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ABSTRACT
In this work, we address time-series forecasting as a computer vi-
sion task. We capture input data as an image and train a model to
produce the subsequent image. This approach results in predicting
distributions as opposed to pointwise values. To assess the robust-
ness and quality of our approach, we examine various datasets
and multiple evaluation metrics. Our experiments show that our
forecasting tool is effective for cyclic data but somewhat less for
irregular data such as stock prices. Importantly, when using image-
based evaluationmetrics, we find our method to outperform various
baselines, including ARIMA, and a numerical variation of our deep
learning approach.

CCS CONCEPTS
•Computingmethodologies→ Image representations; •Math-
ematics of computing → Time series analysis.

KEYWORDS
time-series forecasting, Image representations, ARIMA, visualiza-
tions
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1 INTRODUCTION AND RELATEDWORK
Time series forecasting is a standard statistical task that concerns
predicting future values given historical information. Conventional
forecasting tasks range from uncovering simple periodic patterns
to forecasting intricate nonlinear patterns. The prevailing and most
widely used forecasting techniques include linear regression, expo-
nential smoothing, and ARIMA (e.g., [10, 17, 22]). In recent years,
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modern approaches emerge as tree-based algorithms, ensemble
methods, neural network autoregression, and recurrent neural net-
works (e.g., [10]). These methods are useful for highly nonlinear
and inseparable data but are often considered less stable than the
more traditional approaches (e.g., [17, 18]).

In the last few years, deep learning approaches have been applied
in the domain of time series analysis, for forecasting [4, 11, 27, 28],
as well as unsupervised approaches for pre-training, clustering,
and distance calculation [1, 24, 29, 31]. The common theme across
these works is their use of stacked autoencoders (with different
variations – vanilla, convolutional, recurrent, etc.) on numeric time
series data. Autoencoders have also shown promise in the com-
puter vision domain across tasks as image denoising [3, 14], image
compression [2], and image completion and in-painting [20, 23].

This paper follows these studies and presents a new perspective
on numerical time series forecasting by transforming the problem
completely into the computer-vision domain. We capture input
data as images and build a network that outputs corresponding
subsequent images. To the best of our knowledge, this is the first
study that aims at explicit visual forecasting of time series data as
plots. Previous researches leveraged computer vision for time-series
data but focused on classifying trade patterns [7, 8], numeric fore-
cast [6], learning weights to combine multiple statistical forecasting
methods [19], and video prediction for multivariate economic fore-
casting [32]. We follow up on these approaches but focus on an
explicit regression-like image prediction task.

This work presents a few advantages. Visual time series forecast-
ing is a data-driven non-parametric method, not constrained to a
predetermined set of parameters. Thus, the approach is flexible and
adaptable to many data forms, as shown by application across vari-
ous datasets. This bears a stark contrast with classical time series
forecasting approaches that are often tailored to the particularity of
the data in hand. The main advantage of this method is that its pre-
diction is independent of other techniques. This is important as it
was repeatedly shown that an aggregate of independent techniques
outperforms the best-in-class method (e.g., [10, 12, 15]). Secondly,
visual predictions result in inherent uncertainty estimates as op-
posed to pointwise estimates, as they represent distributions over
pixels as opposed to explicit value prediction. In addition, financial
time series data are often presented and act upon without having
access to the underlying numeric information (e.g., financial trad-
ing using the smartphone applications). Thus, it seems viable to
examine the value in inferring using visualizations alone. Lastly, as
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will be discussed later on, we show that transforming the continu-
ous numeric data to a discrete bounded space using visualization
results in robust and stable predictions. We evaluate predictions
using multiple metrics. When considering object-detection metrics
such as Intersection-over-Union (IoU), visual forecasting outper-
forms the corresponding numeric baseline. However, when utilizing
more traditional time-series evaluation metrics as the symmetric
mean absolute percentage error (SMAPE), we find the visual view
to perform similarly to its numerical baselines.

2 DATASETS
This paper uses four datasets - two synthetic and two real - with
varying degrees of periodicity and complexity to examine the util-
ity of forecasting using images. Each dataset consisted of approxi-
mately 40-50k training samples, 4-5k validation samples, and 15k
testing samples. Figure 1 shows examples of the data, and the sup-
plementary material contains a detailed description of each of the
datasets and how they were curated.

Harmonic: multi-periodic data sampled from harmonic func-
tions. It is derived syntheticallywith a linearly additive two-timescale
harmonic generating function consisting of sine waves on two time-
scales: short oscillations that are composed on a much longer wave
trains.

OU: synthesized using mean-reverting time series based on Orn-
stein–Uhlenbeck (OU) processes [5]. These often resemble charac-
teristics of financial interest rates or volatility: noisy on finer scales
but predictable on the larger scale.

