

Combining (Deep) Reinforcement Learning

with Goal-Based Investment

Eric Sun, Ning Cai, Ziming Mao

New York University Tandon School of Engineering

Department of Finance and Risk Engineering

Advisor: Dr. Cristian Homescu

Bank of America

Abstract

Recent advancements in the efficient implementation of Deep

Learning (DL) models provided a new methodology in solving

problems in finance. In particular, using Deep Reinforcement

Learning (DRL) in portfolio management proved to be a reliable and

efficient approach. Goal-Based Investment (GBI) differs from the

traditional portfolio management tasks due to the unique investment

objective. In this paper, we formulate a GBI problem into a DRL

optimization problem and create a custom reward function to be

implemented in the Deep Deterministic Policy Gradient (DDPG)

model. Finally, we discuss the performance of the model against

different benchmarks in Monte Carlo simulation and conclude the

GBI model have the highest probability of achieving the investment

goal under any market situations.

Keywords: Goal-Based Investment, Deep Reinforcement Learning,

Portfolio optimization

1 Introduction

Goal-Based Investing (GBI) is an investment approach where performance is measured by the

success of investments in meeting the investor's financial goals (e.g., retirement, education, or

vacation home). The objective is to invest systematically in a consistent manner with the investor’s

risk profile and time horizon of the goals.

Portfolio optimization for GBI can be viewed as an optimal control problem performed within a

data-driven world. GBI can be solved via reinforcement learning (RL), a paradigm of learning by

trial-and-error, solely from rewards or punishments. The software agent attempts to learn

appropriate actions that maximize reward within the constraints. It was shown that RL is good at

decision-making, especially at sequential decision problem, and can solve financial applications

of intertemporal choice.

Within a deep reinforcement learning (DRL) framework, the RL agents construct and learn their

knowledge through deep learning of neural networks. As pointed out by Arulkumaran (2017),

implementing deep learning architectures with reinforcement learning algorithms is capable of

scaling to previously unsolvable problems. That is because DRL can learn from raw sensors

directly as input. Therefore, using DRL in investment management could be an efficient solution

to the traditional portfolio management problem.

This research aims to apply RL and DRL to GBI by setting up an investment framework that

transforms requests of clients into practical portfolio constructions and automated investment

executions. Common problems in RL such as the selection of agents and dimension reduction of

action space will also be addressed within the scope of GBI.

2 Literature review

Since the inception of modern portfolio theory devised in the 1950s by Harry Markowitz, portfolio

managers have been constructing different portfolios corresponding to different financial needs.

As GBI gains popularity after the 2008 subprime mortgage crisis, many pieces of research are done

to examine both the theoretical and practical aspects of GBI. Brunel (2011) discusses how to

conduct GBI in practice. The author highlights the change in clients’ perception of risk and how

to set up an investment framework while keeping the goal and business challenges in mind. In

particular, he argues that any investment process should start with a thorough understanding of the

investor problem. Similarly, Kim et al. (2019) formulate the GBI problem into a multi-stage

stochastic programming problem and demonstrates portfolio rebalancing techniques under the GBI

framework. We aim to recast the GBI ideas in these articles under a reinforcement learning

framework to automate the portfolio optimization process.

RL is also a hot topic in both academia and the industry. As illustrated by Das et al. (2018), a

widely used dynamic programming known in RL literature is solving the “planning problem”,

which works backward from all values of mean-variance pairs to achieve the best outcomes.

However, despite much recent interest in RL, little work has been done to apply these techniques

in GBI. In the finance industry, the most common application of RL is to identify trading signals.

Ponomareva et al. (2019) use the asynchronous advantage actor-critic (A3C) (Actor-Critic) model

to construct an algorithmic trading framework. This research uses a model-based approach by

setting the state space as a Long Short-Term Memory (LSTM) model while limiting the action

space to be discrete and narrow. Backtesting of this model suggests some handsome returns. The

methodology of this research, especially the model-based approach and limiting the action space,

could be helpful for our research. However, as the RL agents in this research only address the

position but not amount, this approach could not be implemented directly into GBI. Similar

research done by Qi (2018) also suggests that by replacing the penultimate layer of Deep Q-

Network with an LSTM layer, a Deep Recurrent Q-Network could be created and implemented in

trading financial products.

Another topic in finance where RL and DRL have been applied is portfolio management. While

this topic ties in closely with our research of DRL in GBI, most current research only deals with

the rudimentary portfolio constructions, which makes the risk management portion of the problem

trivial. The models in most researches are constructed to find the optimal portfolio that attempts

to maximize return, while the priority of GBI might be different. Qi (2018) applies Deep

Deterministic Policy Gradient (DDPG) with Actor-Critic which concurrently learns a Q-function

and a policy. This model diversifies risk by using dropouts and limiting the weight of individual

stock. Dixon et al. (2020) suggest applying a G-Learner to the setting of Inverse Reinforcement

Learning (IRL) where rewards collected by the agent are not observed but inferred. These

researches provide a solid ground for our paper.

