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Abstract 

The inherent nature of social media content poses serious 
challenges to practical applications of sentiment analysis. 
We present VADER, a simple rule-based model for general 
sentiment analysis, and compare its effectiveness to eleven 
typical state-of-practice benchmarks including LIWC, 
ANEW, the General Inquirer, SentiWordNet, and machine 
learning oriented techniques relying on Naive Bayes, Max-
imum Entropy, and Support Vector Machine (SVM) algo-
rithms. Using a combination of qualitative and quantitative 
methods, we first construct and empirically validate a gold-
standard list of lexical features (along with their associated 
sentiment intensity measures) which are specifically attuned 
to sentiment in microblog-like contexts. We then combine 
these lexical features with consideration for five general 
rules that embody grammatical and syntactical conventions 
for expressing and emphasizing sentiment intensity. Inter-
estingly, using our parsimonious rule-based model to assess 
the sentiment of tweets, we find that VADER outperforms 
individual human raters (F1 Classification Accuracy = 0.96 
and 0.84, respectively), and generalizes more favorably 
across contexts than any of our benchmarks. 

 1. Introduction   

Sentiment analysis is useful to a wide range of problems 

that are of interest to human-computer interaction practi-

tioners and researchers, as well as those from fields such as 

sociology, marketing and advertising, psychology, eco-

nomics, and political science. The inherent nature of mi-

croblog content - such as those observed on Twitter and 

Facebook - poses serious challenges to practical applica-

tions of sentiment analysis. Some of these challenges stem 

from the sheer rate and volume of user generated social 

content, combined with the contextual sparseness resulting 

from shortness of the text and a tendency to use abbreviat-

ed language conventions to express sentiments.  

 A comprehensive, high quality lexicon is often essential 

for fast, accurate sentiment analysis on such large scales. 

An example of such a lexicon that has been widely used in 

the social media domain is the Linguistic Inquiry and 

Word Count (LIWC, pronounced “Luke”) (Pennebaker, 

Francis, & Booth, 2001; Pennebaker, Chung, Ireland, Gon-
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zales, & Booth, 2007). Sociologists, psychologists, lin-

guists, and computer scientists find LIWC appealing be-

cause it has been extensively validated. Also, its straight-

forward dictionary and simple word lists are easily inspect-

ed, understood, and extended if desired. Such attributes 

make LIWC an attractive option to researchers looking for 

a reliable lexicon to extract emotional or sentiment polarity 

from text. Despite their pervasive use for gaging sentiment 

in social media contexts, these lexicons are often used with 

little regard for their actual suitability to the domain.  

 This paper describes the development, validation, and 

evaluation of VADER (for Valence Aware Dictionary for 

sEntiment Reasoning). We use a combination of qualitative 

and quantitative methods to produce, and then empirically 

validate, a gold-standard sentiment lexicon that is especial-

ly attuned to microblog-like contexts. We next combine 

these lexical features with consideration for five general-

izable rules that embody grammatical and syntactical con-

ventions that humans use when expressing or emphasizing 

sentiment intensity. We find that incorporating these heu-

ristics improves the accuracy of the sentiment analysis en-

gine across several domain contexts (social media text, NY 

Times editorials, movie reviews, and product reviews). 

Interestingly, the VADER lexicon performs exceptionally 

well in the social media domain. The correlation coeffi-

cient shows that VADER (r = 0.881) performs as well as 

individual human raters (r = 0.888) at matching ground 

truth (aggregated group mean from 20 human raters for 

sentiment intensity of each tweet). Surprisingly, when we 

further inspect the classification accuracy, we see that 

VADER (F1 = 0.96) actually even outperforms individual 

human raters (F1 = 0.84) at correctly classifying the senti-

ment of tweets into positive, neutral, or negative classes.  

 VADER retains (and even improves on) the benefits of 

traditional sentiment lexicons like LIWC: it is bigger, yet 

just as simply inspected, understood, quickly applied 

(without a need for extensive learning/training) and easily 

extended. Like LIWC (but unlike some other lexicons or 

machine learning models), the VADER sentiment lexicon 

is gold-standard quality and has been validated by humans. 

VADER distinguishes itself from LIWC in that it is more 

sensitive to sentiment expressions in social media contexts 

while also generalizing more favorably to other domains. 

We make VADER freely available for download and use.  



2. Background and Related Work 

Sentiment analysis, or opinion mining, is an active area of 

study in the field of natural language processing that ana-

lyzes people's opinions, sentiments, evaluations, attitudes, 

and emotions via the computational treatment of subjec-

tivity in text. It is not our intention to review the entire 

body of literature concerning sentiment analysis. Indeed, 

such an endeavor would not be possible within the limited 

space available (such treatments are available in Liu (2012) 

and Pang & Lee (2008)). We do provide a brief overview 

of canonical works and techniques relevant to our study. 