ECG: signals measured from 17 different people adopted from
MIT-BIH Normal Sinus Rhythm Database [13]. The data has promi-
nent spikes about every second, which makes the data predictable.
However, there is noticeable noise between spikes that is much
harder to predict.

Financial: stock data from Yahoo! Finance consisting of daily
Adjusted Close values of stocks that contributed to the S&P-500
index from 2000-2019. Each time series segment consists of 80 days
and is generally considered notoriously hard to predict [26].

3 PROBLEM STATEMENT
Given a time series signal, our goal is to produce a visual forecast
of its future. We approach this problem by first converting the
numeric time series into an image (detailed procedure described
in supplementary material), and then producing a corresponding
forecast image using deep-learning techniques. By doing so, we
obtain an image in which the pixel values in each column sum to 1;
each column can be perceived as a discrete probability distribution
(see Figure 2). Columns represent the independent variable time,
while rows capture the dependent variable: pixel intensity. The
value of the time series 𝑆 at time 𝑡 is now simply the pixel index 𝑟
(row) at that time (column) with the highest intensity.

Let 𝑋 be the set of images of input time series signals, and 𝑌

be the set of corresponding forecast output images. The overlap
constant 𝑐 defines the overlap fraction between the input image
𝑥 ∈ 𝑋 and the forecast 𝑦 ∈ 𝑌 , where 𝑐 = 1 implies 𝑥 = 𝑦,∀𝑥 ∈
𝑋 , and 𝑐 = 0 implies that 𝑥 ∩ 𝑦 = ∅,∀𝑥 ∈ 𝑋 , i.e., 𝑥 and 𝑦 are
distinct. In our experiments, we use 𝑐 = 0.75 which means the first
75% of the forecast image 𝑦 is simply a reconstruction of the later

75% of the input image 𝑥 , and the rest 25% of 𝑦 corresponds to
visual forecasting of the future. We chose 𝑐 = 0.75 such that the
reconstructed overlap region (first 75% in𝑦) serves as a sanity check
on the effectiveness of a forecasting method, and the prediction
region (later 25% in 𝑦) provides forecasting into the near future.
Please refer to the supplementary material for an illustration.

Figure 1: Sampled examples of the four datasets: Harmonic,
OU, ECG, and Financial.

4 METHOD
4.1 Image-to-Image Regression
As mentioned in Section 1, recent work has seen the extensive
use of autoencoders in both the time series and computer vision
domains. Following these, we extend the use of autoencoders to our
image-to-image time series forecasting setting. We use a simplistic
convolutional autoencoder to produce a visual forecast image with
the continuation of an input time series image, by learning an
undercomplete mapping 𝑔 ◦ 𝑓 ,

𝑦 = 𝑔(𝑓 (𝑥)), ∀𝑥 ∈ 𝑋,

where the encoder network 𝑓 (·) learns meaningful patterns and
projects the input image 𝑥 into an embedding vector, and the de-
coder network 𝑔(·) reconstructs the forecast image from the em-
bedding vector. We purposely do not use sequential information
or LSTM cells as we wish to examine the benefits of framing the
regression problem in an image setting. This can later be extended
to more complex architectures.

We call this method VisualAE. We used 2D convolutional lay-
ers with a kernel size of 5 × 5, stride 2, and padding 2. All layers
are followed by ReLU activation and batch normalization. The en-
coder network consists of 3 convolutional layers which transform
a 80 × 80 × 1 input image to 10 × 10 × 512, after which we obtain
an embedding vector of length 512 using a fully connected layer.
This process is then mirrored for the decoder network, resulting
in a forecast image of dimension 80 × 80. We include a diagram
illustrating this architecture in the supplementary material.

4.2 Loss Functions
We care about the likelihood of pixel intensity in a particular lo-
cation (row) in each column of the forecast image. This can be
achieved by leveraging metrics that compare two probability distri-
butions. We do so in a column-wise manner: the loss 𝐿 to compare
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Figure 2: A depiction of comparison of two sample column
probability distributions 𝑦 = [0.01, 0.1, 0.75, 0.13, 0.01] and 𝑦 =

[0.02, 0.63, 0.2, 0.12, 0.03].

target ground-truth (GT) image 𝑦 with prediction image 𝑦 is the
sum of column-wise distances between the two,

𝐿(𝑦,𝑦) =
𝑤∑︁
𝑖=1

𝑑 (𝑦𝑖 , 𝑦𝑖 ),

where 𝑦𝑖 , 𝑦𝑖 are the 𝑖th column in the ground truth and forecast
images, 𝑑 is any distance measure between two distributions (𝑦𝑖
and 𝑦𝑖 in this case), and𝑤 is the width of images. This process is
depicted in Figure 2.