Two common problems faced by researchers in RL are setting the action space and reward function.

When applying RL to GBI, these problems magnifies due to the increase in model complexity. To

avoid the explosion of action space, efforts must be made to reduce its dimension. Dulac-Arnold

et al. (2016) suggested methods such as approximate nearest-neighbor, bucketing of actions, and

action generalization to deal with large action spaces. The also highlights methods of transforming

between discrete and continuous action spaces, which might be useful for our research. On the

other hand, the reward function of an RL model in GBI is more complicated than normal portfolio

management because of the inclusion of multiple constraints and sub-goals. Shelton (2001)

examines methods of balancing multiple sources of reward in RL. Although this is a theory-heavy

paper, it is possible to apply some of the ideas presented in our research.

In section 3 of this paper, we will break down the components of GBI and identify assets classes,

benchmarks, and risk management measures. In sections 4 and 5 of this paper, we will construct a

reinforcement learning framework and test the feasibility of the above-mentioned models.

3 Goal-Based Investment

3.1 Comparing traditional portfolio management with GBI

Developed by Harry Markowitz in 1950s, the mean-variance framework is one of the most famous

and commonly used wealth management tools. Portfolio targets are expressed in terms of expected

returns and covariances of risky assets in the portfolio and it constructs a portfolio for risk-averse

investors to maximize return given level of market risk. While logic and normative, this approach

takes no explicit account of whether the portfolio reaches the goal. It is appropriate for investors

who seek to achieve all their goals by investing in a single mean-variance efficient portfolio.

Goal-based Investing offers a more valuable perspective to solve wealth management problems.

As a more intuitive method, investment principles are redefined from the viewpoint of the investor

rather than the practitioner. We define portfolio efficiency in terms of clients’ goals, such as

solving children’s education or building a retirement plan, rather than focusing on generating the

highest possible portfolio return or beating the market. In GBI, we seek to maximize the probability

of reaching the goal, portfolio value W will achieve a desired level C at maturity T. This can be

seen as a binary option on final wealth of W on strike price C, P(𝑊 > 𝐶) = E[𝟏(𝑊 > 𝐶)]. Risk

measurement is also based on clients’ goals, which is the probability of failing to attain the goal at

maturity in this formula. Based on our custom measures of portfolio efficiency and risk, we then

create investment solutions by matching each goal with an appropriate strategy rather than creating

a single overall portfolio. The investment solution is reevaluated over time, maintaining

consistency with new circumstances and changing goals.

While this approach is certainly more complex than traditional methods of wealth management, it

offers valuable benefits. Investors should have more confidence in strategies that are explicitly

aligned with their own objectives. They should also have a clearer understanding of their risk

exposure, which is expressed in terms that relate more directly to the achievement of goals. Even

though GBI, probably most tangibly, increases the likelihood of achieving goals, greater

confidence and clarity will not prevent disappointment when markets fall; however, the investor

should be better prepared for bear markets and more likely to maintain perspective and discipline.

3.2 Selection of assets

As a start, we have 32 indices available to us. The full list is shown in appendix. The data source

is Bloomberg. We used data from January 2000 to December 2019 as the training set. To select

the assets from the pool of 32, we rank all assets by best return, best Sharpe ratio, and minimum

volatility over the entire period. For each of the three indicators, the top two performers are selected

for our portfolio. This allows our GBI portfolio to have some low-risk assets and some high-return

assets. Along with cash, there are a total of seven asset categories in our portfolio. The final

selection is shown in Table 1.

Table 1. Assets selected

Cash

LBUSTRUU Bloomberg Barclay US Aggregate Bond Index

LMBITR Bloomberg Barclays Municipal Bond Index Total Return Index Value

Unhedged USD

NDUEEGF SPDR MSCI Emerging Market UCITS ETF

RU10GRTR iShares Russell 1000 Growth ETF

S5IFT S&P 500 Information Technology Index

NDDUPXJ MSCI Pacific ex Japan UCITS ETF

3.3 Benchmark and risk management measures

We choose two common portfolios as comparisons to our GBI portfolio during the evaluation

phase. The benchmark is an equally weighted portfolio based on asset value, which means we

invest an equal amount of cash in all assets. This type of portfolio construction is more diversified

than others, and, therefore, carries less risk.

The reference portfolio is a Profit and Loss (PnL) based portfolio, where the aim is to generate as

much profit as possible. We will generate the PnL portfolio using the same DRL framework as the

GBI portfolio, except removing a term in the GBI reward function that encourages the RL agent

to beat the goal. This will be explained in detail in section 4.

