
 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 1 of 18

Creating C-based TCP Data Feed

Connections to Kdb+

AquaQ Analytics Limited

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 2 of 18

Authors
This document was prepared by:

Kent Lee (primary author)

Paul McCabe

Chris Patton

Ronan Pairceir

Dermot French

Ben Sharpe

John Ludlow

Revision History

Version
Number

Revision Date

dd/mm/yyyy
Summary of Changes Document Author

1.0 01/02/2013 Initial Release See list above

The code samples associated with this document and the content of the document

itself are provided as is, without any guarantees or warranty. Although the author

has attempted to find and correct any bugs in the code and in the accompanying

documentation, the author is not responsible for any damage or losses of any kind

caused by the use or misuse of the code or the material presented in the document.

The author is under no obligation to provide support, service, corrections, or

upgrades to the code and accompanying documentation.

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 3 of 18

Table of Contents

1 Company Background 4

2 Introduction 5

3 Requirements 6

4 C Based TCP data feed 7

4.1 Connect to TCP server using telnet 7

4.2 Connect to TCP server using q 8

5 C code explanation 10

5.1 TCP Server 10

5.2 TCP Client 13

6 Possible Extensions 18

7 References 18

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 4 of 18

1 Company Background

AquaQ Analytics Limited (www.aquaq.co.uk) is a provider of specialist data

management, data analytics and data mining services to clients operating
within the capital markets and financial services sectors. Based in Belfast, the

company was set up in April 2011. Our domain knowledge, combined with
advanced analytical techniques and expertise in best-of-breed technologies,
helps our clients get most out of their data.

 The company is currently focussed on three key areas:

 Kdb+ Consulting Services – Development, Training and Support (both

onsite and offsite).

 Real Time GUI Development Services (both onsite and offsite).
 SAS Analytics Services (both onsite and offsite).

For more information on the company, please email us on info@aquaq.co.uk.

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 5 of 18

2 Introduction

This document provides an overview and accompanying sample code that the

reader can use to construct a simple TCP socket connection to kdb+. Many
market data feeds (such as Reuters SSL, EBS and many others) provide

simple text based updates available over a TCP socket. This data can then be
delivered to kdb+ and processed in a user defined manner.

This documentation only looks at the very basic messages. A simple feed
architecture is shown below. Here a client can connect to a server, at which

point the server will publish messages to the client, as long as the connection
remains valid. After the client disconnects, the server will exit and die. A
basic example, not involving kdb+ can be demonstrated using telnet.

In the more practical example a socket connection will be created from kdb+

and any messages published by the server will be dispatched to kdb+ via a
predefined callback.

In this example, the message will be assumed to have a specific form,

containing only ASCI characters and terminating with a new line (\n)
character.

Note that this document was created by a junior developer in both C and Q,
which indicates that the bridge is relatively straightforward to create.

C Based TCP Server Telnet

Random String

C Based TCP Server Q session

Random String

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 6 of 18

3 Requirements

1) Demo version of kdb+ 2.8 (32-bit)

2) Linux/Unix (32-bit)

3) GCC compiler

4) echoclnt.zip

5) echoserv.zip

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 7 of 18

4 C Based TCP data feed

The TCP server code can be obtained from
http://www.paulgriffiths.net/program/c/echoserv.php.

To start a TCP server, open a UNIX session.
Type “make” in the command prompt to compile the codes into executable.
Type “./echoserv {port number}” to start the TCP server.

This TCP server will first create a listening socket and bind it with the current

session’s socket address. Then it will accept the connection from a client,
generate a random message and send it back to the connected client on an

interval of 1 second. Lastly when the client is disconnected, the server will
close the connection and die.

4.1 Connect to TCP server using telnet

http://www.paulgriffiths.net/program/c/echoserv.php

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 8 of 18

4.2 Connect to TCP server using q

Compilation

A simple makefile is created to make compiling easier. This can be done by
creating a file named “Makefile” as such:

echoclntq.so:echoclntq.c k.h
 gcc -D KXVER=2 -shared echoclntq.c -o echoclntq.so

Note that “k.h” header file and “c.o” linker are needed for kdb+ to interact

with C. A tutorial on creating a simple makefile can be found in
http://mrbook.org/tutorials/make/.

To compile the C code, just type “make” in a UNIX session.