Measures such as the Kullback-Leibler Divergence have been
extensively used as loss functions ([15]), as they provide a way of
computing the distance from an approximate distribution 𝑄 to a
true distribution 𝑃 . In this study, following [16], we choose 𝑑 to
be the Jensen-Shannon Divergence (JSD), which is a symmetric,
more stable version of the Kullback-Leibler Divergence having the
property that 𝐷 𝐽 𝑆 (𝑃 ∥𝑄) = 𝐷 𝐽 𝑆 (𝑄 ∥𝑃). Here, JSD is computed as

𝐷 𝐽 𝑆 (𝑃 ∥𝑄) =
1
2
𝐷𝐾𝐿 (𝑃 ∥𝑀) + 1

2
𝐷𝐾𝐿 (𝑄 ∥𝑀)

where𝑀 = 1
2 (𝑃 +𝑄).

5 EXPERIMENTS
We experimented with four datasets: Harmonic, OU, ECG, and Fi-
nancial, as they cover a wide range of complexity and predictability
in time series data (illustrated in the dataset analysis in supplemen-
tary). In this study we used PyTorch Lightning [9, 25] for implemen-
tation and Nvidia Tesla T4 GPUs in our experiments. As described
in Section 3, there is a 75% overlap between input and output. In
our experiments, each sample contains 80 datapoints; we aim to
forecast the last 20 datapoints (last 25%) of the output image. We
benchmark the proposed method against three baseline methods.

5.1 Methods
We summarize the benchmarked methods as following. Please re-
fer to a thorough description (including training details, and data
preprocessing) of each method in the supplementary material.

• VisualAE: This is the proposed method as discussed in Sec-
tion 4.1. We train on images with size 80 × 80.

• NumAE (Numeric AE): We also train an autoencoder net-
work to produce numeric forecasts of the original numerical
time series signal.

• ARIMA: Autoregressive IntegratedMovingAverage (ARIMA)
models are a class of methods that are designed to capture
autocorrelations in the data.

• RandomWalk: We used the random walk without drift
model as a naive numeric forecasting baseline for compari-
son ( [30]).

5.2 Forecast Accuracy Metrics
We use a variety of measures to assess the accuracy of forecast
predictions from eachmethod. Some of thesemetrics are extensively
used in the time series forecasting domain, whereas the others we
extend from the overarching machine learning field to this task.

The baseline methods ARIMA, NumAE and RandomWalk
produce continuous numeric forecasts, whereas our method Visu-
alAE produces an image. Accordingly, we convert this image back
to a numeric forecast which we can use to assess predictions us-
ing the metrics described in Section 5.2.1. Similarly, to leverage the
image based metrics described in Section 5.2.2, we transform the nu-
meric predictions of the baseline methods into images. We discuss
the interplay between these metrics across Section 5.3, along with
in-depth discussions and insights regarding comparisons between
numeric and image based metrics in the supplementary material.

5.2.1 NumericMeasures. We use the Symmetric Mean Absolute
Percentage Error (SMAPE), and the Mean Absolute Scaled Error
(MASE) to evaluate the numeric forecasts. These two metrics are
widely used in the literature for forecast accuracy evaluation [21].
Please refer to supplementary materials for equations of these met-
rics.

5.2.2 Image based Measures. In addition to utilizing tradition
forecasting error metrics, we can measure the similarity between
the predicted image and the ground-truth image in our setting to
evaluate forecast accuracy. We use Jensen-Shannon Divergence
(JSD), which is the same as the loss described in Section 4.2. In
addition, we use an extended version of Intersection-over-Union
(IoU) to measure image similarity columnwise. We first obtain the
1D bounding box of non-zero pixels for each column, then compute
the IoU between bounding boxes of each corresponding column in
the ground-truth and predicted images. This ranges from 0.0 to 1.0,
with higher values indicating better forecasts.

5.3 Results
All reported metrics mentioned in Section 5.2 are over the unseen
future prediction region. For both VisualAE and NumAE, we av-
eraged these metrics over five independently trained models with
different random weight initializations. We demonstrate that the
proposed method VisualAE outperforms baseline methods Nu-
mAE, RandomWalk, and ARIMA across all four datasets when
evaluated using image-based metrics (such as IoU). However, as we
will discuss in this section, traditional numeric metrics are inconsis-
tent with this finding. We demonstrate the value of using a visual
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Method SMAPE
` ± 𝜎

MASE
` ± 𝜎

IoU
` ± 𝜎

JSD
` ± 𝜎

Harmonic

RandomWalk 1.239 ± 0.440 5.106 ± 3.405 0.179 ± 0.060 0.501 ± 0.043
NumAE 0.480 ± 0.297 1.258 ± 1.081 0.423 ± 0.107 0.334 ± 0.103
ARIMA 0.580 ± 0.398 2.694 ± 3.350 0.447 ± 0.238 0.343 ± 0.186