For risk management purposes, we use two indicators, maximum drawdown (MDD) and Sharpe

ratio. MDD is the maximum observed loss from the peak of a portfolio before a new peak is

attained. MDD is an indicator of downside risk over a specified period. The standard formula is

shown below, obtained from Burghardt et al. (2005).

𝐷(𝑇) = max[max
𝑡∈(0,𝑇)

𝑋(𝑡) − 𝑋(𝑇), 0]

𝑀𝐷𝐷(𝑇) = max
𝜏∈(0,𝑇)

𝐷(𝜏) = max
𝜏∈(0,𝑇)

[max
𝑡∈(0,𝜏)

𝑋(𝑡) − 𝑋(𝜏)]

Sharpe ratio is a common performance measure in investment management, introduced by William

Sharpe (1994). It represents the additional amount of return that an investor receives per unit of

increase in risk. The formula is obtained from the original paper by Sharpe (1994).

𝑆𝑎 =
𝐸[𝑅𝑎 −𝑅𝑟𝑓]

𝜎𝑎
=

𝐸[𝑅𝑎 −𝑅𝑟𝑓]

√𝑣𝑎𝑟[𝑅𝑎 −𝑅𝑟𝑓]

Both the MDD and the Sharpe ratio will be added in the reward function as risk management terms.

MDD will serve as a penalizing term; Sharpe ratio will serve as a reward term. More details will

be explained in section 4.

3.4 Monte Carlo simulation

The success of the GBI portfolio is judged by the probability of completing the investment goal.

For this project, the goal will be reaching a single investment target, which is defined as the

terminal portfolio value at a predetermined time T. As each run of the model only provides one

terminal portfolio value, to find out the probability of reaching the goal, we use Monte Carlo

simulation to generate large amount of market data and test the performance of the model. For

each simulation, we record the binary variable of success/failure to achieve the goal and calculate

the probability of reaching the goal using the percentage of simulated results that surpasses the

investment goal. The flow is shown in Figure 1.

Figure 1. Simulation process

Training data DDPG model Run model

with

simulated

test data

Monte Carlo

simulation

Calculate

probability

of success

Repeat 1000 times

4 Reinforcement Learning

4.1 Introduction

Reinforcement learning(RL) is a specialized application of machine and deep learning techniques

that encourages computer agents to take actions driven by a reward function in an environment

that resembles a problem Kaelbling et al.. In the field of finance, the first implementation was

made by Moody et al. (1998). Since then, RL is used in many financial applications such as

identifying trading signals and portfolio optimization.

4.2 Basic structure

In our GBI problem, we define the following components of RL algorithms: State𝑠(𝑡) is the

current value of variables on which action is based. Action 𝑎(𝑠(𝑡)) is the decision making from

state𝑠(𝑡). In the field RL in GBI, policy 𝜋(𝑠) is a path that take actions A from set {(μ1,𝜎1), ...,

(μ𝐾,𝜎𝐾)}, where μi and 𝜎i stand for the return and volatility of underlying assets. The optimal

policy π∗ (s) is the one that maximizes the total expected reward, which in this case is the

probability of the final value 𝑊𝑖(T) exceeding initial goal H. And transition probability 𝑝[𝑠(𝑡 +

ℎ)|{𝑠(𝑡), 𝑎(𝑡)}] is defined as the likelihood of moving to a probabilistic state conditional on the

current state 𝑠(𝑡) and action 𝑎(𝑡). The value function V(s(t)) is defined over the same grid. For

our problem, V(𝑠(𝑇)) is binary—that is, if 𝑊(T) ≥ H, then V(𝑠(𝑇)) = 1, else it is equal to 0. Then,

we can use backward iteration to calculate the value function at time 𝑇 − ℎ , since we have

populated the value function at time 𝑇.

Solving Markov decision process (MDP) problem is one way to identify this optimal policy. A

MDP problem can be solved by a Model-based algorithm, where assumes that the state transition

probabilities are known. For a given policy π, the transition probabilities are based on State Value

Function 𝑉𝜋(𝑠), and State-Action Value Function 𝑄𝜋(𝑠, 𝑎), 𝑎 ∈ 𝐴. The expectation of total reward

starting from state s under policy π is Value Function 𝑉𝜋(𝑠), and the expectation of total reward

starting form state s and taking action a is State-Action Value Function 𝑄𝜋(𝑠, 𝑎).

The MDP can be solved by collecting sample-paths of the state transitions. If the state transition

probabilities are not known in advance, and the corresponding rewards can be estimating the

optimal State–Action Value Function 𝑄𝜋(𝑠, 𝑎) using statistical averaging. Note that the state value

function V(𝑠(𝑇)) is no longer useful in the model-free case, since even if it were known, the

calculation of the optimal policy still requires knowledge of the state dynamics. On the other hand,

once 𝑄𝜋(𝑠, 𝑎) is known, the optimal policy can be obtained by doing a simple maximization 𝜋(𝑠)

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄𝜋(𝑠, 𝑎).

