bT (∇yV) +
1

2
tr[aT (∇2

yV) a] + rxVx

−(µVx + Υ(∇yVx))T
Σ−1

2Vxx
(µVx + Υ(∇yVx)) = 0,

(2.10)

with the corresponding optimal portfolio is

π = π(t, x, y1, . . . , yd) = − 1

xVxx
Σ−1(µVx + Υ(∇yVx)).

Since the utility function is homothetic, we define the reduced value function u as

V (t, x, y1, . . . , yd) =
1

p
xp u(t, y1, . . . , yd). (2.11)

If we put (2.11) into (2.10) and divide each component by xp, (2.10) becomes

ut + (bT−qµTΣ−1Υ)∇yu+
1

2
tr[aT (∇2

yu) a]

+(pr − q

2
µTΣ−1µ)u− q

2u
(∇yu)TΥTΣ−1Υ(∇yu) = 0,

(2.12)

where the terminal condition of (2.12) is u(T, y1, . . . , yd) = 1. In (2.12), we set q = p/(p− 1) for
simplicity. Also the following is the reduced optimal portfolio:

π(t, y1, . . . , yd) =
1

1− p

(
Σ−1µ+ Σ−1Υ(∇yu)

1

u

)
. (2.13)

3 Deep Galerkin Method

Now we investigate how to solve the PDEs such as (2.12). Since only few PDEs have analytic
solutions, there are well-known numerical tools including the Monte Carlo method exemplified
by the Feynman–Kač theorem and the finite difference method. However one of the most difficult
facts is a curse of dimensionality. In particular in grid-based numerical methods, the number
of mesh points grows explosively as the dimension goes higher, so Sirignano and Spiliopoulos
(2018) suggest a DNN-based algorithm for approximating solution of PDEs: the Deep Galerkin
method(DGM), such that there is no need to make any mesh.

5

With the parametrized deep neural network, say f , a loss functional f 7→ J(f) is defined
to minimize L2-norm about the desired differential operator and terminal condition. To make
the loss small enough as we want, the network samples random points from the pre-determined
domain and is optimized by means of the stochastic gradient descent. In this section we first
introduce the DGM algorithm. We then state the approximation theorem in order to justify
this new algorithm.

3.1 Algorithm

Let u = u(t, y) be an unknown function which satisfies the PDE:

∂tu(t, y) + Lu(t, y) = 0, (t, y) ∈ [0, T]×D,
u(T, y) = uT (y), y ∈ D,

(3.1)

where D ⊂ Rd. Our aim is to express the solution of (3.1) as a neural network function
f = f(t, y; θ) in place of u. θ = (θ(1), · · · , θ(K)) denotes a vector of network parameters.

Define a loss functional J := J1 + J2 with

J1(f) := ‖∂tf(t, y; θ) + Lf(t, y; θ)‖2[0,T]×D,ν1

J2(f) := ‖f(T, y; θ)− uT (y)‖2D,ν2
Note that all above terms are expressed in terms of L2-norm, that is, ‖h(y)‖2Y,ν =

∫
Y |h(y)|2ν(y)dy.

Each functionals J1 and J2 determine that how well the approximation has conducted in view
of the PDE differential operator and terminal condition. The aim is to find a parameter θ̂ in
such a way of minimizing J(f), equivalently,

θ̂ = arg min
θ

J(f(t, y; θ)).

As the error J(f) goes smaller, the approximated function f would get closer to the solution u.
Hence f(t, y; θ̂) might be the best approximation of u(t, y).

The algorithm of DGM is as follows:

1. Set initial values of θ0 = (θ
(1)
0 , · · · , θ(K)

0) and determine the learning rate βn.

2. Sample random points (tn, yn) in [0, T]×D according to probability density ν1. Likewise,
pick random points wn from D with density ν2.

3. Calculate the L2-error for the randomly sampled points sn = {(tn, yn), wn}:

L(θn, sn) = ((∂t + L)f(tn, yn; θn))2 + (f(T,wn; θn)− uT (wn))2.

4. Use the stochastic gradient descent at sn:

θn+1 = θn − βn∇θL(θn, sn).

5. Repeat until ‖θn+1 − θn‖ is small enough.

The following is some part of code for each step of DGM algorithm:

1-1. Initializing the neural network parameter

oper_init = tf.global_variables_initializer()

1-2. Initializing the learning rate

lrn_rate = tf.train.exponential_decay(init_lrn_rate, glob_step, dec_step,

dec_rate, staircase=True)

optimizer = tf.train.AdamOptimizer(lrn_rate).minimize(loss_tnsr)

6

2-1. Generating random samples : interior of the domain

t_int = np.random.uniform(low=0, high=T, size=[nSim_int,1])

y1_int = np.random.uniform(low=y1_low, high=y1_high, size=[nSim_int,1])

y2_int = np.random.uniform(low=y2_low, high=y2_high, size=[nSim_int,1])