2.1 Sentiment Lexicons 

A substantial number of sentiment analysis approaches rely 

greatly on an underlying sentiment (or opinion) lexicon. A 

sentiment lexicon is a list of lexical features (e.g., words) 

which are generally labeled according to their semantic 

orientation as either positive or negative (Liu, 2010). Man-

ually creating and validating such lists of opinion-bearing 

features, while being among the most robust methods for 

generating reliable sentiment lexicons, is also one of the 

most time-consuming. For this reason, much of the applied 

research leveraging sentiment analysis relies heavily on 

preexisting manually constructed lexicons. Because lexi-

cons are so useful for sentiment analysis, we briefly pro-

vide an overview of several benchmarks. We first review 

three widely used lexicons (LIWC
1
, GI

2
, Hu-Liu04

3
) in 

which words are categorized into binary classes (i.e., either 

positive or negative) according to their context free seman-

tic orientation. We then describe three other lexicons 

(ANEW
4
, SentiWordNet

5
, and SenticNet

6
) in which words 

are associated with valence scores for sentiment intensity.  

2.1.1 Semantic Orientation (Polarity-based) Lexicons 

LIWC is text analysis software designed for studying the 

various emotional, cognitive, structural, and process com-

ponents present in text samples. LIWC uses a proprietary 

dictionary of almost 4,500 words organized into one (or 

more) of 76 categories, including 905 words in two catego-

ries especially related to sentiment analysis (see Table 1): 
 

LIWC Category Examples 
No. of 
Words 

Positive Emotion Love, nice, good, great 406 

Negative Emotion Hurt, ugly, sad, bad, worse 499 
Table 1: Example words from two of LIWC’s 76 categories. 

These two categories can be leveraged to construct a semantic 

orientation-based lexicon for sentiment analysis. 
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LIWC is well-established and has been both internally 

and externally validated in a process spanning more than a 

decade of work by psychologists, sociologists, and lin-

guists (Pennebaker et al., 2001; Pennebaker et al., 2007). 

Its pedigree and validation make LIWC an attractive option 

to researchers looking for a reliable lexicon to extract emo-

tional or sentiment polarity from social media text. For 

example, LIWC’s lexicon has been used to extract indica-

tions of political sentiment from tweets (Tumasjan, 

Sprenger, Sandner, & Welpe, 2010), predict the onset of 

depression in individuals based on text from social media 

(De Choudhury, Gamon, Counts, & Horvitz, 2013), char-

acterize the emotional variability of pregnant mothers from 

Twitter posts (De Choudhury, Counts, & Horvitz, 2013), 

unobtrusively measure national happiness based on Face-

book status updates (Kramer, 2010), and differentiating 

happy romantic couples from unhappy ones based on their 

instant message communications (Hancock, Landrigan, & 

Silver, 2007). However, as Hutto, Yardi, & Gilbert (2013) 

point out, despite its widespread use for assessing senti-

ment in social media text, LIWC does not include consid-

eration for sentiment-bearing lexical items such as acro-

nyms, initialisms, emoticons, or slang, which are known to 

be important for sentiment analysis of social text (Davidov, 

Tsur, & Rappoport, 2010). Also, LIWC is unable to ac-

count for differences in the sentiment intensity of words. 

For example, “The food here is exceptional” conveys more 

positive intensity than “The food here is okay”. A senti-

ment analysis tool using LIWC would score them equally 

(they each contain one positive term). Such distinctions are 

intuitively valuable for fine-grained sentiment analysis. 

The General Inquirer (GI) is a text analysis application 

with one of the oldest manually constructed lexicons still 

in widespread use. The GI has been in development and 

refinement since 1966, and is designed as a tool for content 

analysis, a technique used by social scientists, political 

scientists, and psychologists for objectively identifying 

specified characteristics  of messages (Stone et al., 1966). 

The lexicon contains more than 11K words classified into 

one or more of 183 categories. For our purposes, we focus 

on the 1,915 words labeled Positive and the 2,291 words 

labeled as Negative. Like LIWC, the Harvard GI lexicon 

has been widely used in several works to automatically 

determine sentiment properties of text (Esuli & Sebastiani, 

2005; Kamps, Mokken, Marx, & de Rijke, 2004; Turney & 

Littman, 2003). However, as with LIWC, the GI suffers 

from a lack of coverage of sentiment-relevant lexical fea-

tures common to social text, and it is ignorant of intensity 

differences among sentiment-bearing words. 

 Hu and Liu (Hu & Liu, 2004; Liu, Hu, & Cheng, 2005) 

maintain a publicly available lexicon of nearly 6,800 words 

(2,006 with positive semantic orientation, and 4,783 nega-

tive). Their opinion lexicon was initially constructed 

through a bootstrapping process (Hu & Liu, 2004) using 



WordNet (Fellbaum, 1998), a well-known English lexical 

database in which words are clustered into groups of syno-

nyms known as synsets. The Hu-Liu04 opinion lexicon has 

evolved over the past decade, and (unlike LIWC or the GI 

lexicons) is more attuned to sentiment expressions in social 

text and product reviews – though it still does not capture 

sentiment from emoticons or acronyms/initialisms.  

2.1.2 Sentiment Intensity (Valence-based) Lexicons 

Many applications would benefit from being able to de-

termine not just the binary polarity (positive versus nega-

tive), but also the strength of the sentiment expressed in 

text. Just how favorably or unfavorably do people feel 

about a new product, movie, or legislation bill? Analysts 

and researchers want (and need) to be able to recognize 

changes in sentiment intensity over time in order to detect 

when rhetoric is heating up or cooling down (Wilson, 

Wiebe, & Hwa, 2004). It stands to reason that having a 

general lexicon with strength valences would be beneficial.  

 The Affective Norms for English Words (ANEW) lexi-

con provides a set of normative emotional ratings for 1,034 

English words (Bradley & Lang, 1999). Unlike LIWC or 

GI, the words in ANEW have been ranked in terms of their 

pleasure, arousal, and dominance. ANEW words have an 

associated sentiment valence ranging from 1-9 (with a neu-

tral midpoint at five), such that words with valence scores 

less than five are considered unpleasant/negative, and those 

with scores greater than five are considered pleas-

ant/positive. For example, the valence for betray is 1.68, 

bland is 4.01, dream is 6.73, and delight is 8.26. These 

valences help researchers measure the intensity of ex-

pressed sentiment in microblogs (De Choudhury, Counts, 

et al., 2013; De Choudhury, Gamon, et al., 2013; Nielsen, 

2011) – an important dimension beyond simple binary ori-

entations of positive and negative. Nevertheless, as with 

LIWC and GI, the ANEW lexicon is also insensitive to 

common sentiment-relevant lexical features in social text. 

SentiWordNet is an extension of WordNet (Fellbaum, 

1998) in which 147,306 synsets are annotated with three 

numerical scores relating to positivity, negativity, and ob-

jectivity (neutrality) (Baccianella, Esuli, & Sebastiani, 

2010). Each score ranges from 0.0 to 1.0, and their sum is 

1.0 for each synset. The scores were calculated using a 

complex mix of semi-supervised algorithms (propagation 

methods and classifiers). It is thus not a gold standard re-

source like WordNet, LIWC, GI, or ANEW (which were 

all 100% curated by humans), but it is useful for a wide 

range of tasks. We interface with SentiWordNet via Py-

thon’s Natural Language Toolkit
7
 (NLTK), and use the 

difference of each sysnset’s positive and negative scores as 

its sentiment valence to distinguish differences in the sen-

timent intensity of words. The SentiWordNet lexicon is 
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very noisy; a large majority of synsets have no positive or 

negative polarity. It also fails to account for sentiment-

bearing lexical features relevant to text in microblogs. 

SenticNet is a publicly available semantic and affective 

resource for concept-level opinion and sentiment analysis 

(Cambria, Havasi, & Hussain, 2012). SenticNet is con-

structed by means of sentic computing, a paradigm that 

exploits both AI and Semantic Web techniques to process 

natural language opinions via an ensemble of graph-mining 

and dimensionality-reduction techniques (Cambria, Speer, 

Havasi, & Hussain, 2010). The SenticNet lexicon consists 

of 14,244 common sense concepts such as wrath, adora-

tion, woe, and admiration with information associated with 

(among other things) the concept’s sentiment polarity, a 

numeric value on a continuous scale ranging from –1 to 1. 

We access the SenticNet polarity score using the online 

SenticNet API and a publicly available Python package
8
.  

2.1.3 Lexicons and Context-Awareness 

Whether one is using binary polarity-based lexicons or 

more nuanced valence-based lexicons, it is possible to im-

prove sentiment analysis performance by understanding 

deeper lexical properties (e.g., parts-of-speech) for more 

context awareness. For example, a lexicon may be further 

tuned according to a process of word-sense disambiguation 

(WSD) (Akkaya, Wiebe, & Mihalcea, 2009). Word-sense 

disambiguation refers to the process of identifying which 

sense of a word is used in a sentence when the word has 

multiple meanings (i.e. its contextual meaning). For exam-

ple, using WSD, we can distinguish that the word catch has 

negative sentiment in “At first glance the contract looks 

good, but there’s a catch”, but is neutral in “The fisherman 

plans to sell his catch at the market”. We use a publicly 

available Python package
9
 that performs sentiment classifi-

cation with word-sense disambiguation. 

Despite their ubiquity for evaluating sentiment in social 

media contexts, there are generally three shortcomings of 

lexicon-based sentiment analysis approaches: 1) they have 

trouble with coverage, often ignoring important lexical 

features which are especially relevant to social text in mi-

croblogs, 2) some lexicons ignore general sentiment inten-

sity differentials for features within the lexicon, and 3) 

acquiring a new set of (human validated gold standard) 

lexical features – along with their associated sentiment 

valence scores – can be a very time consuming and labor 

intensive process. We view the current study as an oppor-

tunity not only to address this gap by constructing just such 

a lexicon and providing it to the broader research commu-

nity, but also a chance to compare its efficacy against other 

well-established lexicons with regards to sentiment analy-

sis of social media text and other domains. 
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2.2 Machine Learning Approaches 

Because manually creating and validating a comprehensive 

sentiment lexicon is labor and time intensive, much work 

has explored automated means of identifying sentiment-

relevant features in text. Typical state of the art practices 

incorporate machine learning approaches to “learn” the 

sentiment-relevant features of text.  

 The Naive Bayes (NB) classifier is a simple classifier 

that relies on Bayesian probability and the naive assump-

tion that feature probabilities are independent of one an-

other. Maximum Entropy (MaxEnt, or ME) is a general 

purpose machine learning technique belonging to the class 

of exponential models using multinomial logistic regres-

sion. Unlike NB, ME makes no conditional independence 

assumption between features, and thereby accounts for 

information entropy (feature weightings). Support Vector 

Machines (SVMs) differ from both NB and ME models in 

that SVMs are non-probability classifiers which operate by 

separating data points in space using one or more hyper-

planes (centerlines of the gaps separating different classes). 

We use the Python-based machine learning algorithms 

from scikit-learn.org for the NB, ME, SVM-Classification 

(SVM-C) and SVM-Regression (SVM-R) models. 

 Machine learning approaches are not without draw-

backs. First, they require (often extensive) training data 

which are, as with validated sentiment lexicons, sometimes 

troublesome to acquire. Second, they depend on the train-

ing set to represent as many features as possible (which 

often, they do not – especially in the case of the short, 

sparse text of social media). Third, they are often more 

computationally expensive in terms of CPU processing, 

memory requirements, and training/classification time 

(which restricts the ability to assess sentiment on streaming 

data). Fourth, they often derive features “behind the 

scenes” inside of a black box that is not (easily) human-

interpretable and are therefore more difficult to either gen-

eralize, modify, or extend (e.g., to other domains). 

3. Methods 

Our approach seeks to leverage the advantages of parsimo-

nious rule-based modeling to construct a computational 

sentiment analysis engine that 1) works well on social me-

dia style text, yet readily generalizes to multiple domains, 

2) requires no training data, but is constructed from a gen-

eralizable, valence-based, human-curated gold standard 

sentiment lexicon 3) is fast enough to be used online with 

streaming data, and 4) does not severely suffer from a 

speed-performance tradeoff.  

 Figure 1 provides an overview of the research process 

and summarizes the methods used in this study. In essence, 

this paper reports on three interrelated efforts: 1) the de-

velopment and validation of a gold standard sentiment lex-

icon that is sensitive both the polarity and the intensity of 

sentiments expressed in social media microblogs (but 

which is also generally applicable to sentiment analysis in 

other domains); 2) the identification and subsequent exper-

imental evaluation of generalizable rules regarding conven-

tional uses of grammatical and syntactical aspects of text 

for assessing  sentiment intensity; and 3) comparing the 

performance of a parsimonious lexicon and rule-based 

model against other established and/or typical sentiment 

analysis baselines. In each of these three efforts, we incor-

porate an explicit human-centric approach. Specifically, we 

combine qualitative analysis with empirical validation and 

experimental investigations leveraging the wisdom-of-the-

crowd (Surowiecki, 2004). 

3.1 Constructing and Validating a Valence-Aware 

Sentiment Lexicon: A Human-Centered Approach 

Manually creating (much less, validating) a comprehensive 

sentiment lexicon is a labor intensive and sometimes error 

prone process, so it is no wonder that many opinion mining 

researchers and practitioners rely so heavily on existing 

lexicons as primary resources. There is, of course, a great

Figure 1: Methods and process approach overview. 



deal of overlap in the vocabulary covered by such lexicons; 

however, there are also numerous items unique to each.

 We begin by constructing a list inspired by examining 

existing well-established sentiment word-banks (LIWC, 

ANEW, and GI). To this, we next incorporate numerous 

lexical features common to sentiment expression in mi-

croblogs, including a full list of Western-style emoticons
10

 

(for example, “:-)” denotes a “smiley face” and generally 

indicates positive sentiment), sentiment-related acronyms 

and initialisms
11

 (e.g., LOL and WTF are both sentiment-

laden initialisms), and commonly used slang
12

 with senti-

ment value (e.g., “nah”, “meh” and “giggly”). This process 

provided us with over 9,000 lexical feature candidates.  

 Next, we assessed the general applicability of each fea-

ture candidate to sentiment expressions. We used a wis-

dom-of-the-crowd
13

 (WotC) approach (Surowiecki, 2004) 

to acquire a valid point estimate for the sentiment valence 

(intensity) of each context-free candidate feature. We col-

lected intensity ratings on each of our candidate lexical 

features from ten independent human raters (for a total of 

90,000+ ratings). Features were rated on a scale from “[–4] 

Extremely Negative” to “[4] Extremely Positive”, with 

allowance for “[0] Neutral (or Neither, N/A)”. Ratings 

were obtained using Amazon Mechanical Turk (AMT), a 

micro-labor website where workers perform minor tasks in 

exchange for a small amount of money (see subsection 

3.1.1 for details on how we were able to consistently obtain 

high quality, generalizable results from AMT workers). 