One model free algorithms is Monte Carlo (MC) Learning: This algorithm aims to estimate Q(𝑠, 𝑎)

by averaging the total future rewards. Thus, it is an unbiased estimate but subject to a large variance

due to the large number of sample paths.

Q(𝑠, 𝑎) ← Q(𝑠, 𝑎) + 𝛼[𝑅 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]

Where the reward 𝑅, state 𝑠, and action 𝑎 are seen at time 𝑡, and the next period state and action

denoted as 𝑠′ and 𝑎′, repectively. The parameter 𝛼 proxies for the ‘learning rate’ and is usually

chosen to be a small value. The ‘discount rate’ is 𝛾 ≤ 1 and it suffices to tradeoff later rewards

against earlier ones in an episode. It also helps to set a horizon on the importance of rewards when

episodes do not terminate in a short horizon.

We seek to obtain estimates of the optimal State-Action Value Function 𝑄𝜋(𝑠, 𝑎) using the

generated sample paths. When in state 𝑠, the action 𝑎 is generated according to what is known as

an ‘epsilon-greedy’ policy 𝜋.

Using the current policy is known as ‘exploitation’ and using the random policy generates

‘exploration’ behavior. Exploration is a key ingredient in RL because it enables better coverage of

the state space. The current action 𝑎 is chosen based on the current policy with probability (1−𝜖)

but with probability 𝜖, a random action is chosen. The equation above can, therefore, also be

written as:

Q(𝑠, 𝑎) ← Q(𝑠, 𝑎)(1 − 𝛼) + 𝛼(𝛾𝑄(𝑠′, 𝑎′))

where we note that this update equation sets the new value of Q(𝑠, 𝑎) to a weighted average of the

current value function and the value function in the next period, and when 𝛼 is small, the learning

is of courses low, but convergence is more stable.

This formula uses the following sample path transitions: Start from state𝑠 and take action𝑎 (using

the 𝜖-greedy policy) to generate reward 𝑅, followed by a probabilistic transition to state 𝑠′ from

where the action 𝑎′ is taken, again under the 𝜖-greedy policy. This is followed by a version of the

policy iteration algorithm, to progressively refine the policy, until it converges to the optimal

policy 𝜋(𝑠).

Q(𝑠, 𝑎) ← Q(𝑠, 𝑎) + 𝛼[𝑅 + 𝑚𝑎𝑥𝑎′[𝛾𝑄(𝑠
′, 𝑎′) − 𝑄(𝑠, 𝑎)]

In this equation, Q learning announces that action 𝑎 is chosen according to the behavior policy

while 𝑎′ is chosen according to the target policy. See that in Q-Learning the policy 𝑎′ is chosen

optimally from highest value function in state 𝑠′. Let �̂�𝑡(𝑥𝑡, 𝑎𝑡) be a random reward collected by

the agent for taking action 𝑎𝑡 at time t when the state of the environment is 𝑥𝑡. Assume that all

future actions 𝑎𝑡 for future time steps are determined according to a policy 𝜋(𝑎𝑡|𝑥𝑡) which

specifies which action 𝑎𝑡 to take when the environment is in state 𝑥𝑡.

For a given policy 𝜋, the expected value of cumulative reward with a discount factor γ, conditioned

on the current state 𝑥𝑡, defines the value function:

�́�𝒕
𝝅(𝑥𝑡) ∶= 𝔼𝑡

𝝅[∑ γ𝑡
′−𝑡�̂�𝑡′(𝑥𝑡, 𝑎𝑡)|

𝑇−1

𝑡′=𝑡

𝑥𝑡]

Here 𝔼𝑡
𝜋 stands for the expectation of future states and actions, conditioned on the current state 𝑥𝑡

and policy 𝜋.

Let π∗ be the optimal policy, i.e. the policy that maximizes the total reward. This policy

corresponds to the optimal value function, denoted �́�𝒕
𝝅(𝑥𝑡) . The latter satisfies the Bellman

Optimality Equation (see e.g. (Sutton and Barto, 2018))

�́�𝒕
𝝅(𝑥𝑡) = 𝒎𝒂𝒙𝒂�́�(𝑥𝑡|𝑎𝑡) = 𝒎𝒂𝒙𝒂(�̂�𝒕(𝑥𝑡|𝑎𝑡) + γ𝔼𝑡

𝝅[�́�𝒕+𝟏
𝝅 (𝑥𝑡+1)]

�́�(𝑥𝑡|𝑎𝑡) = �̂�𝒕(𝑥𝑡|𝑎𝑡) + γ𝔼𝑡
𝝅[�́�𝒕+𝟏

𝝅 (𝑥𝑡+1)

�́�𝒕
𝝅(𝑥𝑡) describes the long-term optimization value of a state, that is, the value of this state when

all possible subsequent actions are considered and the optimal actions are selected to perform;

�́�(𝑥𝑡|𝑎𝑡) describes the long-term optimal value brought by the performance of an action in a state,

that is, after a specific action take place in this state, all possible states in the future are considered,

and in these states, the optimal action is always selected to perform the long-term value.