VisualAE 0.527 ± 0.303 1.518 ± 1.482 0.460 ± 0.088 0.271 ± 0.115

OU

RandomWalk 0.018 ± 0.069 1.007 ± 0.385 0.257 ± 0.021 0.381 ± 0.019
NumAE 0.014 ± 0.056 471.411 ± 8486.706 0.165 ± 0.076 0.543 ± 0.052
ARIMA 0.014 ± 0.056 0.736 ± 0.133 0.141 ± 0.014 0.556 ± 0.011

VisualAE 0.014 ± 0.060 0.748 ± 0.119 0.469 ± 0.017 0.257 ± 0.010

ECG

RandomWalk 1.173 ± 0.463 1.551 ± 1.384 0.164 ± 0.014 0.501 ± 0.021
NumAE 1.097 ± 0.200 0.979 ± 0.280 0.278 ± 0.047 0.463 ± 0.051
ARIMA 1.409 ± 0.305 1.535 ± 1.688 0.160 ± 0.011 0.576 ± 0.009

VisualAE 0.596 ± 0.254 1.658 ± 0.321 0.485 ± 0.022 0.230 ± 0.041

Financial

RandomWalk 0.036 ± 0.028 3.364 ± 2.217 0.186 ± 0.054 0.475 ± 0.050
NumAE 0.036 ± 0.028 3.364 ± 2.205 0.132 ± 0.069 0.598 ± 0.059
ARIMA 0.042 ± 0.035 4.034 ± 14.697 0.119 ± 0.072 0.606 ± 0.063

VisualAE 0.043 ± 0.028 4.007 ± 2.084 0.212 ± 0.080 0.511 ± 0.070
Table 1: Summary of various metrics on out-of-sample data with mean ± standard deviation for the forecast region.Lower
SMAPE/MASE/JSD error (or higher IoU score) implies better prediction accuracy.

approach to time-series forecasting, and how image-based evalu-
ation metrics can help address some of the caveats of traditional
numeric metrics.

We report the mean and standard deviation of various predic-
tion accuracy metrics in Table 1. VisualAE achieves higher IoU
scores than all baselines across the four datasets. The same holds
true for JSD (with the exception of RandomWalk scoring better
in the Financial dataset). The numeric metrics are often inconsis-
tent – within themselves (SMAPE and MASE) – as well as across
the four datasets. According to the numeric metrics, VisualAE
is a close second (if not similar) to NumAE, with the exception
of the ECG dataset, where VisualAE performs the best, and the
OU dataset, where ARIMA and VisualAE perform similarly to
NumAE . Please refer to our supplementary material for a more
detailed discussion on the characteristics of benchmarked methods,
along with qualitative examples.

5.4 Numeric vs. Image based Metrics
In Table 1, numeric metrics are often inconsistent with the image-
based ones, and sometimes do not agree amongst each other (e.g.,
SMAPE & MASE values for OU dataset). They are sensitive and
often fail to recognize good quality forecasts (e.g., RandomWalk
reportedly performing the best for the Financial dataset). Picking
a percentage error such as SMAPE also carries the inability to
compare forecast method quality across series (e.g., low errors in
the Financial dataset do not capture that it is the most challenging
to predict).

The IoU metric is able to capture this information across the
datasets, along with preserving rank-ordering of forecast quality
amongst the four methods. As shown in Figure 3, the IoU metric
is better at discerning which forecast better captures ground-truth
trends. This is evident with higher IoU values when the visual
shape of predictions matches the ground truth well. We believe

using a two-pronged approach of utilizing both numeric and vi-
sual approaches holds immense value for the field of time series
forecasting.

6 SUMMARY AND CONCLUSION
To the best of our knowledge, this study is the first to explicitly
forecast time series using visual representations of numeric data.
We show that image-based measures can capture prediction quality
more consistently than traditional numeric metrics. The proposed
visual forecasting approach, albeit simplistic, performs well across
datasets. Our findings show promising results for both periodic
time series (including abrupt spikes in ECG) and irregular financial
data. We believe that leveraging visual approaches holds immense
promise for the field of time series forecasting in the future, espe-
cially when used in conjunction with traditional methods.

Disclaimer. This paper was prepared for information purposes by
the Artificial Intelligence Research group of J. P. Morgan Chase
& Co. and its affiliates (“J. P. Morgan”), and is not a product of
the Research Department of J. P. Morgan. J. P. Morgan makes no
representation and warranty whatsoever and disclaims all liability,
for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment
research or investment advice, or a recommendation, offer or solici-
tation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evalu-
ating the merits of participating in any transaction, and shall not
constitute a solicitation under any jurisdiction or to any person, if
such solicitation under such jurisdiction or to such person would
be unlawful.

©2021 J. P. Morgan Chase & Co. All rights reserved.
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