2-2. Generating random samples : terminal condition

t_ter = T * np.ones(nSim_ter,1)

y1_ter = np.random.uniform(low=y1_low, high=y1_high, size=[nSim_ter,1])

y2_ter = np.random.uniform(low=y2_low, high=y2_high, size=[nSim_ter,1])

3. Calculating L^2-error of differential operator / terminal condition

differential operator

J1 = tf.reduce_mean(tf.square(diff_u))

terminal condition

J2 = tf.reduce_mean(tf.square(fitted_ter - target_ter))

J = J1 + J2

4. Stochastic gradient descent step

for k in range(steps_per_sample):

loss, J1, J2, k = sess.run([loss_tnsr, J1_tnsr, J2_tnsr, optimizer],

feed_dict={t_int_tnsr:t_int, y1_int_tnsr:y1_int, y2_int_tnsr:

y2_int, t_ter_tnsr:t_ter, y1_ter_tnsr:y1_ter, y2_ter_tnsr:y2_ter})

3.2 Neural Network Approximation

The following neural network approximation theorem is stated in Sirignano and Spiliopoulos
(2018). In other words, there exists a collection of approximated neural network functions that
converges to a solution of quasilinear parabolic PDEs.

Theorem 3.1. Define Cn as a collection of DNN functions with n hidden neurons in a single
hidden layer. Assume u = u(t, y) be an unknown solution for (3.1). Under certain conditions
in Sirignano and Spiliopoulos (2018), there exists a neural network function fn with n hidden
neurons such that the following hold:

1. J(fn)→ 0 as n→∞,

2. fn
strongly−−−−−→ u in Lρ([0, T]×D) as n→∞, where ρ < 2.

Some part of proofs for our formulation in this paper is in appendix A. Further details
including conditions and proofs are in section 7 and appendix A in Sirignano and Spiliopoulos
(2018).

4 Numerical Test

The key purpose of this section is to solve (2.12) with the Deep Galerkin method and compare
the numerical solution with the one derived by the well-known finite difference method.

4.1 Model Settings

We first set some specific settings of the market model. For our experiment we assume that
there are two ways of decision for trading, i.e., 2 dimensional state variable Y = (Y (1), Y (2)). Let

7

Y (1) be the Ornstein-Uhlenbeck(OU) process and Y (2) be the Cox-Ingersoll-Ross(CIR) process.
This state variable is expressed by the following matrix form:(

dY
(1)
t

dY
(2)
t

)
=

(
θ(1)(k(1) − Y (1)

t)

θ(2)(k(2) − Y (2)
t)

)
dt+

(
1 0

0

√
Y

(2)
t

)(
a(1,1) a(1,2)

a(2,1) a(2,2)

)(
dW

(1)
t

dW
(2)
t

)
.

We also assume that there is a risky asset S(1) in the market, that is:

dS
(1)
t = rS

(1)
t dt+ S

(1)
t dRt,

where the cumulative excess return R follows the diffusion:

dRt = Y
(1)
t dt+ σ

√
Y

(2)
t dZt, (σ ∈ R)

which is known as the Heston model. In this case the correlation matrix between Z and W is
of the form ρ = (ρ1, ρ2) satisfying:〈

Z, W (i)
〉

= ρi dt, 1 ≤ i ≤ 2.

4.2 Calibration

Now for the next step we need to set the value of parameters. Let P be a vector of parameters
to be determined given by

P =
{
θ(1), θ(2), k(1), k(2), a(1,1), a(1,2), a(2,1), a(2,2), σ, ρ1, ρ2

}
.

We shortly introduce the calibrating process using the nonlinear least squares optimization from
the market data. For more detail, see Crisóstomo (2014) and Mehrdoust and Fallah (2020).

Define the Percentage Mean Squared Error (PMSE) between the price Cmarket from the
market and the model price Cmodel of the European call option derived from the double Heston
model in Mehrdoust and Fallah (2020) and Lemaire et al. (2020):

PMSE :=

n∑
j=1

wj

(
Cmarket(S

(0),Kj , Tj , r)− Cmodel(S(0),Kj , Tj , r,P)

Cmarket(S(0),Kj , Tj , r)

)2

,

where the weights wj satisfies:

wj =
1√∣∣∣C(j)

ask − C
(j)
bid

∣∣∣ .
The optimal parameter vector P? is determined by the following nonlinear least squares problem

P? = arg inf PMSE.

Table 1 shows the optimal parameters on the observed market data from the S&P500 index at
the close of the market in September 2010.

Table 1: Calibrated parameters

θ(1) = 0.1646 k(1) = 0.1301 a(1,1) = −0.6594 a(1,2) = 0.7518 ρ1 = −0.2949 σ = 0.0724
θ(2) = 0.2333 k(2) = 0.0958 a(2,1) = −0.6692 a(2,2) = 0.7431 ρ2 = −0.2919

8

4.3 Implementation

Now let us solve (2.12) by the DGM algorithm under conditions from the above setting. For the
numerical test, we set the interest rate r = 1%, the maturity time T = 1 and the power utility
preference parameters p = 0.0005 and p = 0.5. We sampled 1000 time-space points (t, y1, y2) in
the interior of the domain [0, T] × [−10, 10] × [0, 10] and 100 space points at terminal time T .
We set 100 steps to resample new time-space domain points. Before resampling, each stochastic
gradient descent step is repeated 10 times. We set 50 hidden neurons in a hidden layer. From
starting 0.001, learning rate decreased with decay rate 0.96 as the step goes by.