4.3 Objective function

Our objective for the project is to meet client’s consumption goal. Therefore, the objective function

can be expressed as:

𝑀𝑎𝑥𝑃𝑟𝑜𝑏[𝑊𝑡 ≥𝐶𝑡]

where Wt = cumulative wealth at time t, and Ct = consumption goal at t. There might be multiple

consumption goals at different t, but for this project, we are going to evaluate a basic base that

there is only one consumption goal at the end of the investment period, time T. This transform the

equation into:

𝑀𝑎𝑥𝑃𝑟𝑜𝑏[𝑊𝑇 ≥𝐶𝑇]

To achieve this objective, we alter the reward function to make the RL agent learn in different

ways.

4.4 Reward function for GBI portfolio

There are two common ways to construct a reward function in RL. The first approach is setting a

simple reward function such as maximizing return and include constraints such as risk factors

separately. The second approach is adding constraints directly in the reward function. In this

project, we are going to use the second approach.

Now we consider a simplified model for retirement planning which is a research hot spot and

direction. What we assume is that the whole process can be divided into T steps, which is time

horizon. The investment manager keeps the wealth in N assets, which contains one risk-free bond

and (𝑁 − 1) risky assets. Without loss of generality, we assume 𝑛1 is the bond and 𝒓𝑛1(𝑡) = 𝑟𝑓,

which is the risk-free rate. With 𝑥𝑡 being the vector of investor’s hold positions at time t, 𝑢𝑡 being

the vector of changes in these positions, and 𝑟𝑡 being the return of our assets, our goal is the target

value �̅�𝑡+1 at step t exceeds the next step value 𝑉𝑡+1 = (1 + 𝒓𝑡)(𝒙𝑡 + 𝒖𝑡) of our portfolio. To

achieve the goal, there should be a penalty function for those under-performance ones relative to

this target. Considering the infusions, we introduce 𝐼𝑡 standing for the installment of money to our

capital pool at the beginning of time t. Thus, we can consider the following expected reward for

time step t:

𝑅𝑡(𝒙𝑡, 𝒖𝑡, 𝑐𝑡) = −𝑎min(P𝑡+1−GOAL,0) + 𝛽(P𝑡+1 − B𝑡+1) + 𝛾𝑆𝑅 + 𝛿𝑊 ×
𝑡

𝑇
− 𝜃𝑀𝐷𝐷 − 𝜇𝐼𝑡 (1)

where 𝛼, 𝛽, 𝛾, 𝛿, 𝜃, 𝜇 are constants,

P𝑡+1 =∑𝑤𝑡+1
𝑖

𝑁

𝑖=1

𝑥𝑡+1
𝑖

B𝑡+1 =
1

𝑁
∑𝑥𝑡+1

𝑖

𝑁

𝑖

𝑆𝑅 = 𝑆ℎ𝑎𝑟𝑝𝑒𝑅𝑎𝑡𝑖𝑜 =
𝐸[𝑃] − 𝑅𝑓

𝜎𝑃
=

1
𝑡
∑ ∑ 𝑤𝜏

𝑖𝑁
𝑖=1 𝑥𝜏

𝑖𝑡
𝜏=1 − 𝑅𝑓

√1
𝑡
∑ (∑ 𝑤𝜁

𝑖𝑁
𝑖=1 𝑥𝜁

𝑖 −
1
𝑡
∑ ∑ 𝑤𝜏

𝑖𝑁
𝑖=1 𝑥𝜏

𝑖)𝑡
𝜏=1

2
𝑡
𝜁

𝑊𝑡 =∑𝑤𝑡
𝑖

𝑖

, 𝑖𝑡ℎ𝑎𝑠𝑠𝑒𝑡𝑖𝑠𝑙𝑜𝑤𝑟𝑖𝑠𝑘𝑎𝑠𝑠𝑒𝑡

𝑀𝐷𝐷 =
𝑚𝑎𝑥

𝜏 ∈ (0, 𝑇) [
𝑚𝑎𝑥

𝑡 ∈ (0, 𝜏)𝑃𝑡 − 𝑃𝜏] =
𝑚𝑎𝑥

𝜏 ∈ (0, 𝑇) [
𝑚𝑎𝑥

𝑡 ∈ (0, 𝜏)∑𝑤𝑡
𝑖

𝑁

𝑖=1

𝑥𝑡
𝑖 −∑𝑤𝜏

𝑖

𝑁

𝑖=1

𝑥𝜏
𝑖]