Figure 2 illustrates the user interface implemented for ac-

quiring valid point estimates of sentiment intensity for each 

context-free candidate feature comprising the VADER 

sentiment lexicon. (A similar UI was leveraged for all of 

the evaluation and validation activities described in subsec-

tions 3.1, 3.2, 3.3, and 3.4.) We kept every lexical feature 

that had a non-zero mean rating, and whose standard devia-

tion was less than 2.5 as determined by the aggregate of ten 

independent raters. This left us with just over 7,500 lexical 

features with validated valence scores that indicated both 

the sentiment polarity (positive/negative), and the senti-

ment intensity on a scale from –4 to +4. For example, the 

word “okay” has a positive valence of 0.9, “good” is 1.9, 

and “great” is 3.1, whereas “horrible” is –2.5, the frowning 

emoticon “:(” is –2.2, and “sucks” and “sux” are both –1.5. 

This gold standard list of features, with associated valence 

for each feature, comprises VADER’s sentiment lexicon, 

and is available for download from our website
14

.  
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12 http://www.internetslang.com/ 
13 Wisdom-of-the-crowd is the process of incorporating aggregated opinions 
from a collection of individuals to answer a question. The process has been found 
to be as good as (often better than) estimates from lone individuals, even experts. 
14 http://comp.social.gatech.edu/papers/ 

3.1.1 Screening, Training, Selecting, and Data Quality 

Checking Crowd-Sourced Evaluations and Validations 

Previous linguistic rating experiments using a WotC ap-

proach on AMT have shown to be reliable – sometimes 

even outperforming expert raters (Snow, O’Connor, Juraf-

sky, & Ng, 2008). On the other hand, prior work has also 

advised on methods to reduce the amount of noise from 

AMT workers who may produce poor quality work 

(Downs, Holbrook, Sheng, & Cranor, 2010; Kittur, Chi, & 

Suh, 2008). We therefore implemented four quality control 

processes to help ensure we received meaningful data from 

our AMT raters.  

 First, every rater was prescreened for English language 

reading comprehension – each rater had to individually 

score an 80% or higher on a standardized college-level 

reading comprehension test.  

 Second, every prescreened rater then had to complete an 

online sentiment rating training and orientation session, 

and score 90% or higher for matching the known (pre-

validated) mean sentiment rating of lexical items which 

included individual words, emoticons, acronyms, sentenc-

es, tweets, and text snippets (e.g., sentence segments, or 

phrases). The user interface employed during the sentiment 

training (Figure 2) always matched the specific sentiment 

rating tasks discussed in this paper. The training helped to 

ensure consistency in the rating rubric used by each inde-

pendent rater.  

 Third, every batch of 25 features contained five “golden 

items” with a known (pre-validated) sentiment rating dis-

tribution. If a worker was more than one standard deviation 

away from the mean of this known distribution on three or 

more of the five golden items, we discarded all 25 ratings 

in the batch from this worker.  

 Finally, we implemented a bonus program to incentivize 

and reward the highest quality work. For example, we 

asked workers to select the valence score that they thought 

“most other people” would choose for the given lexical 

feature (early/iterative pilot testing revealed that wording 

the instructions in this manner garnered a much tighter 

standard deviation without significantly affecting the mean 

sentiment rating, allowing us to achieve higher quality 

(generalized) results while being more economical).  

 We compensated AMT workers $0.25 for each batch of 

25 items they rated, with an additional $0.25 incentive bo-

nus for all workers who successfully matched the group 

mean (within 1.5 standard deviations) on at least 20 of 25 

responses in each batch. Using these four quality control 

methods, we achieved remarkable value in the data ob-

tained from our AMT workers – we paid incentive bonuses 

for high quality to at least 90% of raters for most batches. 



Figure 2: Example of the interface implemented for acquiring valid point estimates of sentiment valence (intensity) for each context-free 

candidate feature comprising the VADER sentiment lexicon. A similar UI was used for all rating activities described in sections 3.1-3.4. 

 

3.2 Identifying Generalizable Heuristics Humans 

Use to Assess Sentiment Intensity in Text 

We next analyze a purposeful sample of 400 positive and 

400 negative social media text snippets (tweets). We se-

lected this sample from a larger initial set of 10K random 

tweets pulled from Twitter’s public timeline based on their 

sentiment scores using the Pattern.en sentiment analysis 

engine
15

 (they were the top 400 most positive and negative 

tweets in the set). Pattern is a web mining module for Py-

thon, and the Pattern.en module is a natural language pro-

cessing (NLP) toolkit (De Smedt & Daelemans, 2012) that 

leverages WordNet to score sentiment according to the 

English adjectives used in the text. 

 Next, two human experts individually scrutinized all 800 

tweets, and independently scored their sentiment intensity 

on a scale from –4 to +4. Following a data-driven inductive 

coding technique similar to the Grounded Theory approach 

(Strauss & Corbin, 1998), we next used qualitative analysis 

techniques to identify properties and characteristics of the 

text which affect the perceived sentiment intensity of the 

text. This deep qualitative analysis resulted in isolating five 

generalizable heuristics based on grammatical and syntac-

tical cues to convey changes to sentiment intensity. Im-

portantly, these heuristics go beyond what would normally 

be captured in a typical bag-of-words model. They incor-

porate word-order sensitive relationships between terms: 

1. Punctuation, namely the exclamation point (!), increas-

es the magnitude of the intensity without modifying the 

semantic orientation. For example, “The food here is 

good!!!” is more intense than “The food here is good.” 

2. Capitalization, specifically using ALL-CAPS to empha-

size a sentiment-relevant word in the presence of other 

non-capitalized words, increases the magnitude of the 

sentiment intensity without affecting the semantic ori-

                                                 
15 http://www.clips.ua.ac.be/pages/pattern-en#sentiment 

entation. For example, “The food here is GREAT!” con-

veys more intensity than “The food here is great!” 

3. Degree modifiers (also called intensifiers, booster 

words, or degree adverbs) impact sentiment intensity 

by either increasing or decreasing the intensity. For ex-

ample, “The service here is extremely good” is more in-

tense than “The service here is good”, whereas “The 

service here is marginally good” reduces the intensity. 

4. The contrastive conjunction “but” signals a shift in sen-

timent polarity, with the sentiment of the text following 

the conjunction being dominant. “The food here is 

great, but the service is horrible” has mixed sentiment, 

with the latter half dictating the overall rating. 

5. By examining the tri-gram preceding a sentiment-laden 

lexical feature, we catch nearly 90% of cases where ne-

gation flips the polarity of the text. A negated sentence 

would be “The food here isn’t really all that great”. 

3.3 Controlled Experiments to Evaluate Impact of 

Grammatical and Syntactical Heuristics 

Using the general heuristics we just identified, we next 

selected 30 baseline tweets and manufactured six to ten 

variations of the exact same text, controlling the specific 

grammatical or syntactical feature that is presented as an 

independent variable in a small experiment. With all of the 

variations, we end up with 200 contrived tweets, which we 

then randomly insert into a new set of 800 tweets similar to 

those used during our qualitative analysis. We next asked 

30 independent AMT workers to rate the sentiment intensi-

ty of all 1000 tweets to assess the impact of these features 

on perceived sentiment intensity. (AMT workers were all 

screened, trained, and data quality checked as described in 

subsection 3.1.1). Table 2 illustrates some examples of 

contrived variations on a given baseline: 

  



Test Condition Example Text 

Baseline Yay. Another good phone interview. 

Punctuation1 Yay! Another good phone interview! 

Punctuation1 + 
Degree Mod. 

Yay! Another extremely good phone interview! 

Punctuation2 Yay!! Another good phone interview!! 

Capitalization YAY. Another GOOD phone interview. 

Punct1 + Cap. YAY! Another GOOD phone interview! 

Punct2 + Cap. YAY!! Another GOOD phone interview!! 

Punct3 + Cap. YAY!!! Another GOOD phone interview!!! 

Punct3 + Cap. + 
Degree Mod. 

YAY!!! Another EXTREMELY GOOD phone in-
terview!!! 

Table 2: Example of baseline text with eight test conditions com-

prised of grammatical and syntactical variations. 

Table 3 shows the t-test statistic, p-value, mean of differ-

ences for rank ordered data points between each distribu-

tion, and 95% confidence intervals: 
 

Test Condition t p Diff. 95% C.I. 

Punctuation (. vs !) 19.02 < 2.2e-16 0.291 0.261 - 0.322 

Punctuation (! vs !!) 16.53 2.7e-16 0.215 0.188 - 0.241 

Punctuation (!! vs !!!) 14.07 1.7e-14 0.208 0.178 - 0.239 

All CAPS (w/o vs w) 28.95 < 2.2e-16 0.733 0.682 - 0.784 

Deg. Mod. (w/o vs w) 9.01 6.7e-10 0.293 0.227 - 0.360 
Table 3: Statistics associated with grammatical and syntactical 

cues for expressing sentiment intensity. Differences in means 

were all statistically significant beyond the 0.001 level. 

We incorporated the mean differences between each distri-

bution into VADER’s rule-based model. For example, 

from Table 3, we see that for 95% of the data, using an 

exclamation point (relative to a period or no punctuation at 

all) increased the intensity by 0.261 to 0.322, with a mean 

difference of 0.291 on a rating scale from 1 to 4 (we use 

absolute value scale here for simplicity, because it did not 

matter whether the text was positive or negative, using an 

exclamation made it equally more extreme in either case). 

We incorporated consideration for rule 4 by splitting the 

text into segments around the contrastive conjunction 

“but”, and diminished the total sentiment intensity of the 

text preceding the conjunction by 50% while increasing the 

sentiment intensity of the post-conjunction text by 50%. 

3.4 Ground Truth in Multiple Domain Contexts 

We next obtained gold standard (human-validated) ground 

truth regarding sentiment intensity on corpora representing 

four distinct domain contexts. For this purpose, we recruit-

ed 20 independent human raters from AMT (raters were all 

screened, trained, and data quality checked consistent with 

the process described in subsection 3.1.1 and Figure 2). All 

four sentiment-intensity annotated corpora are available for 

download from our website
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:  

1. Social media text: includes 4,000 tweets pulled from 

Twitter’s public timeline (with varied times and days of 

posting), plus 200 contrived tweets that specifically test 

syntactical and grammatical conventions of conveying 

differences in sentiment intensity. 

2. Movie reviews: includes 10,605 sentence-level snippets 

from rotten.tomatoes.com. The snippets were derived 

from an original set of 2000 movie reviews (1000 posi-

tive and 1000 negative) in Pang & Lee (2004); we used 

the NLTK tokenizer to segment the reviews into sen-

tence phrases, and added sentiment intensity ratings. 

3. Technical product reviews: includes 3,708 sentence-

level snippets from 309 customer reviews on 5 different 

products. The reviews were originally used in Hu & Liu 

(2004); we added sentiment intensity ratings. 

4. Opinion news articles: includes 5,190 sentence-level 

snippets from 500 New York Times opinion editorials. 

4. Results 

In order to evaluate our results directly against the broader 

body of literature, we assess both a) the correlation of 

computed raw sentiment intensity rating to gold standard 

ground truth, i.e., the mean sentiment rating from 20 pre-

screened and appropriately trained human raters, as well as 

b) the multiclass (positive, negative, neutral) classification 

metrics of precision, recall, and F1 score. In statistical 

analysis of classifier performance, precision is the number 

of true classifications (i.e. the number of items labeled as a 

particular class that match the known gold standard classi-

fication) divided by the total number of elements labeled as 

that class (including both correct and incorrect classifica-

tions). Recall is the number of true classifications divided 

by the total number of elements that are known to belong 

to the class; low recall is an indication that known elements 

of a class were missed. The F1 score is the harmonic mean 

of precision and recall, and represents the overall accuracy. 

 We compared the VADER sentiment lexicon to seven 

other well-established sentiment analysis lexicons: Lin-

guistic Inquiry Word Count (LIWC), General Inquirer 

(GI), Affective Norms for English Words (ANEW), Sen-

tiWordNet (SWN), SenticNet (SCN), Word-Sense Disam-

biguation (WSD) using WordNet, and the Hu-Liu04 opin-

ion lexicon. For fairness to each lexicon, all comparisons 

utilized VADER’s rule-based model for processing syntac-

tical and grammatical cues – the only difference were the 

features represented within the actual lexicons themselves. 

As Figure 3 and Table 4 both show, the VADER lexicon 

performs exceptionally well in the social media domain, 

and generalizes favorably. The Pearson Product Moment 

Correlation Coefficient shows that VADER (r = 0.881) 

performs as well as individual human raters (r = 0.888) at 

matching ground truth (aggregated group mean from 20 

human raters for sentiment intensity of each tweet). Sur-

prisingly, when we further inspect the classification 



 
Figure 3: Sentiment scores from VADER and 11 other highly regarded sentiment analysis tools/techniques on a corpus of over 4K tweets. 

Although this figure specifically portrays correlation, it also helps to visually depict (and contrast) VADER’s classification precision, re-

call, and F1 accuracy within this domain (see Table 4). Each subplot can be roughly considered as having four quadrants: true negatives 

(lower left), true positives (upper right), false negatives (upper left), and false positives (lower right). 
 

 
Table 4: VADER 3-class classification performance as compared to individual human raters and 7 established lexicon baselines across 

four distinct domain contexts (clockwise from upper left: tweets, movie reviews, product reviews, opinion news articles).  



accuracy (with classification thresholds set at –0.05 and 

+0.05 for all normalized sentiment scores between -1 and 

1), we can see that VADER (F1 = 0.96) actually outper-

forms even individual human raters (F1 = 0.84) at correctly 

classifying the sentiment of tweets. Notice how the LIWC, 

GI, ANEW, and Hu-liu04 results in Figure 3 show a con-

centration of tweets incorrectly classified as neutral. Pre-

sumably, this is due to lack of coverage for the sentiment-

oriented language of social media text, which is often ex-

pressed using emoticons, slang, or abbreviated text such as 

acronyms and initialisms.  

The lexicons for the machine learning algorithms were 

all constructed by training those models on half the data 

(again, incorporating all rules), with the other half being 

held out for testing. While some algorithms performed 

decently on test data from the specific domain for which it 

was expressly trained, they do not significantly outstrip the 

simple model we use. Indeed, in three out of four cases, 

VADER performs as well or better across domains than 

the machine learning approaches do in the same domain 

for which they were trained. Table 5 explicitly shows this, 

and also highlights another advantage of VADER – its 

simplicity makes it computationally efficient, unlike some 

SVM models, which were unable to fully process the data 

from the larger corpora (movie reviews and NYT editori-

als) even on a multicore system with large RAM: 

 

 
Table 5: Three-class accuracy (F1 scores) for each machine 

trained model (and the corpus it was trained on) as tested against 

every other domain context (SVM models for the movie and NYT 

data were too intensive for our multicore CPUs with 94GB RAM) 

As discussed in subsections 3.2 and 3.3, we identified 

and quantified the impact of several generalizable heuris-

tics that humans use when distinguishing between degrees 

of sentiment intensity. By incorporating these heuristics 

into VADER’s rule-based model, we drastically improved 

both the correlation to ground truth as well as the classifi-

cation accuracy of the sentiment analysis engine. Im-

portantly, these improvements are realized independent of 

the lexicon or ML model that was used. That is, when we 

fairly apply the rules to all lexicons and ML algorithms, we 

achieve better correlation coefficients (mean r increase of 

5.2%) and better accuracies (mean F1 increase of 2.1%). 

Consistent with prior work (Agarwal, Xie, Vovsha, Ram-

bow, & Passonneau, 2011; Davidov et al., 2010; Shastri, 

Parvathy, Kumar, Wesley, & Balakrishnan, 2010), we find 

that grammatical features (conventions of use for punctua-

tion and capitalization) and consideration for degree modi-

fiers like “very” or “extremely” prove to be useful cues for 

distinguishing differences in sentiment intensity. Other 

syntactical considerations identified via qualitative analysis 

(negation, degree modifiers, and contrastive conjunctions) 

also help make VADER successful, and is consistent with 

prior work (Agarwal et al., 2011; Ding, Liu, & Yu, 2008; 

Lu, Castellanos, Dayal, & Zhai, 2011; Socher et al., 2013). 

5. Discussion 

Recent work by Socher et. al (2013) does an excellent job 

of summarizing (and pushing) the current state of the art 

for fine-grained sentence-level sentiment analysis by su-

pervised machine learning models. As part of their excel-

lent work using recursive deep models for assessing se-

mantic compositionality over a sentiment tree bank, they 

report that the state-of-the-art regarding accuracy for sim-

ple binary (positive/negative) classification on single sen-

tences is around 80%, and that for the more difficult mul-

ticlass case that includes a third (neutral) class, accuracies 

tend to hover in the 60% range for social media text (c.f. 

Agarwal et. al, (2011); Wang et. al (2012)). We find it very 

encouraging, therefore, to report that the results from 

VADER’s simple rule-based approach are on par with such 

sophisticated benchmarks. However, when compared to 

sophisticated machine learning techniques, the simplicity 

of VADER carries several advantages. First, it is both 

quick and computationally economical without sacrificing 

accuracy. Running directly from a standard modern laptop 

computer with typical, moderate specifications (e.g., 3GHz 

processor and 6GB RAM), a corpus that takes a fraction of 

a second to analyze with VADER can take hours when 

using more complex models like SVM (if training is re-

quired) or tens of minutes if the model has been previously 

trained. Second, the lexicon and rules used by VADER are 

directly accessible, not hidden within a machine-access-

only black-box. VADER is therefore easily inspected, un-

derstood, extended or modified. By exposing both the lexi-

con and rule-based model, VADER makes the inner work-

ings of the sentiment analysis engine more accessible (and 

thus, more interpretable) to a broader human audience be-

yond the computer science community. Sociologists, psy-

chologists, marketing researchers, or linguists who are 

comfortable using LIWC should also be able to use 

VADER. Third, by utilizing a general (human-validated) 

sentiment lexicon and general rules related to grammar and 



syntax, VADER is at once both self-contained and domain 

agnostic – it does not require an extensive set of training 

data, yet it performs well in diverse domains. We stress 

that in no way do we intend to convey that complex or 

sophisticated techniques are in any wrong or bad. Instead 

we show that a simple, human-centric, interpretable, com-

putationally efficient approach can produce high quality 

results – even outperforming individual human raters. 

6. Conclusion 

We report the systematic development and evaluation of 

VADER (Valence Aware Dictionary for sEntiment Rea-

soning). Using a combination of qualitative and quantita-

tive methods, we construct and empirically validate a gold-

standard list of lexical features (along with their associated 

sentiment intensity measures) which are specifically at-

tuned to sentiment in microblog-like contexts. We then 

combine these lexical features with consideration for five 

general rules that embody grammatical and syntactical 

conventions for expressing and emphasizing sentiment 

intensity. The results are not only encouraging – they are 

indeed quite remarkable; VADER performed as well as 

(and in most cases, better than) eleven other highly regard-

ed sentiment analysis tools. Our results highlight the gains 

to be made in computer science when the human is incor-

porated as a central part of the development process.  
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