(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 1: Surface of solution by the Deep Galerkin method. (p = 0.0005)

After solving (2.12) by the DGM algorithm, investors can choose their states (y1, y2) ∈
[−10, 10]× [0, 10] for fixed t ∈ [0, T]. The optimal portfolio can be constructed using (2.13) as:

πDGM (t, y1, y2) =
1

1− p

(
Σ−1µ+ Σ−1Υ(∇yuDGM)

1

uDGM

)
.

9

(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 2: Surface of solution by the Deep Galerkin method. (p = 0.5)

To sum up, one can get the value of u and the portfolio value π at every time or state. The
investor could buy or sell a risky asset S(1) based on the value of the portfolio to maximize
utility from terminal wealth.

Figure 1 shows surfaces of the solution uDGM of (2.12) using DGM algorithm in different
times, with the power utility preference parameter p = 0.0005. We chose some part of domain
[0, 1] × [0, 1] as a plot range for convenience. Figure 2 shows surfaces of the solution of (2.12)
in p = 0.5, with the restricted plot range [0, 5] × [0, 5]. In both figures, for different values of
utility parameter p, we can easily notice the fact that the surface tends to the plane u = 1 as
time goes to the terminal time T : the terminal condition of (2.12). Note however Figure 1 is
more regular than Figure 2 in the sense that the value of L2-loss in p = 0.0005 was remarkably
smaller than that in p = 0.5. Hence we may infer the value of market preference parameter p
has played a significant role for using the Deep Galerkin method algorithm.

10

4.4 Comparing with the Finite Difference Method

Now we solve (2.12) using the finite difference method(FDM). The domain has equally divided
40 grids satisfying:

0 = t0 < t1 < · · · < t40 = T,

−10 = y0
1 < y1

1 < · · · < y40
1 = 10,

0 = y0
2 < y1

2 < · · · < y40
2 = 10.

First of all, we discretize the solution u as

uni,j := u(tn, yi1, y
j
2), 0 ≤ i, j, n ≤ 40.

With this notation, we can substitute the equation (2.12) using the following central difference
formula:

ut =
un+1
i,j − uni,j

∆t
, uy1 =

uni+1,j − uni−1,j

2(∆y1)
, uy2 =

uni,j+1 − uni,j−1

2(∆y2)
.

Note that we used the forward difference for discretizing ut in order to get the values of
(uni,j)1≤i,j≤40 by using the values of (un+1

i,j)1≤i,j≤40, for n = 0, . . . , 39.
Also the central difference approximations of the second derivative of u are given by:

uy1y1 =
uni+1,j − 2uni,j + uni−1,j

(∆y1)2
, uy2y2 =

uni,j+1 − 2uni,j + uni,j−1

(∆y2)2
,

uy1y2 =
uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

4(∆y1)(∆y2)
.

Then the PDE (2.12) becomes a nonlinear equation with 1521(=39×39) unknowns (uni,j)1≤i,j≤39

for each n = 0,. . .,39. The equation is of the form:

un+1
i,j − uni,j

∆t
+ C1

uni+1,j − uni−1,j

2(∆y1)
+ C2

uni,j+1 − uni,j−1

2(∆y2)
+ C3

uni+1,j − 2uni,j + uni−1,j

(∆y1)2

+ C4

uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

4(∆y1)(∆y2)
+ C5

uni,j+1 − 2uni,j + uni,j−1

(∆y2)2
+ C6u

n
i,j

− q

2uni,j

[
C7

(
uni+1,j − uni−1,j

2(∆y1)

)2

+ C8

uni+1,j − uni−1,j

2(∆y1)

uni,j+1 − uni,j−1

2(∆y2)
+ C9(

uni,j+1 − uni,j−1

2(∆y2)
)2

]
= 0,

(4.1)

where C1, . . . , C9 are constants. Note that the terminal condition u(T, y) = u(T, y1, y2) = 1 also
becomes

u40
i,j = 1 for all 0 ≤ i, j ≤ 40.

Since (2.12) has no boundary condition, we used the boundary data from the DGM algorithm.
Figure 3 shows surfaces of the solution of (4.1) using the finite difference method in different
times with p = 0.0005. We used the Newton’s method since the equation (4.1) is nonlinear. For
more detail, see Remani (2013).

With the same value of p, the absolute errors between the solution from the Deep Galerkin
method and the one from the finite difference method are displayed in Figure 5. Notice that the
error between these algorithms is getting slightly larger as the time t goes to zero. This may be
due to the time-reversely performed finite difference method algorithm, from t = T to t = 0. In
other words, the stability on the solution from the terminal condition was gradually weakened
as the time goes to zero.

In a different point of view, combining Figure 5 with Figure 1 and Figure 3, we conclude the
solution is well-estimated by the deep neural network. It usually takes about 5 minutes to train

11

(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 3: Surface of solution using the finite difference method

the network. On the other hand, it only takes less than 30 seconds to find the surface of solution
by the FDM. One can deduce this traditional algorithm would be more efficient for time-saving.
However, it is not always true. Figure 4 shows surfaces derived from the finite difference method
algorithm with p = 0.5, same domain with Figure 2. In Figure 4, the solution has extremely
large or small values. This singularity may have arised since the system of equations (4.1) is
nonlinear. In other words, the matter of finding inverse matrix in the Newton’s method at each
step n = 39, . . . , 0 would make the value of solutions undesirable.

5 Conclusion

In this paper we first modeled the market with a safe asset and some risky assets whose dynamics
satisfy the diffusion process with returns. We then induced the HJB equation to maximize
the expectation of an investor’s utility, given by investment opportunities modeled by a d-

12

(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 4: Surface of solution by the finite difference method (p = 0.5)

dimensional state process. Using some properties including homotheticity and concaveness, we
finally derived a nonlinear partial differential equation and approximated the solution with a
deep learning algorithm.

For comparison with the Deep Galerkin method, we applied the finite difference method to
find an approximated solution. In case of the utility parameter being quite small, p = 0.0005,
we found that the solution has estimated well by the neural network. However in the case
of p = 0.5, there were several singular points in solution surfaces approximated by the finite
difference method. Hence unlike the Deep Galerkin method, this mesh-based algorithm showed
some defects such as a singularity by a nonlinearity of discretized version of partial differential
equations. This concludes that the DGM algorithm is relatively stable and has less difficulties
to approximate the solution for PDEs.

Furthermore, all above procedures in section 4 were performed only with the 2-dimensional
state process. If the dimension d of state process increases, since there would exist millions of
grids, it would be more computationally efficient to apply the DGM algorithm than the FDM

13

(a) t = 0 (b) t = 0.25T

(c) t = 0.5T (d) t = 0.75T

Figure 5: Absolute errors between the Deep Galerkin method and the finite difference method

algorithm. Finally with the approximated solution from the relatively stable DGM algorithm,
the investor can decide how to allocate one’s wealth in several risky assets by the optimal
portfolio formula.

Also there has some further studies to be researched. the stability or regularity of the solution
is to be researched as the following are changed: model or dimension of a state variable Y , value
of calibrated parameters, market preference parameter p and sampling domain. Also in the
optimal portfolio formula, the stability on a gradient term needs to be considered. Meanwhile,
Sirignano and Spiliopoulos (2018) proved the convergence of the DGM algorithm only in a class
of quasilinear parabolic PDEs. Although Sirignano and Spiliopoulos (2018) refered that the
algorithm can be applied to other types of PDEs, there needs to be some researches for the
stability of hyperbolic, elliptic or fully nonlinear PDEs.

A Proof of Theorem 3.1

Here we now justify Theorem 3.1 by proving the following two theorems in special cases. The
main idea of proofs are from Sirignano and Spiliopoulos (2018) and Hornik (1991) based on
universal approximation arguments. Note that the formulations in this section are not the same
as the ones from the above papers. For completeness, we display almost all computations in the
following proofs. The first theorem shows the convergence of J(f): there exists a deep neural
network f such that the loss functional J(f) tends to the arbitrary small. The latter one stands
for the convergence of the DNN function to the solution of PDEs.

14

A.1 Convergence of the loss functional

Assume D ⊂ Rd is bounded with a smooth boundary ∂D. Denote DT = [0, T) ×D. Consider
the following form of quasilinear parabolic PDE:

G[u](t, y) := ∂tu(t, y)− div(α(t, y, u,∇u)) + γ(t, y, u,∇u) = 0, (t, y) ∈ DT ,

u(T, y) = uT (y), y ∈ D.
(A.1)

Then the above differential operator G can be expressed as

G[u](t, y) = ∂tu(t, y)−
d∑

i,j=1

∂αi
∂uyj

∂uyj
∂yi
−

d∑
i=1

∂αi
∂u

∂yiu−
d∑
i=1

∂αi
∂yi

+ γ(t, y, u,∇u)

=: ∂tu(t, y)−
d∑

i,j=1

∂αi
∂uyj

∂uyj
∂yi

+ γ̂(t, y, u,∇u).

Theorem A.1. Let Cn(ψ) be a collection of DNN functions with n hidden neurons in a single
hidden layer:

Cn(ψ) =

ζ : R1+d → R : ζ(t, y) =
n∑
i=1

βiψ

α1it+
d∑
j=1

αjiyj

+ ci

 ,

where ψ is an activation function and θ = (β1, · · · , βn, α11, · · · , αdn, c1, · · · , cn) ∈ R2n+n(1+d) is
a vector of the neural network parameters. Assume the following:

• ψ is in C2(Rd), bounded and non-constant.

• [0, T]×D is compact.

• supp ν1 ⊂ DT and supp ν2 ⊂ D.

• The above PDE (A.1) has a unique solution, where this solution belongs to both C(D̄T)
and C1+ η

2
,2+η(DT) for 0 ≤ η ≤ 1, and

sup
DT

(
|∇yu(t, y)|+

∣∣∇2
yu(t, y)

∣∣) <∞.
• γ̂(t, y, u, p) and ∂αi(t,y,u,p)

∂pj
for 1 ≤ i, j ≤ d are locally Lipschitz continuous, where Lipschitz

constant has a polynomial growth in u and p.

•
∂αi(t, y, u, p)

∂uyj
is bounded, for 1 ≤ i, j ≤ d.

Then there is a constant

K = K

(
sup
DT

|u| , sup
DT

|∇yu| , sup
DT

|∇2
yu|

)
> 0,

such that for arbitrary positive ε > 0, there is a DNN function f in C(ψ) =
∞⋃
n=1

Cn(ψ) satisfying

J(f) ≤ Kε.

Proof. By Theorem 3 in Hornik (1991), for every ε > 0 and u ∈ C1,2([0, T] × Rd), there is a
DNN function f = f(t, y; θ) in C(ψ) such that

sup
DT

|∂tu− ∂tf | + sup
D̄T ,0≤j≤2

|∂(j)
y u− ∂(j)

y f | < ε. (A.2)

15

Also we may assume for C > 0, nonnegative constants c1, c2, c3 and c4,

|γ̂(t, y, u, p)− γ̂(t, y, v, q)| ≤ C
(
|u|

c1
2 + |v|

c2
2 + |p|

c3
2 + |q|

c4
2 + 1

)
(|u− v|+ |p− q|),

by the local Lipschitz continuity of γ̂(t, y, u, p) in u and p. We abbreviate u(t, y) and f(t, y; θ)
for convenience. From the Hölder inequality with exponents r1 and r2,∫
DT

|γ̂(t, y, f,∇yf)− γ̂(t, y, u,∇yu)|2 dν1

≤ C
∫
DT

(|f |c1 + |u|c2 + |∇yf |c3 + |∇yu|c4 + 1)(|f − u|2 + |∇yf −∇yu|2) dν1

≤ C
(∫

DT

(|f |c1 + |u|c2 + |∇yf |c3 + |∇yu|c4 + 1)r1 dν1

) 1
r1

×
(∫

DT

(|f − u|2 + |∇yf −∇yu|2)r2 dν1

) 1
r2

≤ C
(∫

DT

(|f − u|c1 + |∇yf −∇yu|c3 + |u|c1∨c2 + |∇yu|c3∨c4 + 1)r1 dν1

) 1
r1

×
(∫

DT

(|f − u|2 + |∇yf −∇yu|2)r2 dν1

) 1
r2

≤ C

(
εc1 + εc3 + sup

DT

|u|c1∨c2 + sup
DT

|∇yu|c3∨c4
)
ε2.

Each constant C from the above inequalities may differ from each other. The last inequality
holds because of (A.2).

Also we may assume∣∣∣∣∂αi(t, y, u, p)∂pj
− ∂αi(t, y, v, q)

∂qj

∣∣∣∣ ≤ C (|u| c12 + |v|
c2
2 + |p|

c3
2 + |q|

c4
2 + 1

)
(|u− v|+ |p− q|),

by the local Lipschitz continuity of ∂αi(t,y,u,p)
∂pj

in u and p. For convenience, we denote

ξ(t, y, h,∇h,∇2h) =
d∑

i,j=1

∂αi(t, y, h,∇h)

∂hyj
∂yiyjh(t, y).

In spirit to the above procedure we used the Hölder inequality with exponents p and q:∫
DT

|ξ(t, y, u,∇yu,∇2
yu)− ξ(t, y, f,∇yf,∇2

yf)|2 dν1

≤
∫
DT

∣∣∣∣∣∣
d∑

i,j=1

(
∂αi(t, y, f,∇f)

∂fyj
− ∂αi(t, y, u,∇u)

∂uyj

)
∂yiyju(t, y)

∣∣∣∣∣∣
2

dν1

+

∫
DT

∣∣∣∣∣∣
d∑

i,j=1

∂αi(t, y, f,∇f)

∂fyj
(∂yiyjf(t, y; θ)− ∂yiyju(t, y))

∣∣∣∣∣∣
2

dν1

≤ C
d∑

i,j=1

(∫
DT

|∂yiyju(t, y)|2p dν1

) 1
p

(∫
DT

∣∣∣∣∂αi(t, y, f,∇f)

∂fyj
− ∂αi(t, y, u,∇u)

∂uyj

∣∣∣∣2q dν1

) 1
q

+C

d∑
i,j=1

(∫
DT

∣∣∣∣∂αi(t, y, f,∇f)

∂fyj

∣∣∣∣2p dν1

) 1
p (∫

DT

|∂yiyjf(t, y; θ)− ∂yiyju(t, y)|2q dν1

) 1
q

16

≤ C
d∑

i,j=1

(∫
DT

|∂yiyju(t, y)|2p dν1

) 1
p
(∫

DT

(|f − u|2 + |∇yf −∇yu|2)qr2 dν1

) 1
qr2

×
(∫

DT

(|f − u|c1 + |∇yf −∇yu|c3 + |u|c1∨c2 + |∇yu|c3∨c4 + 1)qr1 dν1

) 1
qr1

+C

d∑
i,j=1

(∫
DT

∣∣∣∣∂αi(t, y, f,∇f)

∂fyj

∣∣∣∣2p dν1

) 1
p (∫

DT

|∂yiyjf(t, y; θ)− ∂yiyju(t, y)|2q dν1

) 1
q

≤ Cε2.

To sum up, we finally obtain the following inequality:

J(f) = ‖G[f]‖2DT ,ν1 + ‖f(T, y; θ)− uT (y)‖2D,ν2
= ‖G[f]− G[g]‖2DT ,ν1 + ‖f(T, y; θ)− uT (y)‖2D,ν2

≤
∫
DT

(
|∂tu− ∂tf |2 + |ξ(t, y, u,∇u,∇2u)− ξ(t, y, f,∇f,∇2f)|2

)
dν1

+

∫
DT

|γ̂(t, y, f,∇yf)− γ̂(t, y, u,∇yu)|2 dν1 +

∫
D
|f(T, y; θ)− uT (y)|2 dν2

≤ Kε2

for some constant K > 0.

A.2 Convergence of the DNN function to the solution of PDEs

As we done in section A.1, consider the quasilinear parabolic PDE (A.1) and the following loss
functional

J(f) = ‖G[f]‖2DT ,ν1 + ‖f(T, y; θ)− uT (y)‖2D,ν2 .

By Theorem A.1, there is a neural network fn such that J(fn) tends to 0. Each fn satisfies the
following:

G[fn](t, y) = hn(t, y), (t, y) ∈ DT ,

fn(T, y) = unT (y), y ∈ D,
(A.3)

and
‖hn‖2DT ,ν1 + ‖unT − uT ‖2D,ν2 → 0 as n→∞.

Theorem A.2. Assume the following:

• ‖α(t, y, u, p)‖ ≤ µ(‖p‖ + κ(t, y)) for all (t, y) ∈ DT , with µ > 0 and κ ∈ L2(DT) being
positive.

• α is continuously differentiable in (y, u, p).

• Both α and γ are Lipschitz continuous, uniformly on the following form of compact sets:{
(t, y, u, p) : t ∈ [0, T], y ∈ D̄, 0 ≤ |u| ≤ C, 0 ≤ ‖p‖ ≤ C

}
.

• 〈p, α(t, y, u, p)〉 ≥ ν‖p‖2 for some ν > 0.

• 〈p1 − p2, α(t, y, u, p1)− α(t, y, u, p2)〉 > 0 for some ν > 0, for every p1, p2 ∈ Rd with
p1 6= p2.

• |γ(t, y, u, p)| ≤ ‖p‖λ(t, y) for all (t, y) ∈ DT , with λ ∈ Ld+2(DT) being positive.

• uT (y) ∈ C0,2+ξ(D̄) for some ξ > 0. Note that

‖u(y)‖C0,β(D̄) = sup
y∈D̄
|u(y)|[β] + sup

y1,y2∈D̄,y1 6=y2

|u(y1)− u(y2)|
|y1 − y2|β−[β]

.

17

• uT and u′T are bounded in D̄.

• D ⊂ Rd is bounded and open with boundary ∂D ∈ C2.

• (fn)n∈N ∈ C1,2(D̄T) and (fn)n∈N ∈ L2(DT).

Then

1. the PDE (A.1) has a unique bounded solution

u ∈ C0,δ, δ
2 (D̄T) ∩W (1,2),2

0 (D?
T) ∩ L2

(
0, T ;W 1,2

0 (D)
)
, δ > 0,

for any interior subdomain D?
T ⊂ DT .

2. fn → u strongly in Lρ(DT) for every ρ < 2.

Note that in case of the class of quasilinear parabolic PDEs with boundary conditions, we
should also consider the limiting process in the weak formulation of PDEs and use the Vitali’s
theorem. For more detail, see Appendix A in Sirignano and Spiliopoulos (2018). See also
Boccardo et al. (2009), Magliocca (2018), Di Nardo et al. (2011) and Debnath (2011).

Proof. Existence, regularity and uniqueness for (A.1) follows from Theorem 2.1 in Porzio (1999)
and Theorem 6.3 to 6.5 of chapter V.6 in Ladyzhenskaia et al. (1968). Boundedness holds by
Theorem 2.1 in Porzio (1999). See also chapter V.2 from Ladyzhenskaia et al. (1968).

Let fn be the solution of (A.3). By Lemma 4.1 of Porzio (1999), {fn}n∈N is uniformly

bounded in both L∞(0, T ;L2(D)) and L2
(

0, T ;W 1,2
0 (D)

)
. Then we can pick a subsequence

from the sequence of neural networks {fn}n∈N, where we denote also by {fn}n∈N for convenience,
satisfying

• fn
w∗−−→ u in L∞(0, T ;L2(D)),

• fn → u, weakly in L2
(

0, T ;W 1,2
0 (D)

)
,

• fn(·, t)→ v(·, t), weakly in L2(D), for every fixed t in [0, T),

for some functions u, v. Since the norm of f in a Banach space L2
(

0, T ;W 1,2
0 (D)

)
is defined as

‖f‖
L2(0,T ;W 1,2

0 (D)) =

(∫ T

0
‖f‖2

W 1,2
0 (D)

dt

) 1
2

,

where
‖f‖2

W 1,2
0 (D)

=
∑
|α|≤2

‖Dαf‖2L2(D) = ‖f‖2L2(D) + ‖Df‖2L2(D) + ‖D2f‖2L2(D),

{∇yfn}n∈N is uniformly bounded in L2(0, T ;W 1,2
0 (D)).

Let q = 1 +
d

d+ 4
∈ (1, 2). By the Hölder inequality with exponents r1, r2 > 1,∫

DT

|γ(t, y, fn,∇yfn)|q dtdy ≤
∫
DT

|λ(t, y)|q|∇yfn(t, y)|q dtdy

≤
(∫

DT

|λ(t, y)|r1q dtdy
) 1
r1

(∫
DT

|∇yfn(t, y)|r2q dtdy
) 1
r2

.

Choose r2 =
2

q
. Then we get r1 =

2

2− q
and hence r1q = d + 2. Since λ ∈ Ld+2(DT) and

{∇yfn}n∈N is uniformly bounded,∫
DT

|γ(t, y, fn,∇yfn)|q dtdx ≤ C,

18

for some C > 0.
The growth assumption on α and the above argument imply that {∂tfn}n∈N is uniformly

bounded in L1+ d
d+4 (DT) and L2

(
0, T ;W−1,2(D)

)
. Let δ1, δ2 be the conjugate exponents sat-

isfying δ2 > max {2, d}. By the Gagliardo–Nirenberg–Sobolev inequality and the Rellich–
Kondrachov compactness theorem(for further details, see chapter 5 in Evans (2002)), the fol-
lowing embeddings hold:

W−1,2(D) ⊂W−1,δ1(D), Lq(D) ⊂W−1,δ1(D), and L2(D) ⊂W−1,δ1(D),

and hence {∂tfn}n∈N is uniformly bounded in L1(0, T ;W−1,δ1(D)).
By Corollary 4 in Simon (1986) and the following embedding

W 1,2
0 (D) ⊂⊂ L2(D) ⊂W−1,δ1(D),

{fn}n∈N is relatively compact in L2(DT), in other words,

fn → u strongly in L2(DT) as n→∞.

Thus
fn → u almost everywhere in DT up to subsequences. (A.4)

Note that from the Theorem 3.3 of Boccardo et al. (1997), we get

∇fn → ∇u almost everywhere in DT . (A.5)

Hence fn → u strongly in Lρ
(

0, T ;W 1,ρ
0 (D)

)
and so in Lρ(DT) for every ρ < 2, by (A.4) and

(A.5).

Acknowledgement.
Hyungbin Park was supported by Research Resettlement Fund for the new faculty of Seoul
National University. Hyungbin Park was also supported by the National Research Foundation
of Korea (NRF) grants funded by the Ministry of Science and ICT (No. 2018R1C1B5085491
and No. 2017R1A5A1015626) and the Ministry of Education (No. 2019R1A6A1A10073437)
through Basic Science Research Program.

References

Achdou, Y. and Pironneau, O. (2005). Computational methods for option pricing. SIAM.

Al-Aradi, A., Correia, A., Naiff, D., Jardim, G., and Saporito, Y. (2018). Solving nonlin-
ear and high-dimensional partial differential equations via deep learning. arXiv preprint
arXiv:1811.08782.

Al-Aradi, A., Correia, A., Naiff, D. d. F., Jardim, G., and Saporito, Y. (2019). Applications of
the deep galerkin method to solving partial integro-differential and hamilton-jacobi-bellman
equations. arXiv preprint arXiv:1912.01455.

Benth, F. E., Karlsen, K. H., and Reikvam, K. (2003). Merton’s portfolio optimization problem
in a black and scholes market with non-gaussian stochastic volatility of ornstein-uhlenbeck
type. Mathematical Finance: An International Journal of Mathematics, Statistics and Fi-
nancial Economics, 13(2):215–244.

Björk, T. (2009). Arbitrage theory in continuous time. Oxford university press.

19

Boccardo, L., Dall’Aglio, A., Gallouët, T., and Orsina, L. (1997). Nonlinear parabolic equations
with measure data. journal of functional analysis, 147(1):237–258.

Boccardo, L., Porzio, M. M., and Primo, A. (2009). Summability and existence results for
nonlinear parabolic equations. Nonlinear Analysis: Theory, Methods & Applications, 71(3-
4):978–990.

Burden, R., Faires, J. D., and Reynolds, A. (2010). Numerical analysis, brooks/cole. Boston,
Mass, USA,.

Callegaro, G., Gäıgi, M., Scotti, S., and Sgarra, C. (2017). Optimal investment in markets with
over and under-reaction to information. Mathematics and Financial Economics, 11(3):299–
322.

Crisóstomo, R. (2014). An analyisis of the heston stochastic volatility model: Implementation
and calibration using matlab.

Danilova, A., Monoyios, M., and Ng, A. (2010). Optimal investment with inside information
and parameter uncertainty. Mathematics and Financial Economics, 3(1):13–38.

Debnath, L. (2011). Nonlinear partial differential equations for scientists and engineers. Springer
Science & Business Media.

Di Nardo, R., Feo, F., and Guibe, O. (2011). Existence result for nonlinear parabolic equations
with lower order terms. Anal. Appl.(Singap.), 9(2):161–186.

Evans, L. C. (2002). Partial differential equations, ams. Graduate Studies in Mathematics, 19.

Guasoni, P. and Robertson, S. (2015). Static fund separation of long-term investments. Math-
ematical Finance, 25(4):789–826.

Han, J., Jentzen, A., and Weinan, E. (2018). Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–
8510.

Hansen, S. L. (2013). Optimal consumption and investment strategies with partial and private
information in a multi-asset setting. Mathematics and Financial Economics, 7(3):305–340.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257.

Kühn, C. and Stroh, M. (2010). Optimal portfolios of a small investor in a limit order market:
a shadow price approach. Mathematics and Financial Economics, 3(2):45–72.

Ladyzhenskaia, O. A., Solonnikov, V. A., and Ural’tseva, N. N. (1968). Linear and quasi-linear
equations of parabolic type, volume 23. American Mathematical Soc.

Lagaris, I. E., Likas, A. C., and Papageorgiou, D. G. (2000). Neural-network methods for
boundary value problems with irregular boundaries. IEEE Transactions on Neural Networks,
11(5):1041–1049.

Lee, H. and Kang, I. S. (1990). Neural algorithm for solving differential equations. Journal of
Computational Physics, 91(1):110–131.

Lemaire, V., Montes, T., et al. (2020). Stationary heston model: Calibration and pricing of
exotics using product recursive quantization. arXiv preprint arXiv:2001.03101.

20

Liang, Z. and Ma, M. (2020). Robust consumption-investment problem under crra and cara
utilities with time-varying confidence sets. Mathematical Finance, 30(3):1035–1072.

Magliocca, M. (2018). Existence results for a cauchy–dirichlet parabolic problem with a repulsive
gradient term. Nonlinear Analysis, 166:102–143.

Malek, A. and Beidokhti, R. S. (2006). Numerical solution for high order differential equations
using a hybrid neural network—optimization method. Applied Mathematics and Computation,
183(1):260–271.

Mehrdoust, F. and Fallah, S. (2020). On the calibration of fractional two-factor stochastic
volatility model with non-lipschitz diffusions. Communications in Statistics-Simulation and
Computation, pages 1–20.

Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case.
The review of Economics and Statistics, pages 247–257.

Nutz, M. (2010). The opportunity process for optimal consumption and investment with power
utility. Mathematics and financial economics, 3(3-4):139–159.

Pedersen, J. L. and Peskir, G. (2017). Optimal mean-variance portfolio selection. Mathematics
and Financial Economics, 11(2):137–160.

Porzio, M. M. (1999). Existence of solutions for some” noncoercive” parabolic equations. Dis-
crete & Continuous Dynamical Systems-A, 5(3):553.

Remani, C. (2013). Numerical methods for solving systems of nonlinear equations. Lakehead
University Thunder Bay, Ontario, Canada.

Simon, J. (1986). Compact sets in the space Lp(0, T ;B). Annali di Matematica pura ed applicata,
146(1):65–96.

Sirignano, J. and Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364.

Weinan, E., Hutzenthaler, M., Jentzen, A., and Kruse, T. (2019). On multilevel picard numerical
approximations for high-dimensional nonlinear parabolic partial differential equations and
high-dimensional nonlinear backward stochastic differential equations. Journal of Scientific
Computing, 79(3):1534–1571.

21

	1 Introduction
	2 Optimal Investment Problem
	2.1 Market with the Merton Problem
	2.2 The Hamilton–Jacobi–Bellman Equation

	3 Deep Galerkin Method
	3.1 Algorithm
	3.2 Neural Network Approximation

	4 Numerical Test
	4.1 Model Settings
	4.2 Calibration
	4.3 Implementation
	4.4 Comparing with the Finite Difference Method

	5 Conclusion
	A Proof of Theorem 3.1
	A.1 Convergence of the loss functional
	A.2 Convergence of the DNN function to the solution of PDEs