P𝑡: 𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜𝑟𝑒𝑡𝑢𝑟𝑛𝑓𝑟𝑜𝑚𝑠𝑡𝑒𝑝𝑡 − 1𝑡𝑜𝑡

B𝑡: 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑟𝑒𝑡𝑢𝑟𝑛𝑓𝑟𝑜𝑚𝑠𝑡𝑒𝑝𝑡 − 1𝑡𝑜𝑡

𝑊𝑡: 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑙𝑜𝑤 − 𝑟𝑖𝑠𝑘𝑎𝑠𝑠𝑒𝑡𝑠′𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝑤𝑡: 𝑉𝑒𝑐𝑡𝑜𝑟𝑜𝑓𝑒𝑣𝑒𝑟𝑦𝑎𝑠𝑠𝑒𝑡
′𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑎𝑡𝑠𝑡𝑒𝑝𝑡

𝑥𝑡: 𝑉𝑒𝑐𝑡𝑜𝑟𝑜𝑓𝑒𝑣𝑒𝑟𝑦𝑎𝑠𝑠𝑒𝑡
′𝑠𝑟𝑒𝑡𝑢𝑟𝑛𝑓𝑟𝑜𝑚𝑠𝑡𝑒𝑝𝑡 − 1𝑡𝑜𝑡

𝑁: 𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑎𝑠𝑠𝑒𝑡𝑠

𝐼𝑡: 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑎𝑡𝑠𝑡𝑒𝑝𝑡

𝑅𝑓: 𝑅𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒𝑟𝑎𝑡𝑒

The first term, with constant 𝛼, penalizes when the portfolio value is below the goal. We aim to

emphasize the penalization when the portfolio is too much below the goal by setting the term as

exponentia. As shown in Figure 3, the penalization is huge during the first few time steps, and

quickly diminish when portfolio value increases.

Figure 2. 𝑦 = 𝛼𝑥, 𝛼 = 0.9 Figure 3. 𝑦 = −𝛼𝑥, 𝛼 = 0.9

The second term, with constant 𝛽, encourages profit. In particular, it encourages extra profit above

the benchmark, which is the equally weighted portfolio. The third term, with constant 𝛾, is the

Sharpe ratio from time 0 to time t, which encourages profit while keeping a certain level of

systematic risk and idiosyncratic risk. This term serves as a risk control term in the reward function.

The fourth term, with constant 𝛿, encourages the weight of low-risk assets in the portfolio when

the time is near the end of the investment period. In our portfolio, low-risk assets are cash and two

bond indices as mentioned in section 3.2. We add this term to lower the volatility near the

completion date. The fifth term, with constant 𝜃, is the maximum drawdown from time 0 to time

t. Same as Sharpe ratio, this term serves as risk control term to prevent the RL agent making

decisions that are too aggressive. When the market is bad, this term will encourage the RL agent

to switch to low-volatility assets such as bonds. The final term, with constant 𝜇, is the installment

of money, which is also the total amount of changes position in our portfolio. This is a penalization

term because we do not want the RL agent to rely on new cash flow.

Reward function (1) is in a simplified form. To show the full mathematical formula, we expend it

into formula (2) below.

𝑅𝑡(𝒙𝑡, 𝒘𝑡, 𝑡) = −𝑎min(∑ 𝑤𝑡+1
𝑖𝑁

𝑖=1 𝑥𝑡+1
𝑖 −GOAL,0) + 𝛽 (∑ 𝑤𝑡+1

𝑖𝑁
𝑖=1 𝑥𝑡+1

𝑖 −
1

𝑁
∑ 𝑥𝑡+1

𝑖𝑁
𝑖)+

𝛾
1

𝑡
∑ ∑ 𝑤𝜏

𝑖𝑁
𝑖=1 𝑥𝜏

𝑖𝑡
𝜏=1 −𝑅𝑓

√1

𝑡
∑ (∑ 𝑤𝜁

𝑖𝑁
𝑖=1 𝑥𝜁

𝑖−
1

𝑡
∑ ∑ 𝑤𝜏

𝑖𝑁
𝑖=1 𝑥𝜏

𝑖)𝑡
𝜏=1

2
𝑡
𝜁

+ 𝛿𝑊 ×
𝑡

𝑇
−

𝜃
𝑚𝑎𝑥

𝜏 ∈ (0, 𝑇) [
𝑚𝑎𝑥

𝑡 ∈ (0, 𝜏)∑ 𝑤𝑡
𝑖𝑁

𝑖=1 𝑥𝑡
𝑖 − ∑ 𝑤𝜏

𝑖𝑁
𝑖=1 𝑥𝜏

𝑖] − 𝜇𝐼𝑡 (2)

Our model combines the advantages of unconstrained conditions and lower dimensionality in the

optimization problem because of the dollar-measured actions. One former example is provided by