Q script to connect to the server

//define a function to load the C based connect function into q
conn:`:./echoclntq 2:(`conn;3)

//define a function to load the C based disconnect function into q
disconn:`:./echoclntq 2:(`disconn;1)

//define a function to show the message sent from the C based server at a particular time
upd:{[x] 0N!string[.z.t],“: ”,x}

//define a function to show the error message sent from the C base server at a particular
time
oneerror:{[x] 0N!string[.z.t],“: ”,x }

-1“e.g. conn[127.0.0.1;5625;`upd] to start connection\ne.g disconn[] to disconnect\nupd
and oneeror function are defined”

“2:” function is used to dynamically load a C function into kdb+.

The left argument is a symbol representing the name of the dynamic library
from which to load the function. The right argument is a list of a symbol

which is the function name and an integer integrating the number of
arguments for the function.

The “./” here is pointing towards the current directory. The .so file is

currently stored in the current directory. It can be stored in
LD_LIBRARY_PATH and “./” can be ignored when loading the .so file.

http://mrbook.org/tutorials/make/

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 9 of 18

Start and end connection

To start a connection to the TCP server, specify the arguments for the “conn”
function and run it. The arguments are the ipaddress of the server, the port

number of the server and the name of callback function.

To end the connection, use the “disconn” function.

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 10 of 18

5 C code explanation

5.1 TCP Server

Random String Generator

To generate random string containing alphanumeric characters and numbers,

a reference can be obtained from
http://stackoverflow.com/questions/440133/how-do-i-create-a-random-
alpha-numeric-string-in-c. This function creates a character list containing

alphanumeric characters and numbers and put the random character into the
specified character’s array (depending on how many characters you want to

put in).

The code works fine, but it would be ideal to generate random string with

random length! So the “len” input is excluded and random integer between
1 and 10 is generated as the length of the string.

void gen_random(char *s){

 int i;

static const char alphanum[] =
 "0123456789"
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 "abcdefghijklmnopqrstuvwxyz";

 /* Create random string between length 1 to 10 (rand()%10+1)*/
 for (i = 0 ; i < rand()%10+1 ; ++i) {
 s[i] = alphanum[rand() % (sizeof(alphanum) - 1)];
 }

 s[i] = 0;
}

http://stackoverflow.com/questions/440133/how-do-i-create-a-random-alpha-numeric-string-in-c
http://stackoverflow.com/questions/440133/how-do-i-create-a-random-alpha-numeric-string-in-c

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 11 of 18

Create a socket

First the TCP server will create a listening socket. Then it will setup its socket
address structure (i.e. the ipaddress and port number) and bind it to the

listening socket. Lastly, it will call listen() function to activate the listening
socket.
 /* Create the listening socket */

 if ((list_s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
 fprintf(stderr, "ECHOSERV: Error creating listening socket.\n");
 exit(EXIT_FAILURE);
 }

 /* Set all bytes in socket address structure to
 zero, and fill in the relevant data members */

 memset(&servaddr, 0, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
 servaddr.sin_port = htons(port);

 /* Bind our socket addresss to the
 listening socket, and call listen() */

 if (bind(list_s, (struct sockaddr *) &servaddr, sizeof(servaddr)) < 0) {
 fprintf(stderr, "ECHOSERV: Error calling bind()\n");
 exit(EXIT_FAILURE);
 }

 if (listen(list_s, LISTENQ) < 0) {
 fprintf(stderr, "ECHOSERV: Error calling listen()\n");
 exit(EXIT_FAILURE);
 }

Accepting connections

The TCP server use accept() function to accept any connection from the
client.

/* Wait for a connection, then accept() it */

if ((conn_s = accept(list_s, NULL, NULL)) < 0) {
 fprintf(stderr, "ECHOSERV: Error calling accept()\n");
 exit(EXIT_FAILURE);
}

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 12 of 18

Message Structure

Structure of the message is important so that the client knows how to read
the message sent by the server. The message structures sent by this TCP

sever is as such (i.e. “5hello\n”):

Size
Indicator

Message
End of

Message

1 byte n bytes ‘\n’

/* Put the random string into the message structure */
gen_random(buffer);
sprintf(bufferR,"%i%s\n",strlen(buffer),buffer);

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 13 of 18

5.2 TCP Client

Parameters type

To make sure the parameters are in the correct format, the inputs can be
converted into type format and check them accordingly.

/* Inspect each K object for type */

if (-6 != portq->t){krr("porttype");return (K)0;}
PORT = portq->i;
if (-11 != ipaddressq->t){krr("iptype");return (K)0;}
IPADD = ipaddressq->s;
if (-11 != callback->t){krr("cbtype");return (K)0;}
CALLBACK = callback->s;

Create a socket and connect to the TCP server

First the TCP client will create a connection socket. Then it will setup its

socket address structure (i.e. the ipaddress and port number). Lastly, it will
call connect() function to connect to the TCP server.

/* Create the listening socket */

if ((conn_s = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

krr("nosocket");
 return (K)0;
}

/* Set all bytes in socket address structure to
 zero, and fill in the relevant data members */

memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(PORT);

/* Set the remote IP address */

if (inet_aton(IPADD, &servaddr.sin_addr) <= 0) {
 krr("ipaddr");
 return (K)0;
}

/* connect() to the remote echo server */

if (connect(conn_s, (struct sockaddr *) &servaddr, sizeof(servaddr)) < 0) {
 krr("noconnect");
 return (K)0;
}

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 14 of 18

Creating Listening Callback

Remember that the TCP server sends a message every one second. So the
TCP client needs to go into a loop so that whenever TCP server sends a

message, the callback function will be triggered so that the response will be
passed into q. sd1(handle,function) command is useful in this case.

/* Retrieve response everytime the server send something */

sd1(conn_s,rtnmsg);

Receiving messages

Now the object to be returned to q must be in K type, a K function (rtnmsg)

is created that receive the response from TCP server, put it in K format and
send it to the q session.

Remember the message structure from TCP server, the function reads the
first byte of the response as the size of the message then read the rest of the

message according to the size.

The function also checks where the message is complete or not.

After reading the message, the function sends it to q using

“k(handle,function,params,(K)0)” command. Note that “function” here is in q
format and the “params” has to be in K format. A C coded string can be
converted into K format using “kpn” command.

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 15 of 18

/* A function to retrive response from server */
K rtnmsg(){

 /* Put the first byte into c to let us know how what length the message is */
 char c[1];
 if (read(conn_s, c, 1) <= 0){
 onerror("nobyte");
 sd0(conn_s);
 close(conn_s);
 return (K)0;
 }
 int len = atoi(c);

 /* Read the message into bufferR */
 if(read(conn_s, &bufferR, len) <= 0){
 onerror("nomsg");
 sd0(conn_s);

close(conn_s);
 return (K)0;
 }

 /* Read the end of message return an error if message invalid */
 char suc[1];
 read(conn_s, suc, 1);
 if (*suc != '\n'){
 onerror("msgntcmplt");
 sd0(conn_s);
 close(conn_s);
 return (K)0;
 }

 /* Send the response to Q */
 k(0,CALLBACK,kpn(bufferR,len),(K)0);

 return (K)0;

}

Disconnect from TCP server

Using sd0 function, TCP client will stop receiving messages from TCP server.

/* Close the connection to TCP server */
K disconn(K x){

sd0(conn_s);
close(conn_s);

 return (K)0;

}

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 16 of 18

Error Alerts

To make sure the q session receives an alert when there is an error occurred

during the message transmission, onerror function is created to send an
error string to q session for further use.

/* Send an error message to q session */
void onerror(char *message)
{

 k(0,"oneerror",kpn(message,strlen(message)),(K)0);

 return;

}

For example, when the server is killed and there is no message sent to the
client, then “onerror” function will be triggered.

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 17 of 18

Another error alert is when a parameter is specified incorrectly or there is
something wrong with the connection to TCP server, krr() function will be

triggered.

 AquaQ Analytics Ltd: Forsyth House, Cromac Square, Belfast BT28LA (0)2890 511232

© AquaQ Analytics Limited 2013 Page 18 of 18

6 Possible Extensions

The example could be easily extended to support the sending of message to

the server. Eg, the initial message could contain logon information encoded
as a string. This could be achieved using the same methodology in
conjunction with the “send” function.

http://www.paulgriffiths.net/program/c/echoclnt.php is a good reference

where a connected client can send message to a server.

7 References

For more information about interfacing and extending with C, please refer to

the following links:

http://code.kx.com/wiki/Cookbook/InterfacingWithC

http://code.kx.com/wiki/Cookbook/ExtendingWithC

http://www.paulgriffiths.net/program/c/echoclnt.php
http://code.kx.com/wiki/Cookbook/InterfacingWithC
http://code.kx.com/wiki/Cookbook/ExtendingWithC