Matthew et al. (2020) who developed a G-learner and GIRL method for goal-based wealth

management problems. Another approach provided by Lin et al. (2019) developed a similar

squared loss function for dynamic optimization. However, due to quadratic function symmetricity

property, our model would penalize whether our portfolio reaches the target or not. Hereby, we

introduce a benchmark 𝐵𝑡 which is initially equally weighted portfolio strategy:

 �̅�𝑡+1 = (1 − 𝜌)𝐵𝑡 + 𝜌𝜂𝟏𝑻𝒙𝑡 (3)

where 0 ≤ 𝜌 ≤ 1 is a linearity weight parameter combined with portfolio-independent and

portfolio-dependent terms. 𝜂 defines the growth rate of our current portfolio. If we control our

parameters 𝜂 and find appropriate benchmark 𝐵𝑡, we can set our target to be well above. Thus, our

penalty becomes asymmetric and suitable for our contribution retirement plan.

For computing optimal stochastic consumption-investment policies for a retirement plan — the

method is sufficiently general for either a cumulation or de-cumulation phase. For other

specifications of rewards, numerical optimization, and function approximations (e.g. neural

networks) would be required.

4.5 Reward function for PnL portfolio

To prove the GBI method is superior in terms of maximizing the probability of attaining clients’

investment goal, apart from comparing the GBI portfolio with the equally weighted portfolio, we

also add a PnL based portfolio as a reference. To be as fair as possible, both the GBI and PnL

portfolio will be generated using the same settings. Our reward function for PnL is very similar to

the GBI reward function. All terms are the same except removing the GOAL related term in the

PnL reward function, which is the first term in the GBI reward function. Details are shown below.

 𝑅𝑡(𝒙𝑡, 𝒖𝑡, 𝑐𝑡) = 𝛽(P𝑡+1 − B𝑡+1) + 𝛾𝑆𝑅 + 𝛿𝑊 ×
𝑡

𝑇
− 𝜃𝑀𝐷𝐷 − 𝜇𝐼𝑡 (4)

5 Deep Reinforcement Learning

5.1 DDPG model

To make the learning process more efficient and to capture more non-linear characteristics, we

implement the RL model discussed in Section in a deep learning framework. The DRL model we

use in this project is DDPG. According to Qi (2018) and Xiong (2018), DDPG is an improved

version of Deterministic Policy Gradient (DPG) algorithm. DDPG concurrently learns a Q-

function and a policy, which improves the learning rate under a continuous circumstances.

Since the focus of this project is applying DRL in GBI, we are not going to modify the original

DDPG model. Hence, we will not build a DDPG framework from scratch, but use an external

package “Stable Baseline” written by Hill at el (2020). The DDPG function in the stable baseline

package resembles a basic DDPG structure, which is sufficient for this project. The algorithm of

DDPG is shown in Figure 4, credit to Lillicrap et al. (2015).

Figure 4. pseudo-code of the DDPG algorithm

5.2 DRL settings

To run the DRL environment, we first initialized some parameters in the reward function and the

environment. The list is shown in Table 2. Some of the parameters in this table were selected based

on trial-and-error, such as the coefficients of the reward function terms; Some parameters were

selected because of common industry standards such as steps in the training phase.

Table 2. settings of parameters

𝛼 0.95 Training steps 10000

𝛽 0.5 Test steps 120

𝛾 0.9 Rebalance interval 1 month

𝛿 1 Rounds of simulation 1000

𝜃 1 Initial investment 1 (unit)

𝜇 0.1 Additional investment 0.1 (unit) per step

5.3 Model construction

The DDPG code framework is shown in Figure 5. The Actor – Critic sections are achieved using

the Stable_Baseline package mentioned in section 5.1, the Environment section has to be

programed separately. The main function will initiate an environment and send the environment

along with the settings and data to the DDPG framework from the Stable_Baseline package.

Figure 5. Flow of DDPG

Environment

Actor

Critic

reward

state

action value

5.4 Test run results and analysis

Using the settings mentioned in section 5.2, we run the DDPG model. Figure 6 shows the

cumulative GBI portfolio value verses the benchmark with goal = 18; Figure 7 shows the

cumulative GBI portfolio value verses the benchmark with goal = 20; Figure 8 Shows the

cumulative PnL portfolio value verses the benchmark. All these results are from a single simulation.

Figure 6. GBI portfolio value, GOAL = 18

Figure 7. GBI portfolio value, GOAL = 20

Figure 8. PnL portfolio value

From Figure 6 and Figure 7, we can see that the GBI portfolio with two different goals both had

stable increase in portfolio value. When the market is not as good near the end of the investment

period, the GBI portfolios also showed stable return. In contrast, the PnL portfolio in Figure 8 had

a higher return at the cost of higher volatility. The MDD was 25% even though we added the MDD

term as a penalization in the reward function.

While all the above simulations reached the investment goal, it is unclear how the model performs

in all market conditions. We also have to retrieve the probability of attaining the goal with more

simulations. Using the Monte Carlo framework presented in section 3.4, we simulated each type

of the portfolio 1000 times. A sample simulation is shown in Figure 9, and the results of all

simulation is shown in Table 3.

Figure 9. Simulated market return over 120 months

Table 3. Simulation results, Goal = 18

Portfolio Probability of beating the goal

GBI 76.8%

PnL 59.2%

Equally weighted 57.1%

PnL w/o risk management terms 52.2%

From Table 3, GBI has the highest probability of beating the goal at the end of the investment

period. To our surprise, the performance of PnL portfolio is not much better than the benchmark,

which is equally weighted. This might be the result of underperformance of the PnL approach

during bad times. To justify of hypothesis, we run the simulation using a model built from a simple

PnL reward function with all risk management terms removed. The result is very poor, indicating

that the PnL approach is not wise under all market situations.

Although the result of GBI simulation seems a little far from ideal, we believe the actual

probability of attaining the goal is higher than the simulated 76.8% because of two reasons. First,

the Monte Carlo simulation included many extremely bad market conditions that is rare in the real

world (see bottom two simulated trends in Figure 9). Even if a bearish market appears, the

condition will unlikely to stay for 10 years, which means in the actual world, our GBI portfolio’s

probability of attaining the goal should be much higher. Second, we simulated 10 years of portfolio

management actions in one run. In the later part of the investment period, the model might be

already outdated. In the real world, if we refit the model more frequently throughout the investment

period using more updated market data, the result should be better than the simulated result shown

above.

6 Conclusion

This project used a DRL framework to solve a GBI problem and proved GBI could perform better

than a PnL portfolio under different market situations. Some future research directions might

include, testing other DRL models, using more asset classes, and change the details of Monte Carlo

simulation to obtain more realistic simulated market data.

Reference

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). “Deep reinforcement learning: A

brief survey”. In: IEEE Signal Processing Magazine 34(6), pp. 26-38.

Browne, S. N. (1997). “Reaching Goals by a Deadline: Digital Options and Continuous-Time Active Portfolio

Management”. In: SSRN Electronic Journal. doi:10.2139/ssrn.703

Brunel, J. L. P. (2011). “Goal-Based Wealth Management in Practice”. In: The Journal of Wealth Management

14(3), pp. 17-26.

Das, S.R., D. Ostrov, A. Radhakrishnan, D. Srivastav (2018). “Goals-Based Wealth Management: A New Approach”.

In: Journal of Investment Management 16(3), pp. 1-27.

Dasa, S.R., Varmaa, S. (2020). “Dynamic goals-based wealth management using reinforcement learning”. In:

Journal Of Investment Management 18(2), pp. 1-20

Dixon, M. F., & Halperin, I. (2020). “G-Learner and GIRL: Goal Based Wealth Management with Reinforcement

Learning”. In: SSRN Electronic Journal. doi:10.2139/ssrn.3543852

Dulac-Arnold, G. (2016). “Deep Reinforcement Learning in Large Discrete Action Spaces”. arXiv:1512.07679

Hu, Y.-J. and Lin, S.-J. (2019). “Deep reinforcement learning for optimizing finance portfolio management”. In:

2019 Amity International Conference on Artificial Intelligence (AICAI). IEEE, pp. 14-20.

Kim, W. C., Kwon, D.-G., Lee, Y., Kim, J. H., and Lin, C. (2019). “Personalized goal-based investing via multi-

stage stochastic goal programming”. In: Quantitative Finance, pp. 1-12.

Nevin, D. (2004). “Goals-Based Investing: Integrating Traditional and Behavioral Finance”. In: The Journal of

Wealth Management 6(4), pp. 8-23.

Ponomarev, E. S., Oseledets, I. V., & Cichocki, A. S. (2019). “Using Reinforcement Learning in the

Algorithmic Trading Problem”. In: Journal of Communications Technology and Electronics, 64(12), pp. 1450–1457.

Qi, Y., Huang, S. (2018). “Portfolio Management Based on DDPG Algorithm of Deep Reinforcement Learning”. In:

Computer and Modernization, doi: 10.3969/j.issn.1006-2475.2018.05.019.

Shelton, C.R., (2001). “Balancing multiple sources of reward in reinforcement learning”. In: Advances in Neural

Information Processing Systems.

Wang, H., Suri, A., Laster, D., and Almadi, H. (2011). “Portfolio Selection in Goals-Based Wealth Management”.

In: The Journal of Wealth Management 14(1), pp. 55-65.

Appendix

Software and packages used:

Python 3.7.0

Stable Baselines 2.10.1

Tensorflow 1.8.0

Datasets:

