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General information

1 Overview
The objective of this course is to understand the theoretical and
practical aspects of asset management

2 Prerequisites
M1 Finance or equivalent

3 ECTS
3

4 Keywords
Finance, Asset Management, Optimization, Statistics

5 Hours
Lectures: 24h, HomeWork: 30h

6 Evaluation
Project + oral examination

7 Course website
http://www.thierry-roncalli.com/RiskBasedAM.html
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Objective of the course

The objective of the course is twofold:

1 having a financial culture on asset management

2 being proficient in quantitative portfolio management
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Class schedule

Course sessions

January 8 (6 hours, AM+PM)

January 15 (6 hours, AM+PM)

January 22 (6 hours, AM+PM)

January 29 (6 hours, AM+PM)

Class times: Fridays 9:00am-12:00pm, 1:00pm–4:00pm, University of Evry
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Agenda

Lecture 1: Portfolio Optimization

Lecture 2: Risk Budgeting

Lecture 3: Smart Beta, Factor Investing and Alternative Risk Premia

Lecture 4: Green and Sustainable Finance, ESG Investing and Climate
Risk

Lecture 5: Machine Learning in Asset Management
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Textbook

Roncalli, T. (2013), Introduction to Risk Parity and Budgeting,
Chapman & Hall/CRC Financial Mathematics Series.
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Additional materials

Slides, tutorial exercises and past exams can be downloaded at the
following address:

http://www.thierry-roncalli.com/RiskBasedAM.html

Solutions of exercises can be found in the companion book, which can
be downloaded at the following address:

http://www.thierry-roncalli.com/RiskParityBook.html
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Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Notations

We consider a universe of n assets

x = (x1, . . . , xn) is the vector of weights in the portfolio

The portfolio is fully invested:

n∑
i=1

xi = 1>n x = 1

R = (R1, . . . ,Rn) is the vector of asset returns where Ri is the return
of asset i

The return of the portfolio is equal to:

R (x) =
n∑

i=1

xiRi = x>R

µ = E [R] and Σ = E
[
(R − µ) (R − µ)>

]
are the vector of expected

returns and the covariance matrix of asset returns
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Black-Litterman model

Computation of the first two moments

The expected return of the portfolio is:

µ (x) = E [R (x)] = E
[
x>R

]
= x>E [R] = x>µ

whereas its variance is equal to:

σ2 (x) = E
[
(R (x)− µ (x)) (R (x)− µ (x))>

]
= E

[(
x>R − x>µ

) (
x>R − x>µ

)>]
= E

[
x> (R − µ) (R − µ)> x

]
= x>E

[
(R − µ) (R − µ)>

]
x

= x>Σx
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

Two equivalent optimization problems

1 Maximizing the expected return of the portfolio under a volatility
constraint (σ-problem):

maxµ (x) u.c. σ (x) ≤ σ?

2 Or minimizing the volatility of the portfolio under a return constraint
(µ-problem):

minσ (x) u.c. µ (x) ≥ µ?
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

Example 1

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00



Thierry Roncalli Asset Management (Lecture 1) 18 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

Figure 1: Optimized Markowitz portfolios (1 000 simulations)
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Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Markowitz trick

Markowitz transforms the two original non-linear optimization problems
into a quadratic optimization problem:

x? (φ) = arg max x>µ− φ

2
x>Σx

u.c. 1>n x = 1

where φ is a risk-aversion parameter:

φ = 0 ⇒ we have µ (x? (0)) = µ+

If φ =∞, the optimization problem becomes:

x? (∞) = arg min
1

2
x>Σx

u.c. 1>n x = 1

⇒ we have σ (x? (∞)) = σ−. This is the minimum variance (or MV)
portfolio
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Portfolio optimization in the presence of a benchmark
Black-Litterman model

The γ-problem

The previous problem can also be written as follows:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c. 1>n x = 1

with γ = φ−1

⇒ This is a standard QP problem

The minimum variance portfolio corresponds to γ = 0

Generally, we use the γ-problem, not the φ-problem
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Portfolio optimization in the presence of a benchmark
Black-Litterman model

Quadratic programming problem

Definition

This is an optimization problem with a quadratic objective function and
linear inequality constraints:

x? = arg min
1

2
x>Qx − x>R

u.c. Sx ≤ T

where x is a n × 1 vector, Q is a n × n matrix and R is a n × 1 vector

⇒ Sx ≤ T allows specifying linear equality constraints Ax = B (Ax ≥ B
and Ax ≤ B) or weight constraints x− ≤ x ≤ x+
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Quadratic programming problem

Mathematical softwares consider the following formulation:

x? = arg min
1

2
x>Qx − x>R

u.c.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+

because:

Sx ≤ T ⇔


−A
A
C
−In
In

 x ≤


−B
B
D
−x−
x+
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Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Efficient frontier

The efficient frontier is the parametric function (σ (x? (φ)) , µ (x? (φ)))
with φ ∈ R+
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Portfolio optimization in the presence of a benchmark
Black-Litterman model

Optimized portfolios

Table 1: Solving the φ-problem

φ +∞ 5.00 2.00 1.00 0.50 0.20
x?1 72.74 68.48 62.09 51.44 30.15 −33.75
x?2 49.46 35.35 14.17 −21.13 −91.72 −303.49
x?3 −20.45 12.61 62.21 144.88 310.22 806.22
x?4 −1.75 −16.44 −38.48 −75.20 −148.65 −368.99

µ (x?) 4.86 5.57 6.62 8.38 11.90 22.46
σ (x?) 12.00 12.57 15.23 22.27 39.39 94.57
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Portfolio optimization in the presence of a benchmark
Black-Litterman model

Solving µ- and σ-problems

This is equivalent to finding the optimal value of γ such that:

µ (x? (γ)) = µ?

or:
σ (x? (γ)) = σ?

We know that:

the functions µ (x? (γ)) and σ (x? (γ)) are increasing with respect to γ

the functions µ (x? (γ)) and σ (x? (γ)) are bounded:

µ− ≤ µ (x? (γ)) ≤ µ+

σ− ≤ σ (x? (γ)) ≤ σ+

⇒ The optimal value of γ can then be easily computed using the bisection
algorithm
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Black-Litterman model

Solving µ- and σ-problems

We want to solve f (γ) = c where:

f (γ) = µ (x? (γ)) and c = µ?

or f (γ) = σ (x? (γ)) and c = σ?

Bisection algorithm

1 We assume that γ? ∈ [γ1, γ2]

2 If γ2 − γ1 ≤ ε, then stop

3 We compute:

γ̄ =
γ1 + γ2

2

and f (γ̄)
4 We update γ1 and γ2 as follows:

1 If f (γ̄) < c, then γ? ∈ [γc , γ2] and γ1 ← γc

2 If f (γ̄) > c, then γ? ∈ [γ1, γc ] and γ2 ← γc

5 Go to Step 2
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Solving µ- and σ-problems

Table 2: Solving the unconstrained µ-problem

µ? 5.00 6.00 7.00 8.00 9.00
x?1 71.92 65.87 59.81 53.76 47.71
x?2 46.73 26.67 6.62 −13.44 −33.50
x?3 −14.04 32.93 79.91 126.88 173.86
x?4 −4.60 −25.47 −46.34 −67.20 −88.07

σ (x?) 12.02 13.44 16.54 20.58 25.10
φ 25.79 3.10 1.65 1.12 0.85

Table 3: Solving the unconstrained σ-problem

σ? 15.00 20.00 25.00 30.00 35.00
x?1 62.52 54.57 47.84 41.53 35.42
x?2 15.58 −10.75 −33.07 −54.00 −74.25
x?3 58.92 120.58 172.85 221.88 269.31
x?4 −37.01 −64.41 −87.62 −109.40 −130.48

µ (x?) 6.55 7.87 8.98 10.02 11.03
φ 2.08 1.17 0.86 0.68 0.57
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Black-Litterman model

Adding some constraints

We have:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
x ∈ Ω

where x ∈ Ω corresponds to the set of restrictions

Two classical constraints:

no short-selling restriction
xi ≥ 0

upper bound
xi ≤ c
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The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Adding some constraints

Figure 2: The efficient frontier with some weight constraints
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Adding some constraints

Table 4: Solving the σ-problem with weight constraints

xi ∈ R xi ≥ 0 0 ≤ xi ≤ 40%
σ? 15.00 20.00 15.00 20.00 15.00 20.00
x?1 62.52 54.57 45.59 24.88 40.00 6.13
x?2 15.58 −10.75 24.74 4.96 34.36 40.00
x?3 58.92 120.58 29.67 70.15 25.64 40.00
x?4 −37.01 −64.41 0.00 0.00 0.00 13.87

µ (x?) 6.55 7.87 6.14 7.15 6.11 6.74
φ 2.08 1.17 1.61 0.91 1.97 0.28
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Analytical solution

The Lagrange function is:

L (x ;λ0) = x>µ− φ

2
x>Σx + λ0

(
1>n x − 1

)
The first-order conditions are:{

∂x L (x ;λ0) = µ− φΣx + λ01n = 0n

∂λ0 L (x ;λ0) = 1>n x − 1 = 0

We obtain:
x = φ−1Σ−1 (µ+ λ01n)

Because 1>n x − 1 = 0, we have:

1>n φ
−1Σ−1µ+ λ0

(
1>n φ

−1Σ−11n

)
= 1

It follows that:

λ0 =
1− 1>n φ

−1Σ−1µ

1>n φ
−1Σ−11n
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Analytical solution

The solution is then:

x? (φ) =
Σ−11n

1>n Σ−11n
+

1

φ
·
(
1>n Σ−11n

)
Σ−1µ−

(
1>n Σ−1µ

)
Σ−11n

1>n Σ−11n

Remark

The global minimum variance portfolio is:

xmv = x? (∞) =
Σ−11n

1>n Σ−11n
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Analytical solution

In the case of no short-selling, the Lagrange function becomes:

L (x ;λ0, λ) = x>µ− φ

2
x>Σx + λ0

(
1>n x − 1

)
+ λ>x

where λ = (λ1, . . . , λn) ≥ 0n is the vector of Lagrange coefficients
associated with the constraints xi ≥ 0

The first-order condition is:

µ− φΣx + λ01+λ = 0n

The Kuhn-Tucker conditions are:

min (λi , xi ) = 0
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The tangency portfolio

Markowitz

There are many optimized portfolios
⇒ there are many optimal portfolios

Tobin

One optimized portfolio dominates all
the others if there is a risk-free asset

Thierry Roncalli Asset Management (Lecture 1) 35 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

The tangency portfolio

We consider a combination of the risk-free asset and a portfolio x :

R (y) = (1− α) r + αR (x)

where:

r is the return of the risk-free asset

y =

(
αx

1− α

)
is a vector of dimension (n + 1)

α ≥ 0 is the proportion of the wealth invested in the risky portfolio

It follows that:

µ (y) = (1− α) r + αµ (x) = r + α (µ (x)− r)

and:
σ2 (y) = α2σ2 (x)

We deduce that:

µ (y) = r +
(µ (x)− r)

σ (x)
σ (y)
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The tangency portfolio

Figure 3: The capital market line (r = 1.5%)
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The tangency portfolio

Let SR (x | r) be the Sharpe ratio of portfolio x :

SR (x | r) =
µ (x)− r

σ (x)

We obtain:

µ (y)− r

σ (y)
=
µ (x)− r

σ (x)
⇔ SR (y | r) = SR (x | r)

The tangency portfolio is the one that maximizes the angle θ or
equivalently tan θ:

tan θ = SR (x | r) =
µ (x)− r

σ (x)

The tangency portfolio is the risky portfolio
corresponding to the maximum Sharpe ratio

Thierry Roncalli Asset Management (Lecture 1) 38 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

The tangency portfolio

Example 2

We consider Example 1 and r = 1.5%

The composition of the tangency portfolio x? is:

x? =


63.63%
19.27%
50.28%
−33.17%


We have:

µ (x?) = 6.37%

σ (x?) = 14.43%

SR (x? | r) = 0.34

θ (x?) = 18.64 degrees
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The tangency portfolio

Let us consider a portfolio x of risky assets and a risk-free asset r . We
denote by x̃ the augmented vector of dimension n + 1 such that:

x̃ =

(
x
xr

)
and Σ̃ =

(
Σ 0n

0>n 0

)
and µ̃ =

(
µ
r

)
If we include the risk-free asset, the Markowitz γ-problem becomes:

x̃? (γ) = arg min
1

2
x̃>Σ̃x̃ − γx̃>µ̃

u.c. 1>n x̃ = 1

Two-fund separation theorem

We can show that (RPB, pages 13-14):

x̃? = α ·
(

x?0
0

)
︸ ︷︷ ︸

risky assets

+ (1− α) ·
(

0n

1

)
︸ ︷︷ ︸

risk-free asset
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The tangency portfolio

Figure 4: The efficient frontier with a risk-free asset
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Market equilibrium and CAPM

x? is the tangency portfolio

On the efficient frontier, we have:

µ (y) = r +
σ (y)

σ (x?)
(µ (x?)− r)

We consider a portfolio z with a proportion w invested in the asset i
and a proportion (1− w) invested in the tangency portfolio x?:

µ (z) = wµi + (1− w)µ (x?)

σ2 (z) = w2σ2
i + (1− w)2

σ2 (x?) + 2w (1− w) ρ (ei , x
?)σiσ (x?)

It follows that:

∂ µ (z)

∂ σ (z)
=

µi − µ (x?)

(wσ2
i + (w − 1)σ2 (x?) + (1− 2w) ρ (ei , x?)σiσ (x?))σ−1 (z)
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Market equilibrium and CAPM

1 When w = 0, we have:

∂ µ (z)

∂ σ (z)
=

µi − µ (x?)

(−σ2 (x?) + ρ (ei , x?)σiσ (x?))σ−1 (x?)

2 When w = 0, the portfolio z is the tangency portfolio x? and the
previous derivative is equal to the Sharpe ratio SR (x? | r)

We deduce that:

(µi − µ (x?))σ (x?)

ρ (ei , x?)σiσ (x?)− σ2 (x?)
=
µ (x?)− r

σ (x?)

which is equivalent to:

πi = µi − r = βi (µ (x?)− r)

with πi the risk premium of the asset i and:

βi =
ρ (ei , x

?)σi

σ (x?)
=

cov (Ri ,R (x?))

var (R (x?))
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Market equilibrium and CAPM

CAPM

The risk premium of the asset i is equal to its beta times the excess return
of the tangency portfolio

⇒ We can extend the previous result to the case of a portfolio x (and not
only to the asset i):

z = wx + (1− w) x?

In this case, we have:

π (x) = µ (x)− r = β (x | x?) (µ (x?)− r)
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Computation of the beta

The least squares method

Ri,t and Rt (x) be the returns of asset i and portfolio x at time t

βi is estimated with the linear regression:

Ri,t = αi + βiRt (x) + εi,t

For a portfolio y , we have:

Rt (y) = α + βRt (x) + εt
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Computation of the beta

The covariance method

Another way to compute the beta of portfolio y is to use the following
relationship:

β (y | x) =
σ (y , x)

σ2 (x)
=

y>Σx

x>Σx

We deduce that the expression of the beta of asset i is also:

βi = β (ei | x) =
e>i Σx

x>Σx
=

(Σx)i

x>Σx

The beta of a portfolio is the weighted average of the beta of the assets
that compose the portfolio:

β (y | x) =
y>Σx

x>Σx
= y>

Σx

x>Σx
=

n∑
i=1

yiβi
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Market equilibrium and CAPM

We have x? = (63.63%, 19.27%, 50.28%,−33.17%) and µ (x?) = 6.37%

Table 5: Computation of the beta and the risk premium (Example 2)

Portfolio y µ (y) µ (y)− r β (y | x?) π (y | x?)
e1 5.00 3.50 0.72 3.50
e2 6.00 4.50 0.92 4.50
e3 8.00 6.50 1.33 6.50
e4 6.00 4.50 0.92 4.50
xew 6.25 4.75 0.98 4.75

Example 2

We consider four assets. Their expected returns are equal to 5%, 6%, 8% and 6% while their volatilities are
equal to 15%, 20%, 25% and 30%. The correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


The risk free rate is equal to r = 1.5%
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From active management to passive management

Active management

Sharpe (1964)
π (x) = β (x | x?)π (x?)

Jensen (1969)
Rt (x) = α + βRt (b) + εt

where Rt (x) is the fund return and Rt (b) is the benchmark return

Passive management (John McQuown, WFIA, 1971)

Active management = Alpha

Passive management = Beta
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Impact of the constraints

If we impose a lower bound xi ≥ 0, the tangency portfolio becomes
x? = (53.64%, 32.42%, 13.93%, 0.00%) and we have µ (x?) = 5.74%

Table 6: Computation of the beta with a constrained tangency portfolio

Portfolio µ (y)− r β (y | x?) π (y | x?)
e1 3.50 0.83 3.50
e2 4.50 1.06 4.50
e3 6.50 1.53 6.50
e4 4.50 1.54 6.53
xew 4.75 1.24 5.26

⇒ µ4 − r = β4 (µ (x?)− r) + π−4 where π−4 ≤ 0 represents a negative
premium due to a lack of arbitrage on the fourth asset
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Tracking error

Portfolio x = (x1, . . . , xn)

Benchmark b = (b1, . . . , bn)

The tracking error between the active portfolio x and its benchmark b
is the difference between the return of the portfolio and the return of
the benchmark:

e = R (x)− R (b) =
n∑

i=1

xiRi −
n∑

i=1

biRi = x>R − b>R = (x − b)> R

The expected excess return is:

µ (x | b) = E [e] = (x − b)> µ

The volatility of the tracking error is:

σ (x | b) = σ (e) =

√
(x − b)> Σ (x − b)
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Markowitz optimization problem

The expected return of the portfolio is replaced by the expected excess
return and the volatility of the portfolio is replaced by the volatility of the
tracking error

σ-problem

The objective of the investor is to maximize the expected tracking error
with a constraint on the tracking error volatility:

x? = arg maxµ (x | b)

u.c.

{
1>n x = 1
σ (x | b) ≤ σ?
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Equivalent QP problem

We transform the σ-problem into a γ-problem:

x? (γ) = arg min f (x | b)

with:

f (x | b) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ

=
1

2
x>Σx − x> (γµ+ Σb) +

(
1

2
b>Σb + γb>µ

)
=

1

2
x>Σx − x> (γµ+ Σb) + c

where c is a constant which does not depend on Portfolio x

QP problem with Q = Σ and R = γµ+ Σb

Remark

The efficient frontier is the parametric curve (σ (x? (γ) | b) , µ (x? (γ) | b))
with γ ∈ R+
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Efficient frontier with a benchmark

Example 3

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


The benchmark of the portfolio manager is equal to
b = (60%, 40%, 20%,−20%)

1st case: No constraint

2nd case: x−i ≤ xi with x−i = −10%

3rd case: x−i ≤ xi ≤ x+
i with x−1 = x−2 = x−3 = 0%, x−4 = −20% and x+

i = 50%
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Efficient frontier with a benchmark

Figure 5: The efficient frontier with a benchmark (Example 3)
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Information ratio

Definition

The information ratio is defined as follows:

IR (x | b) =
µ (x | b)

σ (x | b)
=

(x − b)> µ√
(x − b)>Σ (x − b)
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Information ratio

If we consider a combination of the benchmark b and the active portfolio
x , the composition of the portfolio is:

y = (1− α) b + αx

with α ≥ 0 the proportion of wealth invested in the portfolio x . It follows
that:

µ (y | b) = (y − b)> µ = αµ (x | b)

and:
σ2 (y | b) = (y − b)>Σ (y − b) = α2σ2 (x | b)

We deduce that:
µ (y | b) = IR (x | b) · σ (y | b)

The efficient frontier is a straight line
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Tangency portfolio

If we add some constraints, the portfolio optimization problem becomes:

x? (γ) = arg min
1

2
x>Σx − x> (γµ+ Σb)

u.c.

{
1>n x = 1
x ∈ Ω

The efficient frontier is no longer a straight line

Tangency portfolio

One optimized portfolio dominates all the other portfolios. It is the
portfolio which belongs to the efficient frontier and the straight line which
is tangent to the efficient frontier. It is also the portfolio which maximizes
the information ratio
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Constrained efficient frontier with a benchmark

Figure 6: The tangency portfolio with respect to a benchmark (Example 3, 3rd

case)
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Tangency portfolio

If x−i ≤ xi ≤ x+
i with x−1 = x−2 = x−3 = 0%, x−4 = −20% and x+

i = 50%,
the tangency portfolio is equal to:

x? =


49.51%
29.99%
40.50%
−20.00%


If r = 1.5%, we recall that the MSR (maximum Sharpe ratio) portfolio is
equal to:

x? =


63.63%
19.27%
50.28%
−33.17%
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When the benchmark is the risk-free rate

The Markowitz-Tobin-Sharpe approach is obtained when the benchmark is
the risk-free asset r . We have:

x̃ =

(
x
0

)
and b̃ =

(
0n

1

)
It follows that:

Σ̃ =

(
Σ 0n

0>n 0

)
and µ̃ =

(
µ
r

)
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When the benchmark is the risk-free rate

The objective function is then defined as follows:

f
(
x̃ | b̃

)
=

1

2

(
x̃ − b̃

)>
Σ
(
x̃ − b̃

)
− γ

(
x̃ − b̃

)>
µ

=
1

2
x̃>Σ̃x̃ − x̃>

(
γµ̃+ Σ̃b̃

)
+

(
1

2
b̃>Σ̃b̃ + γb̃>µ̃

)
=

1

2
x>Σx − γ

(
x>µ− r

)
=

1

2
x>Σx − γx> (µ− r1n)
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When the benchmark is the risk-free rate

The solution of the QP problem x̃? (γ) = arg min f
(
x̃ | b̃

)
is related to

the solution x? (γ) of the Markowitz γ-problem in the following way:

x̃? (γ) =

(
x? (γ)

0

)
We have σ

(
x̃? (γ) | b̃

)
= σ (x? (φ))

Remark

⇒The MSR portfolio is obtained by replacing the vector µ of expected
returns by the vector µ− r1n of expected excess returns. We have:

SR (x? (γ) | r) = IR
(
x̃? (γ) | b̃

)
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Black-Litterman model

Tactical asset allocation (TAA) model

How to incorporate portfolio manager’s views in a strategic asset
allocation (SAA)?

Two-step approach:

1 Initial allocation ⇒ implied risk premia (Sharpe)

2 Portfolio optimization ⇒ coherent with the bets of the portfolio
manager (Markowitz)
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Implied risk premium

x? = arg min
1

2
x>Σx − γx> (µ− r1n)

u.c.

{
1>n x = 1
x ∈ Ω

If the constraints are satisfied, the first-order condition is:

Σx − γ (µ− r1n) = 0n

The solution is:
x? = γΣ−1 (µ− r1n)

In the Markowitz model, the unknown variable is the vector x
If the initial allocation x0 is given, it must be optimal for the investor,
implying that:

µ̃ = r1n +
1

γ
Σx0

µ̃ is the vector of expected returns which is coherent with x0
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Implied risk premium

We deduce that:

π̃ = µ̃− r

=
1

γ
Σx0

The variable π̃ is:

the risk premium priced by the portfolio manager

the ‘implied risk premium’ of the portfolio manager

the ‘market risk premium’ when x0 is the market portfolio
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Implied risk aversion

The computation of µ̃ needs to the value of the parameter γ or the risk
aversion φ = γ−1

Since we have Σx0 − γ (µ̃− r1n) = 0n, we deduce that:

(∗) ⇔ γ (µ̃− r1n) = Σx0

⇔ γ
(
x>0 µ̃− rx>0 1n

)
= x>0 Σx0

⇔ γ
(
x>0 µ̃− r

)
= x>0 Σx0

⇔ γ =
x>0 Σx0

x>0 µ̃− r

It follows that

φ =
x>0 µ̃− r

x>0 Σx0
=

SR (x0 | r)√
x>0 Σx0

=
SR (x0 | r)

σ (x0)

where SR (x0 | r) is the portfolio’s expected Sharpe ratio
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Implied risk aversion

We have:

µ̃ = r + SR (x0 | r)
Σx0√
x>0 Σx0

and:

π̃ = SR (x0 | r)
Σx0√
x>0 Σx0
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Implied risk premium

Example 4

We consider Example 1 and we suppose that the initial allocation x0 is
(40%, 30%, 20%, 10%)

The volatility of the portfolio is equal to:

σ (x0) = 15.35%

The objective of the portfolio manager is to target a Sharpe ratio
equal to 0.25

We obtain φ = 1.63

If r = 3%, the implied expected returns are:

µ̃ =


5.47%
6.68%
8.70%
9.06%
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Specification of the bets

Black and Litterman assume that µ is a Gaussian vector with expected
returns µ̃ and covariance matrix Γ:

µ ∼ N (µ̃, Γ)

The portfolio manager’s views are given by this relationship:

Pµ = Q + ε

where P is a (k × n) matrix, Q is a (k × 1) vector and ε ∼ N (0,Ω) is a
Gaussian vector of dimension k

If the portfolio manager has two views, the matrix P has two rows ⇒
k is then the number of views

Ω is the covariance matrix of Pµ− Q, therefore it measures the
uncertainty of the views
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Absolute views

We consider the three-asset case:

µ =

 µ1

µ2

µ3


The portfolio manager has an absolute view on the expected return of
the first asset:

µ1 = q1 + ε1

We have:

P =
(

1 0 0
)

, Q = q1, ε = ε1 and Ω = ω2
1

If ω1 = 0, the portfolio manager has a very high level of confidence. If
ω1 6= 0, his view is uncertain
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Absolute views

The portfolio manager has an absolute view on the expected return of
the second asset:

µ2 = q2 + ε2

We have:

P =
(

0 1 0
)

, Q = q2, ε = ε2 and Ω = ω2
2

The portfolio manager has two absolute views:

µ1 = q1 + ε1

µ2 = q2 + ε2

We have:

P =

(
1 0 0
0 1 0

)
, Q =

(
q1

q2

)
, ε =

(
ε1

ε2

)
and Ω =

(
ω2

1 0
0 ω2

2

)
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Relative views

The portfolio manager thinks that the outperformance of the first
asset with respect to the second asset is q:

µ1 − µ2 = q1|2 + ε1|2

We have:

P =
(

1 −1 0
)

, Q = q1|2, ε = ε1|2 and Ω = ω2
1|2

Thierry Roncalli Asset Management (Lecture 1) 72 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Portfolio optimization

The Markowitz optimization problem becomes:

x? (γ) = arg min
1

2
x>Σx − γx> (µ̄− r1n)

u.c. 1>n x = 1

where µ̄ is the vector of expected returns conditional to the views:

µ̄ = E [µ | views]

= E [µ | Pµ = Q + ε]

= E [µ | Pµ− ε = Q]

To compute µ̄, we consider the random vector:(
µ

ν = Pµ− ε

)
∼ N

((
µ̃
Pµ̃

)
,

(
Γ ΓP>

PΓ PΓP> + Ω

))
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Conditional distribution in the case of the normal
distribution

Let us consider a Gaussian random vector defined as follows:(
X
Y

)
∼ N

((
µx

µy

)
,

(
Σx,x Σx,y

Σy ,x Σy ,y

))
We have:

Y | X = x ∼ N
(
µy |x ,Σy ,y |x

)
where:

µy |x = E [Y | X = x ] = µy + Σy ,x Σ−1
x,x (x − µx )

and:
Σy ,y |x = cov (Y | X = x) = Σy ,y − Σy ,x Σ−1

x,x Σx,y
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Computation of the conditional expectation

We apply the conditional expectation formula:

µ̄ = E [µ | ν = Q]

= E [µ] + cov (µ, v) var (v)−1 (Q − E [v ])

= µ̃+ ΓP>
(
PΓP> + Ω

)−1
(Q − Pµ̃)

The conditional expectation µ̄ has two components:

1 The first component corresponds to the vector of implied expected
returns µ̃

2 The second component is a correction term which takes into account
the disequilibrium (Q − Pµ̃) between the manager views and the
market views
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Computation of the conditional covariance matrix

The condition covariance matrix is equal to:

Σ̄ = var (µ | ν = Q)

= Γ− ΓP>
(
PΓP> + Ω

)−1
PΓ

Another expression is:

Σ̄ =
(
In + ΓP>Ω−1P

)−1
Γ

=
(
Γ−1 + P>Ω−1P

)−1

The conditional covariance matrix is a weighted average of the covariance
matrix Γ and the covariance matrix Ω of the manager views.
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Choice of covariance matrices

Choice of Σ

From a theoretical point of view, we
have:

Σ = Σ̄ =
(
Γ−1 + P>Ω−1P

)−1

In practice, we use:

Σ = Σ̂

Choice of Γ

We assume that:

Γ = τΣ

We can also target a tracking error
volatility and deduce τ
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Numerical implementation of the model

The five-step approach to implement the Black-Litterman model is:

1 We estimate the empirical covariance matrix Σ̂ and set Σ = Σ̂

2 Given the current portfolio, we compute the implied risk aversion
φ = γ−1 and we deduce the vector µ̃ of implied expected returns

3 We specify the views by defining the P, Q and Ω matrices

4 Given a matrix Γ, we compute the conditional expectation µ̄

5 We finally perform the portfolio optimization with Σ̂, µ̄ and γ

Thierry Roncalli Asset Management (Lecture 1) 78 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

The Markowitz framework
Capital asset pricing model (CAPM)
Portfolio optimization in the presence of a benchmark
Black-Litterman model

Illustration

We use Example 4 and impose that the optimized weights are positive

The portfolio manager has an absolute view on the first asset and a
relative view on the second and third assets:

P =

(
1 0 0 0
0 1 −1 0

)
, Q =

(
q1

q2−3

)
and Ω =

(
$2

1 0
0 $2

2−3

)
q1 = 4%, q2−3 = −1%, $1 = 10% and $2−3 = 5%
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Illustration

Case #1: τ = 1

Case #2: τ = 1 and q1 = 7%

Case #3: τ = 1 and $1 = $2−3 = 20%

Case #4: τ = 10%

Case #5: τ = 1%
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Illustration

Table 7: Black-Litterman portfolios

#0 #1 #2 #3 #4 #5
x?1 40.00 33.41 51.16 36.41 38.25 39.77
x?2 30.00 51.56 39.91 42.97 42.72 32.60
x?3 20.00 5.46 0.00 10.85 9.14 17.65
x?4 10.00 9.58 8.93 9.77 9.89 9.98

σ (x? | x0) 0.00 3.65 3.67 2.19 2.18 0.45
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Black-Litterman model

Illustration

To calibrate the parameter τ , we could target a tracking error volatility σ?:

If σ? = 2%, the optimized portfolio is between portfolios #4
(σ (x? | x0) = 2.18%) and #5 (σ (x? | x0) = 0.45%)

The optimal value of τ is between 10% and 1%

Using a bisection algorithm, we obtain τ = 5.2%

The optimal portfolio is:

x? =


36.80%
41.83%
11.58%
9.79%
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Empirical estimator

We have:

Σ̂ =
1

T

T∑
t=1

(
Rt − R̄

) (
Rt − R̄

)>
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Asynchronous markets'

&

$

%
-u

?

6

?

6

-u
?

6

?

6

-u
?

6

?

6

tm−1 tm

8:00

16:30

8:00

16:30

Eurostoxx

14:30

21:00

14:30

21:00

S&P 500

1:00

7:00

1:00

7:00

Topix

Figure 7: Trading hours of asynchronous markets (UTC time)
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Asynchronous markets

Figure 8: Density of the estimator ρ̂ with asynchronous returns (ρ = 70%)
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Asynchronous markets

Figure 9: Hayashi-Yoshida estimator
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Hayashi-Yoshida estimator

We have:

Σ̃i,j =
1

T

T∑
t=1

(
Ri,t − R̄i

) (
Rj,t − R̄j

)
+

1

T

T∑
t=1

(
Ri,t − R̄i

) (
Rj,t−1 − R̄j

)
where j is the equity index which has a closing time after the equity index
i . In our case, j is necessarily the S&P 500 index whereas i can be the
Topix index or the Eurostoxx index. This estimator has two components:

1 The first component is the classical covariance estimator Σ̂i,j

2 The second component is a correction to take into account the lag
between the two closing times
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Other statistical methods

EWMA methods

GARCH models

Factor models

Uniform correlation
ρi,j = ρ

Sector approach (inter-correlation and intra-correlation)
Linear factor models:

Ri,t = A>i Ft + εi,t
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Economic/econometric approach

Market timing (MT)

Tactical asset allocation (TAA)

Strategic asset allocation (SAA)

�

�

�

�
-‖ ‖

MT TAA SAA

1 Day – 1 Month 3 Months – 3 Years 7 Years – 50 Years

Figure 10: Time horizon of MT, TAA and SAA
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Statistical/scoring approach

Stock picking models: fundamental scoring, value, quality, sector
analysis, etc.

Bond picking models: fundamental scoring, structural model, credit
arbitrage model, etc.

Statistical models: mean-reverting, trend-following, cointegration, etc.

Machine learning: return forecasting, scoring model, etc.
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Stability issues

Example 5

We consider a universe of 3 assets. The parameters are: µ1 = µ2 = 8%,
µ3 = 5%, σ1 = 20%, σ2 = 21%, σ3 = 10% and ρi,j = 80%. The objective
is to maximize the expected return for a 15% volatility target. The optimal
portfolio is (38.3%, 20.2%, 41.5%).

Table 8: Sensitivity of the MVO portfolio to input parameters

ρ 70% 90% 90%
σ2 18% 18%
µ1 9%
x1 38.3 38.3 44.6 13.7 −8.0 60.6
x2 20.2 25.9 8.9 56.1 74.1 −5.4
x3 41.5 35.8 46.5 30.2 34.0 44.8
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Solutions

In order to stabilize the optimal portfolio, we have to introduce some
regularization techniques:

Resampling techniques

Factor analysis

Shrinkage methods

Random matrix theory

Norm penalization

Etc.
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Resampling techniques

Jacknife

Cross validation

Hold-out
K-fold

Bootstrap

Resubstitution
Out of the bag
.632
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Resampling techniques

Example 6

We consider a universe of four assets. The expected returns are µ̂1 = 5%,
µ̂2 = 9%, µ̂3 = 7% and µ̂4 = 6% whereas the volatilities are equal to
σ̂1 = 4%, σ̂2 = 15%, σ̂3 = 5% and σ̂4 = 10%. The correlation matrix is
the following:

Ĉ =


1.00
0.10 1.00
0.40 0.20 1.00
−0.10 −0.10 −0.20 1.00
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Resampling techniques

Figure 11: Uncertainty of the efficient frontier
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Resampling techniques

Figure 12: Resampled efficient frontier
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Resampling techniques

Figure 13: S&P 100 resampled efficient frontier (Bootstrap approach)

Source: Bruder et al. (2013)
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How to denoise the covariance matrix?

1 Factor analysis by imposing a correlation structure (MSCI Barra)

2 Factor analysis by filtering the correlation structure (APT)

3 Principal component analysis

4 Random matrix theory

5 Shrinkage methods
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How to denoise the covariance matrix?

The eigendecomposition Σ̂ of is

Σ̂ = VΛV>

where Λ = diag (λ1, . . . , λn) is the diagonal matrix of eigenvalues
with λ1 > λ2 > . . . > λn and V is an orthonormal matrix

The endogenous factors are Ft = Λ−1/2V>Rt

By considering only the m first components, we can build an
estimation of Σ with less noise
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How to denoise the covariance matrix?

Choice of m

1 We keep factors that explain more than 1/n of asset variance:

m = sup {i : λi ≥ (λ1 + . . .+ λn) /n}

2 Laloux et al. (1999) propose to use the random matrix theory (RMT)

1 The maximum eigenvalue of a random matrix M is equal to:

λmax = σ2
(

1 + n/T + 2
√

n/T
)

where T is the sample size
2 We keep the first m factors such that:

m = sup {i : λi > λmax}
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How to denoise the covariance matrix?

Shrinkage methods

Σ̂ is an unbiased estimator, but its convergence is very slow

Φ̂ is a biased estimator that converges more quickly

Ledoit and Wolf (2003) propose to combine Σ̂ and Φ̂:

Σ̂α = αΦ̂ + (1− α) Σ̂

The value of α is estimated by minimizing a quadratic loss:

α? = arg minE
[∥∥∥αΦ̂ + (1− α) Σ̂− Σ

∥∥∥2
]

They find an analytical expression of α? when:

Φ̂ has a constant correlation structure

Φ̂ corresponds to a factor model or is deduced from PCA
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How to denoise the covariance matrix?

Example 7 (equity correlation matrix)

We consider a universe with eight equity indices: S&P 500, Eurostoxx,
FTSE 100, Topix, Bovespa, RTS, Nifty and HSI. The study period is
January 2005–December 2011 and we use weekly returns.

The empirical correlation matrix is:

Ĉ =



1.00
0.88 1.00
0.88 0.94 1.00
0.64 0.68 0.65 1.00
0.77 0.76 0.78 0.61 1.00
0.56 0.61 0.61 0.50 0.64 1.00
0.53 0.61 0.57 0.53 0.60 0.57 1.00
0.64 0.68 0.67 0.68 0.68 0.60 0.66 1.00
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How to denoise the covariance matrix?

Uniform correlation
ρ̂ = 66.24%

One common factor + two specific factors

Ĉ =



1.00
0.77 1.00
0.77 0.77 1.00
0.77 0.77 0.77 1.00
0.50 0.50 0.50 0.50 1.00
0.50 0.50 0.50 0.50 0.59 1.00
0.50 0.50 0.50 0.50 0.59 0.59 1.00
0.50 0.50 0.50 0.50 0.59 0.59 0.59 1.00
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How to denoise the covariance matrix?

Two-linear factor model

Ĉ =



1.00
0.88 1.00
0.88 0.94 1.00
0.63 0.67 0.66 1.00
0.73 0.78 0.78 0.63 1.00
0.58 0.62 0.60 0.54 0.59 1.00
0.56 0.59 0.58 0.56 0.60 0.54 1.00
0.64 0.68 0.66 0.65 0.69 0.62 0.67 1.00
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How to denoise the covariance matrix?

RMT estimation

Ĉ =



1.00
0.73 1.00
0.72 0.76 1.00
0.61 0.64 0.64 1.00
0.72 0.76 0.75 0.64 1.00
0.71 0.75 0.74 0.63 0.74 1.00
0.63 0.66 0.65 0.56 0.66 0.65 1.00
0.68 0.72 0.71 0.60 0.71 0.70 0.62 1.00
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How to denoise the covariance matrix?

Ledoit-Wolf shrinkage estimation (constant correlation matrix)

Ĉ =



1.00
0.77 1.00
0.77 0.80 1.00
0.65 0.67 0.65 1.00
0.72 0.71 0.72 0.63 1.00
0.61 0.64 0.63 0.58 0.65 1.00
0.60 0.64 0.62 0.60 0.63 0.62 1.00
0.65 0.67 0.67 0.67 0.67 0.63 0.66 1.00


We obtain:

α? = 51.2%

What does this result become in the case of a multi-asset-class
universe?

α? ' 0

Thierry Roncalli Asset Management (Lecture 1) 106 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Why standard regularization techniques are not sufficient

Optimized portfolios are solutions of the following quadratic program:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
x ∈ Rn

We have:

x? (γ) =
Σ−11n

1>n Σ−11n
+ γ ·

(
1>n Σ−11n

)
Σ−1µ−

(
1>n Σ−1µ

)
Σ−11n

1>n Σ−11n
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Why standard regularization techniques are not sufficient

Optimal solutions are of the following form:

x? ∝ f
(
Σ−1

)

The important quantity is then the precision matrix I = Σ−1,
not the covariance matrix Σ
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Why standard regularization techniques are not sufficient

For the covariance matrix Σ, we have:

Σ = VΛV>

where V−1 = V> and Λ = (λ1, . . . , λn) with λ1 ≥ . . . ≥ λn the
ordered eigenvalues

The decomposition for the precisions matrix is

I = U∆U>

We have:

Σ−1 =
(
VΛV>

)−1

=
(
V>
)−1

Λ−1V−1

= VΛ−1V>

We deduce that U = V and δi = 1/λn−i+1
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Why standard regularization techniques are not sufficient

Remark

The eigenvectors of the precision matrix are the same as those of the
covariance matrix, but the eigenvalues of the precision matrix are the
inverse of the eigenvalues of the covariance matrix. This means that the
risk factors are the same, but they are in the reverse order
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Why standard regularization techniques are not sufficient

Example 8

We consider a universe of 3 assets, where µ1 = µ2 = 8%, µ3 = 5%,
σ1 = 20%, σ2 = 21%, σ3 = 10% and ρi,j = 80%.

The eigendecomposition of the covariance and precision matrices is:

Covariance matrix Σ Information matrix I
Asset / Factor 1 2 3 1 2 3

1 65.35% −72.29% −22.43% −22.43% −72.29% 65.35%
2 69.38% 69.06% −20.43% −20.43% 69.06% 69.38%
3 30.26% −2.21% 95.29% 95.29% −2.21% 30.26%

Eigenvalue 8.31% 0.84% 0.26% 379.97 119.18 12.04
% cumulated 88.29% 97.20% 100.00% 74.33% 97.65% 100.00%

⇒ It means that the first factor of the information matrix corresponds to
the last factor of the covariance matrix and that the last factor of the
information matrix corresponds to the first factor.

⇒ Optimization on arbitrage risk factors, idiosyncratic risk factors and
(certainly) noise factors!
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Why standard regularization techniques are not sufficient

Example 9

We consider a universe of 6 assets. The volatilities are respectively equal to
20%, 21%, 17%, 24%, 20% and 16%. For the correlation matrix, we have:

ρ =


1.00
0.40 1.00
0.40 0.40 1.00
0.50 0.50 0.50 1.00
0.50 0.50 0.50 0.60 1.00
0.50 0.50 0.50 0.60 0.60 1.00


⇒ We compute the minimum variance (MV) portfolio with a shortsale
constraint
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Why standard regularization techniques are not sufficient

Table 9: Effect of deleting a PCA factor

x? MV λ1 = 0 λ2 = 0 λ3 = 0 λ4 = 0 λ5 = 0 λ6 = 0
x?1 15.29 15.77 20.79 27.98 0.00 13.40 0.00
x?2 10.98 16.92 1.46 12.31 0.00 8.86 0.00
x?3 34.40 12.68 35.76 28.24 52.73 53.38 2.58
x?4 0.00 22.88 0.00 0.00 0.00 0.00 0.00
x?5 1.01 17.99 2.42 0.00 15.93 0.00 0.00
x?6 38.32 13.76 39.57 31.48 31.34 24.36 97.42
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Why standard regularization techniques are not sufficient

Figure 14: PCA applied to the stocks of the FTSE index (June 2012)
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Arbitrage factors, hedging factors or risk factors

We consider the following linear regression model:

Ri,t = β0 + β>i R
(−i)
t + εi,t

R
(−i)
t denotes the vector of asset returns Rt excluding the i th asset

εi,t ∼ N (0, s2
i )

R2
i is the R-squared of the linear regression

Precision matrix

Stevens (1998) shows that the precision matrix is given by:

Ii,i =
1

σ̂2
i (1−R2

i )
and Ii,j = − β̂i,j

σ̂2
i (1−R2

i )
= − β̂j,i

σ̂2
j

(
1−R2

j

)
Thierry Roncalli Asset Management (Lecture 1) 115 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Arbitrage factors, hedging factors or risk factors

Example 10

We consider a universe of four assets. The expected returns are µ̂1 = 7%,
µ̂2 = 8%, µ̂3 = 9% and µ̂4 = 10% whereas the volatilities are equal to
σ̂1 = 15%, σ̂2 = 18%, σ̂3 = 20% and σ̂4 = 25%. The correlation matrix is
the following:

Ĉ =


1.00
0.50 1.00
0.50 0.50 1.00
0.60 0.50 0.40 1.00


We do not impose that the sum of weights are equal to 100%
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Arbitrage factors, hedging factors or risk factors

Table 10: Hedging portfolios when ρ3,4 = 40%

Asset β̂i R2
i ŝi µ̄i x?

1 0.139 0.187 0.250 45.83% 11.04% 1.70% 69.80%
2 0.230 0.268 0.191 37.77% 14.20% 2.06% 51.18%
3 0.409 0.354 0.045 33.52% 16.31% 2.85% 53.66%
4 0.750 0.347 0.063 41.50% 19.12% 1.41% 19.28%

Table 11: Hedging portfolios when ρ3,4 = 95%

Asset β̂i R2
i ŝi µ̄i x?

1 0.244 −0.595 0.724 47.41% 10.88% 3.16% 133.45%
2 0.443 0.470 −0.157 33.70% 14.66% 2.23% 52.01%
3 −0.174 0.076 0.795 91.34% 5.89% 1.66% 239.34%
4 0.292 −0.035 1.094 92.38% 6.90% −1.61% −168.67%
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Table 12: Hedging portfolios (in %) at the end of 2006

SPX SX5E TPX RTY EM US HY EMBI EUR JPY GSCI
SPX 58.6 6.0 150.3 -30.8 -0.5 5.0 -7.3 15.3 -25.5
SX5E 9.0 -1.2 -1.3 35.2 0.8 3.2 -4.5 -5.0 -1.5
TPX 0.4 -0.6 -2.4 38.1 1.1 -3.5 -4.9 -0.8 -0.3
RTY 48.6 -2.7 -10.4 26.2 -0.6 1.9 0.2 -6.4 5.6
EM -4.1 30.9 69.2 10.9 0.9 4.6 9.1 3.9 33.1
US HY -5.0 53.5 160.0 -18.8 69.5 95.6 48.4 31.4 -211.7
EMBI 10.8 44.2 -102.1 12.3 73.4 19.4 -5.8 40.5 86.2
EUR -3.6 -14.7 -33.4 0.3 33.8 2.3 -1.4 56.7 48.2
JPY 6.8 -14.5 -4.8 -8.8 12.7 1.3 8.4 50.4 -33.2
GSCI -1.1 -0.4 -0.2 0.8 10.7 -0.9 1.8 4.2 -3.3
ŝi 0.3 0.7 0.9 0.5 0.7 0.1 0.2 0.4 0.4 1.2
R2

i 83.0 47.7 34.9 82.4 60.9 39.8 51.6 42.3 43.7 12.1

Source: Bruder et al. (2013)
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We finally obtain:

x?i (γ) = γ
µi − β̂>i µ(−i)

ŝ2
i

From this equation, we deduce the following conclusions:

1 The better the hedge, the higher the exposure. This is why highly
correlated assets produces unstable MVO portfolios

2 The long/short position is defined by the sign of µi − β̂>i µ(−i). If the
expected return of the asset is lower than the conditional expected
return of the hedging portfolio, the weight is negative

�
�

�
Markowitz diversification 6= Diversification of risk factors

= Concentration on arbitrage factors
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QP problem

We use the following formulation of the QP problem:

x? = arg min
1

2
x>Qx − x>R

u.c.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+
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Standard constraints

γ-problem

arg min
1

2
x>Σx − γx> (µ− r1n)⇒

{
Q = Σ
R = γµ

Full allocation

1>n x = 1⇒
{

A = 1>n
B = 1

No short selling
xi ≥ 0⇒ x− = 0n

Cash neutral (and portfolio optimization with unfunded strategies)

1>n x = 0⇒
{

A = 1>n
B = 0

Thierry Roncalli Asset Management (Lecture 1) 121 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Asset class constraints

Example 11

We consider a multi-asset universe of eight asset classes represented by the
following indices:

four equity indices: S&P 500, Eurostoxx, Topix, MSCI EM

two bond indices: EGBI, US BIG

two alternatives indices: GSCI, EPRA

The portfolio manager wants the following exposures:

at least 50% bonds

less than 10% commodities

Emerging market equities cannot represent more than one third of the
total exposure on equities
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Asset class constraints

The constraints are then expressed as follows:
x5 + x6 ≥ 50%
x7 ≤ 10%
x4 ≤ 1

3 (x1 + x2 + x3 + x4)

The corresponding formulation Cx ≤ D of the QP problem is:

 0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 1 0

−1/3 −1/3 −1/3 2/3 0 0 0 0





x1

x2

x3

x4

x5

x6

x7

x8


≤

 −0.50
0.10
0.00
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Non-standard constraints (turnover management)

We want to limit the turnover of the long-only optimized portfolio
with respect to a current portfolio x0:

Ω =

{
x ∈ [0, 1]n :

n∑
i=1

∣∣xi − x0
i

∣∣ ≤ τ+

}

where τ+ is the maximum turnover

Scherer (2007) proposes to introduce some additional variables x−i
and x+

i such that:
xi = x0

i + ∆x+
i −∆x−i

with ∆x−i ≥ 0 and ∆x+
i ≥ 0

∆x+
i indicates a positive weight change with respect to the initial

weight x0
i

∆x−i indicates a negative weight change with respect to the initial
weight x0

i
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Non-standard constraints (turnover management)

The expression of the turnover becomes:

n∑
i=1

∣∣xi − x0
i

∣∣ =
n∑

i=1

∣∣∆x+
i −∆x−i

∣∣ =
n∑

i=1

∆x+
i +

n∑
i=1

∆x−i

We obtain the following γ-problem:

x? = arg min
1

2
x>Σx − γx>µ

u.c.



∑n
i=1 xi = 1

xi = x0
i + ∆x+

i −∆x−i∑n
i=1 ∆x+

i +
∑n

i=1 ∆x−i ≤ τ+

0 ≤ xi ≤ 1
0 ≤ ∆x−i ≤ 1
0 ≤ ∆x+

i ≤ 1
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Non-standard constraints (turnover management)

We obtain an augmented QP problem of dimension 3n instead of n:

X ? = arg min
1

2
X>QX − X>R

u.c.

 AX = B
CX ≤ D
03n ≤ X ≤ 13n

where X is a 3n × 1 vector:

X =
(
x1, . . . , xn,∆x−1 , . . . ,∆x−n ,∆x+

1 , . . . ,∆x+
n

)

Thierry Roncalli Asset Management (Lecture 1) 126 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Non-standard constraints (turnover management)

The augmented QP matrices are:

Q3n×3n =

 Σ 0n×n 0n×n

0n×n 0n×n 0n×n

0n×n 0n×n 0n×n

 , R3n×1 =

 γµ
0n

0n

 ,

A(n+1)×3n =

(
1>n 0>n 0>n
In In −In

)
, B(n+1)×1 =

(
1
x0

)
,

C1×3n =
(

0>n 1>n 1>n
)

and D1×1 = τ+
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Non-standard constraints (turnover management)

Example 12

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

ρ =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


We impose that the weights are positive

The optimal portfolio x? for a 15% volatility target is
(45.59%, 24.74%, 29.67%, 0.00%)

We assume that the current portfolio x0 is (30%, 45%, 15%, 10%)

If we move directly from portfolio x0 to portfolio x?, the turnover is
equal to 60.53%
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Non-standard constraints (turnover management)

Table 13: Limiting the turnover of MVO portfolios

τ+ 5.00 10.00 25.00 50.00 75.00 x0

x?1 35.00 36.40 42.34 45.59 30.00
x?2 45.00 42.50 30.00 24.74 45.00
x?3 15.00 21.10 27.66 29.67 15.00
x?4 5.00 0.00 0.00 0.00 10.00

µ (x?) 5.95 6.06 6.13 6.14 6.00
σ (x?) 15.00 15.00 15.00 15.00 15.69

τ
(
x? | x0

)
10.00 25.00 50.00 60.53
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Non-standard constraints (transaction cost management)

Let c−i and c+
i be the bid and ask transactions costs. The net expected

return is equal to:

µ (x) =
n∑

i=1

xiµi −
n∑

i=1

∆x−i c−i −
n∑

i=1

∆x+
i c+

i

The γ-problem becomes:

x? = arg min
1

2
x>Σx − γ

(
n∑

i=1

xiµi −
n∑

i=1

∆x−i c−i −
n∑

i=1

∆x+
i c+

i

)

u.c.



∑n
i=1

(
xi + ∆x−i c−i + ∆x+

i c+
i

)
= 1

xi = x0
i + ∆x+

i −∆x−i
0 ≤ xi ≤ 1
0 ≤ ∆x−i ≤ 1
0 ≤ ∆x+

i ≤ 1
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Non-standard constraints (transaction cost management)

The augmented QP problem becomes:

X ? = arg min
1

2
X>QX − X>R

u.c.

{
AX = B
03n ≤ X ≤ 13n

where X is a 3n × 1 vector:

X =
(
x1, . . . , xn,∆x−1 , . . . ,∆x−n ,∆x+

1 , . . . ,∆x+
n

)
and:

Q3n×3n =

 Σ 0n×n 0n×n

0n×n 0n×n 0n×n

0n×n 0n×n 0n×n

 , R3n×1 =

 γµ
−c−
−c+

 ,

A(n+1)×3n =

(
1>n (c−)

>
(c+)

>

In In −In

)
and B(n+1)×1 =

(
1
x0

)
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Index sampling

Index sampling

The underlying idea is to replicate an index b with n stocks by a portfolio
x with nx stocks and nx � n

From a mathematical point of view, index sampling can be written as a
portfolio optimization problem with a benchmark:

x? = arg min
1

2
(x − b)>Σ (x − b)

u.c.

 1>n x = 1
x ≥ 0n∑n

i=1 1 {xi > 0} ≤ nx

where b is the vector of index weights

We obtain a mixed integer non-linear optimization problem
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Index sampling

Three stepwise algorithms:

1 The backward elimination algorithm starts with all the stocks,
computes the optimized portfolio, deletes the stock which presents
the highest tracking error variance, and repeats this process until the
number of stocks in the optimized portfolio reaches the target value
nx

2 The forward selection algorithm starts with no stocks in the portfolio,
adds the stock which presents the smallest tracking error variance,
and repeats this process until the number of stocks in the optimized
portfolio reaches the target value nx

3 The heuristic algorithm is a variant of the backward elimination
algorithm, but the elimination process of the heuristic algorithm uses
the criterion of the smallest weight
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Heuristic algorithm

1 The algorithm is initialized with N(0) = ∅ and x?(0) = b.
2 At the iteration k, we define a set I(k) of stocks having the smallest

positive weights in the portfolio x?(k−1). We then update the set N(k)

with N(k) = N(k−1) ∪ I(k) and define the upper bounds x+
(k):

x+
(k),i =

{
0 if i ∈ N(k)

1 if i /∈ N(k)

3 We solve the QP problem by using the new upper bounds x+
(k):

x?(k) = arg min
1

2

(
x(k) − b

)>
Σ
(
x(k) − b

)
u.c.

{
1>n x(k) = 1
0n ≤ x(k) ≤ x+

(k)

4 We iterate steps 2 and 3 until the convergence criterion:
n∑

i=1

1
{
x∗(k),i > 0

}
≤ nx
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Complexity of the three numerical algorithms

The number of solved QP problems is respectively equal to:

nb − nx for the heuristic algorithm

(nb − nx ) (nb + nx + 1) /2 for the backward elimination algorithm

nx (2nb − nx + 1) /2 for the forward selection algorithm

Number of solved QP problems
nb nx Heuristic Backward Forward

50
10 40 1 220 455
40 10 455 1 220

500
50 450 123 975 23 775

450 50 23 775 123 975

1 500
100 1 400 1 120 700 145 050

1 000 500 625 250 1 000 500
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Index sampling (Eurostoxx 50, June 2012)

Table 14: Sampling the SX5E index with the heuristic algorithm

k Stock bi σ
(
x(k) | b

)
1 Nokia 0.45 0.18
2 Carrefour 0.60 0.23
3 Repsol 0.71 0.28
4 Unibail-Rodamco 0.99 0.30
5 Muenchener Rueckver 1.34 0.32
6 RWE 1.18 0.36
7 Koninklijke Philips 1.07 0.41
8 Generali 1.06 0.45
9 CRH 0.82 0.51

10 Volkswagen 1.34 0.55
42 LVMH 2.39 3.67
43 Telefonica 3.08 3.81
44 Bayer 3.51 4.33
45 Vinci 1.46 5.02
46 BBVA 2.13 6.53
47 Sanofi 5.38 7.26
48 Allianz 2.67 10.76
49 Total 5.89 12.83
50 Siemens 4.36 30.33

Thierry Roncalli Asset Management (Lecture 1) 136 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Covariance matrix
Expected returns
Regularization of optimized portfolios
Adding constraints

Index sampling (Eurostoxx 50, June 2012)

Table 15: Sampling the SX5E index with the backward elimination algorithm

k Stock bi σ
(
x(k) | b

)
1 Iberdrola 1.05 0.11
2 France Telecom 1.48 0.18
3 Carrefour 0.60 0.22
4 Muenchener Rueckver 1.34 0.26
5 Repsol 0.71 0.30
6 BMW 1.37 0.34
7 Generali 1.06 0.37
8 RWE 1.18 0.41
9 Koninklijke Philips 1.07 0.44

10 Air Liquide 2.10 0.48
42 GDF Suez 1.92 3.49
43 Bayer 3.51 3.88
44 BNP Paribas 2.26 4.42
45 Total 5.89 4.99
46 LVMH 2.39 5.74
47 Allianz 2.67 7.15
48 Sanofi 5.38 8.90
49 BBVA 2.13 12.83
50 Siemens 4.36 30.33
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Index sampling (Eurostoxx 50, June 2012)

Table 16: Sampling the SX5E index with the forward selection algorithm

k Stock bi σ
(
x(k) | b

)
1 Siemens 4.36 12.83
2 Banco Santander 3.65 8.86
3 Bayer 3.51 6.92
4 Eni 3.32 5.98
5 Allianz 2.67 5.11
6 LVMH 2.39 4.55
7 France Telecom 1.48 3.93
8 Carrefour 0.60 3.62
9 BMW 1.37 3.35

41 Société Générale 1.07 0.50
42 CRH 0.82 0.45
43 Air Liquide 2.10 0.41
44 RWE 1.18 0.37
45 Nokia 0.45 0.33
46 Unibail-Rodamco 0.99 0.28
47 Repsol 0.71 0.24
48 Essilor 1.17 0.18
49 Muenchener Rueckver 1.34 0.11
50 Iberdrola 1.05 0.00
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Index sampling

Figure 15: Sampling the SX5E and SPX indices (June 2012)
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The impact of weight constraints

We specify the optimization problem as follows:

min
1

2
x>Σx

u.c.

 1>n x = 1
µ>x ≥ µ?
x ∈ C

where C is the set of weights constraints. We define:

the unconstrained portfolio x? or x? (µ,Σ):

C = Rn

the constrained portfolio x̃ :

C
(
x−, x+

)
=
{
x ∈ Rn : x−i ≤ xi ≤ x+

i

}
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The impact of weight constraints

Theorem

Jagannathan and Ma (2003) show that the constrained portfolio is the
solution of the unconstrained problem:

x̃ = x?
(
µ̃, Σ̃

)
with: {

µ̃ = µ

Σ̃ = Σ + (λ+ − λ−) 1>n + 1n (λ+ − λ−)
>

where λ− and λ+ are the Lagrange coefficients vectors associated to the
lower and upper bounds.

⇒ Introducing weights constraints is equivalent to introduce a shrinkage
method or to introduce some relative views (similar to the Black-Litterman
approach).
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The impact of weight constraints

Proof (step 1)

Without weight constraints, the expression of the Lagrangian is:

L (x ;λ0, λ1) =
1

2
x>Σx − λ0

(
1>n x − 1

)
− λ1

(
µ>x − µ?

)
with λ0 ≥ 0 and λ1 ≥ 0. The first-order conditions are:

Σx − λ01n − λ1µ = 0n

1>n x − 1 = 0
µ>x − µ? = 0

We deduce that the solution x? depends on the vector of expected return
µ and the covariance matrix Σ and we note x? = x? (µ,Σ)
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The impact of weight constraints

Proof (step 2)

If we impose now the weight constraints C (x−, x+), we have:

L
(
x ;λ0, λ1, λ

−, λ+
)

=
1

2
x>Σx − λ0

(
1>n x − 1

)
− λ1

(
µ>x − µ?

)
−

λ−>
(
x − x−

)
− λ+> (x+ − x

)
with λ0 ≥ 0, λ1 ≥ 0, λ−i ≥ 0 and λ+

i ≥ 0. In this case, the Kuhn-Tucker
conditions are: 

Σx − λ01n − λ1µ− λ− + λ+ = 0n

1>n x − 1 = 0
µ>x − µ? = 0
min

(
λ−i , xi − x−i

)
= 0

min
(
λ+

i , x
+
i − xi

)
= 0
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The impact of weight constraints

Proof (step 3)

Given a constrained portfolio x̃ , it is possible to find a covariance matrix Σ̃
such that x̃ is the solution of unconstrained mean-variance portfolio. Let

E =
{

Σ̃ > 0 : x̃ = x?
(
µ, Σ̃

)}
denote the corresponding set:

E =
{

Σ̃ > 0 : Σ̃x̃ − λ01n − λ1µ = 0n

}
Of course, the set E contains several solutions. From a financial point of
view, we are interested in covariance matrices Σ̃ that are close to Σ.
Jagannathan and Ma note that the matrix Σ̃ defined by:

Σ̃ = Σ +
(
λ+ − λ−

)
1>n + 1n

(
λ+ − λ−

)>
is a solution of E
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The impact of weight constraints

Proof (step 4)

Indeed, we have:

Σ̃x̃ = Σx̃ +
(
λ+ − λ−

)
1>n x̃ + 1n

(
λ+ − λ−

)>
x̃

= Σx̃ +
(
λ+ − λ−

)
+ 1n

(
λ+ − λ−

)>
x̃

= λ01n + λ1µ+ 1n (λ01n + λ1µ−Σx̃)> x̃

= λ01n + λ1µ+ 1n

(
λ0 + λ1µ

? − x̃>Σx̃
)

=
(
2λ0 − x̃>Σx̃ + λ1µ

?
)

1n + λ1µ

It proves that x̃ is the solution of the unconstrained optimization problem.
The Lagrange coefficients λ?0 and λ?1 for the unconstrained problem are
respectively equal to 2λ̃0 − x̃>Σx̃ + λ̃1µ

? and λ̃1 where λ̃0 and λ̃1 are the
Lagrange coefficient for the constrained problem. Moreover, Σ̃ is generally
a positive definite matrix
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The impact of weight constraints

Example 13

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


Given these parameters, the global minimum variance portfolio is equal to:

x? =


72.742%
49.464%
−20.454%
−1.753%
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The impact of weight constraints

Table 17: Minimum variance portfolio when xi ≥ 10%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

72.742 56.195 0.000 0.000 15.00 100.00
49.464 23.805 0.000 0.000 20.00 10.00 100.00
−20.454 10.000 1.190 0.000 19.67 10.50 58.71 100.00
−1.753 10.000 1.625 0.000 23.98 17.38 16.16 67.52 100.00

Table 18: Minimum variance portfolio when 10% ≤ xi ≤ 40%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

72.742 40.000 0.000 0.915 20.20 100.00
49.464 40.000 0.000 0.000 20.00 30.08 100.00
−20.454 10.000 0.915 0.000 21.02 35.32 61.48 100.00
−1.753 10.000 1.050 0.000 26.27 39.86 25.70 73.06 100.00
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The impact of weight constraints

Table 19: Mean-variance portfolio when 10% ≤ xi ≤ 40% and µ? = 6%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

65.866 40.000 0.000 0.125 15.81 100.00
26.670 30.000 0.000 0.000 20.00 13.44 100.00
32.933 20.000 0.000 0.000 25.00 41.11 70.00 100.00
−25.470 10.000 1.460 0.000 24.66 23.47 19.06 73.65 100.00

Table 20: MSR portfolio when 10% ≤ xi ≤ 40%

x?i x̃i λ−i λ+
i σ̃i ρ̃i,j

51.197 40.000 0.000 0.342 17.13 100.00
50.784 39.377 0.000 0.000 20.00 18.75 100.00
−21.800 10.000 0.390 0.000 23.39 36.25 66.49 100.00

19.818 10.623 0.000 0.000 30.00 50.44 40.00 79.96 100.00

Thierry Roncalli Asset Management (Lecture 1) 148 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

Exercise

We consider an investment universe of four assets. We assume that their
expected returns are equal to 5%, 6%, 8% and 6%, and their volatilities
are equal to 15%, 20%, 25% and 30%. The correlation matrix is:

ρ =


100%

10% 100%
40% 70% 100%
50% 40% 80% 100%


We note xi the weight of the i th asset in the portfolio. We only impose
that the sum of the weights is equal to 100%.
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Variations on the efficient frontier

Question 1

Represent the efficient frontier by considering the following values of γ:
−1, −0.5, −0.25, 0, 0.25, 0.5, 1 and 2.

Thierry Roncalli Asset Management (Lecture 1) 150 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

We deduce that the covariance matrix is:

Σ =


2.250 0.300 1.500 2.250
0.300 4.000 3.500 2.400
1.500 3.500 6.250 6.000
2.250 2.400 6.000 9.000

× 10−2

We then have to solve the γ-formulation of the Markowitz problem:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c. 1>n x = 1

We obtain the results1 given in Table 21. We represent the efficient
frontier in Figure 16.

1The weights, expected returns and volatilities are expressed in %.
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Variations on the efficient frontier

Table 21: Solution of Question 1

γ −1.00 −0.50 −0.25 0.00 0.25 0.50 1.00 2.00
x?1 94.04 83.39 78.07 72.74 67.42 62.09 51.44 30.15
x?2 120.05 84.76 67.11 49.46 31.82 14.17 −21.13 −91.72
x?3 −185.79 −103.12 −61.79 −20.45 20.88 62.21 144.88 310.22
x?4 71.69 34.97 16.61 −1.75 −20.12 −38.48 −75.20 −148.65

µ (x?) 1.34 3.10 3.98 4.86 5.74 6.62 8.38 11.90
σ (x?) 22.27 15.23 12.88 12.00 12.88 15.23 22.27 39.39
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Variations on the efficient frontier

Figure 16: Markowitz efficient frontier
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Variations on the efficient frontier

Question 2

Calculate the minimum variance portfolio. What are its expected return
and its volatility?
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Variations on the efficient frontier

We solve the γ-problem with γ = 0. The minimum variance portfolio is
then x?1 = 72.74%, x?2 = 49.46%, x?3 = −20.45% and x?4 = −1.75%. We
deduce that µ (x?) = 4.86% and σ (x?) = 12.00%.
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Question 3

Calculate the optimal portfolio which has an ex-ante volatility σ? equal to
10%. Same question if σ? = 15% and σ? = 20%.
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There is no solution when the target volatility σ? is equal to 10% because
the minimum variance portfolio has a volatility larger than 10%. Finding
the optimized portfolio for σ? = 15% or σ? = 20% is equivalent to solving
a σ-problem. If σ? = 15% (resp. σ? = 20%), we obtain an implied value
of γ equal to 0.48 (resp. 0.85). Results are given in the following Table:

σ? 15.00 20.00
x?1 62.52 54.57
x?2 15.58 −10.75
x?3 58.92 120.58
x?4 −37.01 −64.41

µ (x?) 6.55 7.87
γ 0.48 0.85
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Question 4

We note x (1) the minimum variance portfolio and x (2) the optimal
portfolio with σ? = 20%. We consider the set of portfolios x (α) defined by
the relationship:

x (α) = (1− α) x (1) + αx (2)

In the previous efficient frontier, place the portfolios x (α) when α is equal
to −0.5, −0.25, 0, 0.1, 0.2, 0.5, 0.7 and 1. What do you observe?
Comment on this result.
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Let x (α) be the portfolio defined by the relationship
x (α) = (1− α) x (1) + αx (2) where x (1) is the minium variance portfolio and
x (2) is the optimized portfolio with a 20% ex-ante volatility. We obtain the
following results:

α σ
(
x (α)

)
µ
(
x (α)

)
−0.50 14.42 3.36
−0.25 12.64 4.11

0.00 12.00 4.86
0.10 12.10 5.16
0.20 12.41 5.46
0.50 14.42 6.36
0.70 16.41 6.97
1.00 20.00 7.87

We have reported these portfolios in Figure 17. We notice that they are
located on the efficient frontier. This is perfectly normal because we know
that a combination of two optimal portfolios corresponds to another
optimal portfolio.
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Figure 17: Mean-variance diagram of portfolios x (α)
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Question 5

Repeat Questions 3 and 4 by considering the constraint 0 ≤ xi ≤ 1.
Explain why we do not retrieve the same observation.
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If we consider the constraint 0 ≤ xi ≤ 1, the γ-formulation of the
Markowitz problem becomes:

x? (γ) = arg min
1

2
x>Σx − γx>µ

u.c.

{
1>n x = 1
0n ≤ x ≤ 1n
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We obtain the following results:

σ? MV 12.00 15.00 20.00
x?1 65.49 X 45.59 24.88
x?2 34.51 X 24.74 4.96
x?3 0.00 X 29.67 70.15
x?4 0.00 X 0.00 0.00

µ (x?) 5.35 X 6.14 7.15
σ (x?) 12.56 X 15.00 20.00
γ 0.00 X 0.62 1.10

We observe that we cannot target a volatility σ? = 10%. Moreover, the
expected return µ (x?) of the optimal portfolios are reduced due to the
additional constraints.
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Question 6

We now include in the investment universe a fifth asset corresponding to
the risk-free asset. Its return is equal to 3%.
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Question 6.a

Define the expected return vector and the covariance matrix of asset
returns.
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We have:

µ =


5.0
6.0
8.0
6.0
3.0

× 10−2

and:

Σ =


2.250 0.300 1.500 2.250 0.000
0.300 4.000 3.500 2.400 0.000
1.500 3.500 6.250 6.000 0.000
2.250 2.400 6.000 9.000 0.000
0.000 0.000 0.000 0.000 0.000

× 10−2
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Question 6.b

Deduce the efficient frontier by solving directly the quadratic problem.
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We solve the γ-problem and obtain the efficient frontier given in Figure 18.
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Figure 18: Efficient frontier when the risk-free asset is introduced
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Question 6.c

What is the shape of the efficient frontier? Comment on this result.
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This efficient frontier is a straight line. This line passes through the
risk-free asset and is tangent to the efficient frontier of Figure 16. This
question is a direct application of the Separation Theorem of Tobin.
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Question 6.d

Choose two arbitrary portfolios x (1) and x (2) of this efficient frontier.
Deduce the Sharpe ratio of the tangency portfolio.

Thierry Roncalli Asset Management (Lecture 1) 172 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

We consider two optimized portfolios of this efficient frontier. They
corresponds to γ = 0.25 and γ = 0.50. We obtain the following results:

γ 0.25 0.50
x?1 18.23 36.46
x?2 −1.63 −3.26
x?3 34.71 69.42
x?4 −18.93 −37.86
x?5 67.62 35.24

µ (x?) 4.48 5.97
σ (x?) 6.09 12.18
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The first portfolio has an expected return equal to 4.48% and a volatility
equal to 6.09%. The weight of the risk-free asset is 67.62%. This explains
the low volatility of this portfolio. For the second portfolio, the weight of
the risk-free asset is lower and equal to 35.24%. The expected return and
the volatility are then equal to 5.97% and 12.18%. We note x (1) and x (2)

these two portfolios. By definition, the Sharpe ratio of the market portfolio
x? is the tangency of the line. We deduce that:

SR (x? | r) =
µ
(
x (2)
)
− µ

(
x (1)
)

σ
(
x (2)
)
− σ

(
x (1)
)

=
5.97− 4.48

12.18− 6.09
= 0.2436

The Sharpe ratio of the market portfolio x? is then equal to 0.2436.
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Question 6.e

Calculate then the composition of the tangency portfolio from x (1) and
x (2).
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By construction, every portfolio x (α) which belongs to the tangency line is
a linear combination of two portfolios x (1) and x (2) of this efficient frontier:

x (α) = (1− α) x (1) + αx (2)

The market portfolio x? is the portfolio x (α) which has a zero weight in
the risk-free asset. We deduce that the value α? which corresponds to the
market portfolio satisfies the following relationship:

(1− α?) x
(1)
5 + α?x

(2)
5 = 0

because the risk-free asset is the fifth asset of the portfolio.
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It follows that:

α? =
x

(1)
5

x
(1)
5 − x

(2)
5

=
67.62

67.62− 35.24
= 2.09

We deduce that the market portfolio is:

x? = (1− 2.09) ·


18.23
−1.63
34.71
−18.93

67.62

+ 2.09 ·


36.46
−3.26
69.42
−37.86

35.24

 =


56.30
−5.04
107.21
−58.46

0.00


We check that the Sharpe ratio of this portfolio is 0.2436.
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Question 7

We consider the general framework with n risky assets whose vector of
expected returns is µ and the covariance matrix of asset returns is Σ while
the return of the risk-free asset is r . We note x̃ the portfolio invested in
the n + 1 assets. We have:

x̃ =

(
x
xr

)
with x the weight vector of risky assets and xr the weight of the risk-free
asset. We impose the following constraint:

n∑
i=1

x̃i =
n∑

i=1

xi = 1
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Question 7.a

Define µ̃ and Σ̃ the vector of expected returns and the covariance matrix
of asset returns associated with the n + 1 assets.

Thierry Roncalli Asset Management (Lecture 1) 179 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Variations on the efficient frontier

We have:

µ̃ =

(
µ
r

)
and:

Σ̃ =

(
Σ 0n

0>n 0

)
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Question 7.b

By using the Markowitz φ-problem, retrieve the Separation Theorem of
Tobin.
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If we include the risk-free asset, the Markowitz φ-problem becomes:

x̃? (φ) = arg max x̃>µ̃− φ

2
x̃>Σ̃x̃

u.c. 1>n x̃ = 1

We note that the objective function can be written as follows:

f (x̃) = x̃>µ̃− φ

2
x̃>Σ̃x̃

= x>µ+ xr r −
φ

2
x>Σx

= g (x , xr )

The constraint becomes 1>n x + xr = 1. We deduce that the Lagrange
function is:

L (x , xr ;λ0) = x>µ+ xr r −
φ

2
x>Σx − λ0

(
1>n x + xr − 1

)
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The first-order conditions are: ∂x L (x , xr ;λ0) = µ− φΣx − λ01n = 0n

∂xr L (x , xr ;λ0) = r − λ0 = 0
∂λ0 L (x , xr ;λ0) = 1>n x + xr − 1 = 0

The solution of the optimization problem is then: x? = φ−1Σ−1 (µ− r1n)
λ?0 = r
x?r = 1− φ−11>n Σ−1 (µ− r1n)

Let x?0 be the following portfolio:

x?0 =
Σ−1 (µ− r1n)

1>n Σ−1 (µ− r1n)
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We can then write the solution of the optimization problem in the
following way: 

x? = αx?0
λ?0 = r
x?r = 1− α
α = φ−11>n Σ−1 (µ− r1n)

The first equation indicates that the relative proportions of risky assets in
the optimized portfolio remain constant. If φ = φ0 = 1>n Σ−1 (µ− r1n),
then x? = x?0 and x?r = 0. We deduce that x?0 is the tangency portfolio. If
φ 6= φ0, x? is proportional to x?0 and the wealth invested in the risk-free
asset is the complement (1− α) to obtain a total exposure equal to 100%.
We retrieve then the separation theorem:

x̃? = α ·
(

x?0
0

)
︸ ︷︷ ︸

risky assets

+ (1− α) ·
(

0n

1

)
︸ ︷︷ ︸

risk-free asset
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Question 1

We consider an investment universe of n assets with:

R =

 R1

...
Rn

 ∼ N (µ,Σ)

The weights of the market portfolio (or the benchmark) are
b = (b1, . . . , bn).
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Question 1.a

Define the beta βi of asset i with respect to the market portfolio.
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The beta of an asset is the ratio between its covariance with the market
portfolio return and the variance of the market portfolio return. In the
CAPM theory, we have:

E [Ri ] = r + βi (E [R (b)]− r)

where Ri is the return of asset i , R (b) is the return of the market portfolio
and r is the risk-free rate. The beta βi of asset i is:

βi =
cov (Ri ,R (b))

var (R (b))

Let Σ be the covariance matrix of asset returns. We have
cov (R,R (b)) = Σb and var (R (b)) = b>Σb. We deduce that:

βi =
(Σb)i

b>Σb
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Question 1.b

Let X1, X2 and X3 be three random variables. Show that:

cov (c1X1 + c2X2,X3) = c1 cov (X1,X3) + c2 cov (X2,X3)
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We recall that the mathematical operator E is bilinear. Let c be the
covariance cov (c1X1 + c2X2,X3). We then have:

c = E [(c1X1 + c2X2 − E [c1X1 + c2X2]) (X3 − E [X3])]

= E [(c1 (X1 − E [X1]) + c2 (X2 − E [X2])) (X3 − E [X3])]

= c1E [(X1 − E [X1]) (X3 − E [X3])] + c2E [(X2 − E [X2]) (X3 − E [X3])]

= c1 cov (X1,X3) + c2 cov (X2,X3)
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Question 1.c

We consider the asset portfolio x = (x1, . . . , xn) such that
∑n

i=1 xi = 1.
What is the relationship between the beta β (x | b) of the portfolio and the
betas βi of the assets?
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We have:

β (x | b) =
cov (R (x) ,R (b))

var (R (b))
=

cov
(
x>R, b>R

)
var (b>R)

=
x>E

[
(R − µ) (R − µ)>

]
b

b>E
[
(R − µ) (R − µ)>

]
b

=
x>Σb

b>Σb
= x>

Σb

b>Σb
= x>β =

n∑
i=1

xiβi

with β = (β1, . . . , βn). The beta of portfolio x is then the weighted mean
of asset betas. Another way to show this result is to exploit the result of
Question 1.b. We have:

β (x | b) =
cov

(∑n
i=1 xiRi ,R (b)

)
var (R (b))

=
n∑

i=1

xi
cov (Ri ,R (b))

var (R (b))
=

n∑
i=1

xiβi
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Question 1.d

Calculate the beta of the portfolios x (1) and x (2) with the following data:

i 1 2 3 4 5
βi 0.7 0.9 1.1 1.3 1.5

x
(1)
i 0.5 0.5

x
(2)
i 0.25 0.25 0.5 0.5 −0.5
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We obtain β
(
x (1) | b

)
= 0.80 and β

(
x (2) | b

)
= 0.85.
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Question 2

We assume that the market portfolio is the equally weighted portfolioa.

aWe have bi = n−1.
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Question 2.a

Show that
∑n

i=1 βi = n.
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The weights of the market portfolio are then b = n−11n. We have:

β =
cov (R,R (b))

var (R (b))
=

Σb

b>Σb
=

n−1Σ1n

n−2 (1>n Σ1n)
= n

Σ1n

(1>n Σ1n)

We deduce that:

n∑
i=1

βi = 1>n β = 1>n n
Σ1n

(1>n Σ1n)
= n

1>n Σ1n

(1>n Σ1n)
= n
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Question 2.b

We consider the case n = 3. Show that β1 ≥ β2 ≥ β3 implies
σ1 ≥ σ2 ≥ σ3 if ρi,j = 0.
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If ρi,j = 0, we have:

βi = n
σ2

i∑n
j=1 σ

2
j

We deduce that:

β1 ≥ β2 ≥ β3 ⇒ n
σ2

1∑3
j=1 σ

2
j

≥ n
σ2

2∑3
j=1 σ

2
j

≥ n
σ2

3∑3
j=1 σ

2
j

⇒ σ2
1 ≥ σ2

2 ≥ σ2
3

⇒ σ1 ≥ σ2 ≥ σ3
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Question 2.c

What is the result if the correlation is uniform ρi,j = ρ?

Thierry Roncalli Asset Management (Lecture 1) 199 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

If ρi,j = ρ, it follows that:

βi ∝ σ2
i +

∑
j 6=i

ρσiσj

= σ2
i + ρσi

∑
j 6=i

σj + ρσ2
i − ρσ2

i

= (1− ρ)σ2
i + ρσi

n∑
j=1

σj

= f (σi )

with:

f (z) = (1− ρ) z2 + ρz
n∑

j=1

σj
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The first derivative of f (z) is:

f ′ (z) = 2 (1− ρ) z + ρ
n∑

j=1

σj

If ρ ≥ 0, then f (z) is an increasing function for z ≥ 0 because (1− ρ) ≥ 0
and ρ

∑n
j=1 σj ≥ 0. This explains why the previous result remains valid:

β1 ≥ β2 ≥ β3 ⇒ σ1 ≥ σ2 ≥ σ3 if ρi,j = ρ ≥ 0

If − (n − 1)−1 ≤ ρ < 0, then f ′ is decreasing if

z < −2−1ρ (1− ρ)−1∑n
j=1 σj and increasing otherwise. We then have:

β1 ≥ β2 ≥ β3 ; σ1 ≥ σ2 ≥ σ3 if ρi,j = ρ < 0

In fact, the result remains valid in most cases. To obtain a
counter-example, we must have large differences between the volatilities
and a correlation close to − (n − 1)−1. For example, if σ1 = 5%, σ2 = 6%,
σ3 = 80% and ρ = −49%, we have β1 = −0.100, β2 = −0.115 and
β3 = 3.215.
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Question 2.d

Find a general example such that β1 > β2 > β3 and σ1 < σ2 < σ3.
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We assume that σ1 = 15%, σ2 = 20%, σ3 = 22%, ρ1,2 = 70%,
ρ1,3 = 20% and ρ2,3 = −50%. It follows that β1 = 1.231, β2 = 0.958 and
β3 = 0.811. We thus have found an example such that β1 > β2 > β3 and
σ1 < σ2 < σ3.
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Question 2.e

Do we have
∑n

i=1 βi < n or
∑n

i=1 βi > n if the market portfolio is not
equally weighted?
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There is no reason that we have either
∑n

i=1 βi < n or
∑n

i=1 βi > n. Let
us consider the previous numerical example. If b = (5%, 25%, 70%), we

obtain
∑3

i=1 βi = 1.808 whereas if b = (20%, 40%, 40%), we have∑3
i=1 βi = 3.126.
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Question 3

We search a market portfolio b ∈ Rn such that the betas are the same for
all the assets: βi = βj = β.
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Question 3.a

Show that there is an obvious solution which satisfies β = 1.
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We have:

n∑
i=1

biβi =
n∑

i=1

bi
(Σb)i

b>Σb

= b>
Σb

b>Σb
= 1

If βi = βj = β, then β = 1 is an obvious solution because the previous
relationship is satisfied:

n∑
i=1

biβi =
n∑

i=1

bi = 1
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Question 3.b

Show that this solution is unique and corresponds to the minimum
variance portfolio.
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If βi = βj = β, then we have:

n∑
i=1

biβ = 1⇔ β =
1∑n

i=1 bi
= 1

β can only take one value, the solution is then unique. We know that the
marginal volatilities are the same in the case of the minimum variance
portfolio x (TR-RPB, page 173):

∂ σ (x)

∂ xi
=
∂ σ (x)

∂ xj

with σ (x) =
√
x>Σx the volatility of the portfolio x .
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It follows that:
(Σx)i√
x>Σx

=
(Σx)j√
x>Σx

By dividing the two terms by
√
x>Σx , we obtain:

(Σx)i

x>Σx
=

(Σx)j

x>Σx

The asset betas are then the same in the minimum variance portfolio.
Because we have: {

βi = βj∑n
i=1 xiβi = 1

we deduce that:
βi = 1
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Question 4

We assume that b ∈ [0, 1]n.
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Question 4.a

Show that if one asset has a beta greater than one, there exists another
asset which has a beta smaller than one.
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We have:

n∑
i=1

biβi = 1

⇔
n∑

i=1

biβi =
n∑

i=1

bi

⇔
n∑

i=1

biβi −
n∑

i=1

bi = 0

⇔
n∑

i=1

bi (βi − 1) = 0

Thierry Roncalli Asset Management (Lecture 1) 214 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

We obtain the following system of equations:{ ∑n
i=1 bi (βi − 1) = 0

bi ≥ 0

Let us assume that the asset j has a beta greater than 1. We then have:{
bj (βj − 1) +

∑
i 6=j bi (βi − 1) = 0

bi ≥ 0

It follows that bj (βj − 1) > 0 because bj > 0 (otherwise the beta is zero).
We must therefore have

∑
i 6=j xi (βi − 1) < 0. Because bi ≥ 0, it is

necessary that at least one asset has a beta smaller than 1.

Thierry Roncalli Asset Management (Lecture 1) 215 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Beta coefficient

Question 4.b

We consider the case n = 3. Find a covariance matrix Σ and a market
portfolio b such that one asset has a negative beta.
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We use standard notations to represent Σ. We seek a portfolio such that
β1 > 0, β2 > 0 and β3 < 0. To simplify this problem, we assume that the
three assets have the same volatility. We also obtain the following system
of inequalities:  b1 + b2ρ1,2 + b3ρ1,3 > 0

b1ρ1,2 + b2 + b3ρ2,3 > 0
b1ρ1,3 + b2ρ2,3 + b3 < 0

It is sufficient that b1ρ1,3 + b2ρ2,3 is negative and b3 is small. For example,
we may consider b1 = 50%, b2 = 45%, b3 = 5%, ρ1,2 = 50%, ρ1,3 = 0%
and ρ2,3 = −50%. We obtain β1 = 1.10, β2 = 1.03 and β3 = −0.27.
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Question 5

We report the return Ri,t and Rt (b) of asset i and market portfolio b at
different dates:

t 1 2 3 4 5 6
Ri,t −22 −11 −10 −8 13 11

Rt (b) −26 −9 −10 −10 16 14
t 7 8 9 10 11 12

Ri,t 21 13 −30 −6 −5 −5
Rt (b) 14 15 −22 −7 −11 2

t 13 14 15 16 17 18
Ri,t 19 −17 2 −24 25 −7

Rt (b) 15 −15 −1 −23 15 −6
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Question 5.a

Estimate the beta of the asset.
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We perform the linear regression Ri,t = αi + βiRt (b) + εi,t and we obtain

β̂i = 1.06.
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Question 5.b

What is the proportion of the asset volatility explained by the market?
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We deduce that the contribution ci of the market factor is (TR-RPB, page
16):

ci =
β2

i var (R (b))

var (Ri )
= 90.62%
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Exercise

We consider a universe of three assets. Their volatilities are 20%, 20% and
15%. The correlation matrix of asset returns is:

ρ =

 1.00
0.50 1.00
0.20 0.60 1.00


We would like to implement a trend-following strategy. For that, we
estimate the trend of each asset and the volatility of the trend. We obtain
the following results:

Asset 1 2 3
µ̂ 10% −5% 15%

σ (µ̂) 4% 2% 10%

We assume that the neutral portfolio is the equally weighted portfolio.
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Question 1

Find the optimal portfolio if the constraint of the tracking error volatility is
set to 1%, 2%, 3%, 4% and 5%.
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We consider the portfolio optimization problem in the presence of a
benchmark (TR-RPB, page 17). We obtain the following results
(expressed in %):

σ (x? | b) 1.00 2.00 3.00 4.00 5.00
x?1 35.15 36.97 38.78 40.60 42.42
x?2 26.32 19.30 12.28 5.26 −1.76
x?3 38.53 43.74 48.94 54.14 59.34

µ (x? | b) 1.31 2.63 3.94 5.25 6.56
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Question 2

In order to tilt the neutral portfolio, we now consider the Black-Litterman
model. The risk-free rate is set to 0.

Thierry Roncalli Asset Management (Lecture 1) 226 / 1520



Theory of portfolio optimization
Practice of portfolio optimization

Tutorial exercises

Variations on the efficient frontier
Beta coefficient
Black-Litterman model

Black-Litterman model

Question 2.a

Find the implied risk premium of the assets if we target a Sharpe ratio
equal to 0.50. What is the value of φ?
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Let b be the benchmark (that is the equally weighted portfolio). We recall
that the implied risk aversion parameter is:

φ =
SR (b | r)√

b>Σb

and the implied risk premium is:

µ̃ = r + SR (b | r)
Σb√
b>Σb

We obtain φ = 3.4367 and:

µ̃ =

 µ̃1

µ̃2

µ̃3

 =

 7.56%
8.94%
5.33%
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Question 2.b

How does one incorporate a trend-following strategy in the
Black-Litterman model? Give the P, Q and Ω matrices.
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In this case, the views of the portfolio manager corresponds to the trends
observed in the market. We then have2:

P = I3

Q = µ̂

Ω = diag
(
σ2 (µ̂1) , . . . , σ2 (µ̂n)

)
The views Pµ = Q + ε become:

µ = µ̂+ ε

with ε ∼ N (03,Ω).

2If we suppose that the trends are not correlated.
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Question 2.c

Calculate the conditional expectation µ̄ = E [µ | Pµ = Q + ε] if we
assume that Γ = τΣ and τ = 0.01.
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We have (TR-RPB, page 25):

µ̄ = E [µ | Pµ = Q + ε]

= µ̃+ ΓP>
(
PΓP> + Ω

)−1
(Q − Pµ̃)

= µ̃+ τΣ (τΣ + Ω)−1 (µ̂− µ̃)

We obtain:

µ̄ =

 µ̄1

µ̄2

µ̄3

 =

 5.16%
2.38%
2.47%
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Question 2.d

Find the Black-Litterman optimized portfolio.
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We optimize the quadratic utility function with φ = 3.4367. The
Black-Litterman portfolio is then:

x? =

 x?1
x?2
x?3

 =

 56.81%
−23.61%

66.80%


Its volatility tracking error is σ (x? | b) = 8.02% and its alpha is
µ (x? | b) = 10.21%.
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Question 3

We would like to compute the Black-Litterman optimized portfolio,
corresponding to a 3% tracking error volatility.
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Question 3.a

What is the Black-Litterman portfolio when τ = 0 and τ = +∞?
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If τ = 0, µ̄ = µ̃. The BL portfolio x is then equal to the neutral
portfolio b.

We also have:

lim
τ→∞

µ̄ = µ̃+ lim
τ→∞

τΣ> (τΣ + Ω)−1 (µ̂− µ̃)

= µ̃+ (µ̂− µ̃)

= µ̂

In this case, µ̄ is independent from the implied risk premium µ̂ and is
exactly equal to the estimated trends µ̂. The BL portfolio x is then
the Markowitz optimized portfolio with the given value of φ.
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Question 3.b

Using the previous results, apply the bisection algorithm and find the
Black-Litterman optimized portfolio, which corresponds to a 3% tracking
error volatility.
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We would like to find the BL portfolio such that σ (x | b) = 3%. We know
that σ (x | b) = 0 if τ = 0. Thanks to Question 2.d, we also know that
σ (x | b) = 8.02% if τ = 1%. It implies that the optimal portfolio
corresponds to a specific value of τ which is between 0 and 1%. If we
apply the bi-section algorithm, we find that:

τ? = 0.242%

. The composition of the optimal portfolio is then

x? =

 x?1
x?2
x?3

 =

 41.18%
11.96%
46.85%


We obtain an alpha equal to 3.88%, which is a little bit smaller than the
alpha of 3.94% obtained for the TE portfolio.
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Question 3.c

Compare the relationship between σ (x | b) and µ (x | b) of the
Black-Litterman model with the one of the tracking error model.
Comment on these results.
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We have reported the relationship between σ (x | b) and µ (x | b) in Figure
19. We notice that the information ratio of BL portfolios is very close to
the information ratio of TE portfolios. We may explain that because of the
homogeneity of the estimated trends µ̂i and the volatilities σ (µ̂i ). If we
suppose that σ (µ̂1) = 1%, σ (µ̂2) = 5% and σ (µ̂3) = 15%, we obtain the
relationship #2. In this case, the BL model produces a smaller information
ratio than the TE model. We explain this because µ̄ is the right measure
of expected return for the BL model whereas it is µ̂ for the TE model. We
deduce that the ratios µ̄i/µ̂i are more volatile for the parameter set #2, in
particular when τ is small.
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Figure 19: Efficient frontier of TE and BL portfolios
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Example 1

We consider an investment universe of 5 assets

(µi , σi ) are respectively equal to (8%, 12%), (7%, 10%), (7.5%, 11%),
(8.5%, 13%) and (8%, 12%)

The correlation matrix is C5 (ρ) with ρ = 60%

The optimal portfolio x? such that σ (x?) = 10% is equal to:

x? =


23.97%

6.42%
16.91%
28.73%
23.97%
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Figure 20: Optimized portfolios versus optimal diversified portfolios
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Portfolio optimization & portfolio diversification

Table 22: Some equivalent mean-variance portfolios

x1 23.97 5 5 35 35 50 5 5 10
x2 6.42 25 25 10 25 10 30 25
x3 16.91 5 40 10 5 15 45 10
x4 28.73 35 20 30 5 35 10 35 20 45
x5 23.97 35 35 40 40 15 30 30 10
µ (x) 7.99 7.90 7.90 7.90 7.88 7.90 7.88 7.88 7.88 7.93
σ (x) 10.00 10.07 10.06 10.07 10.01 10.07 10.03 10.00 10.03 10.10

⇒ These portfolios have very different compositions, but lead to very close
mean-variance features

Some of these portfolios appear more balanced
and more diversified than the optimized portfolio
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Other methods to build a portfolio

1 Weight
budgeting (WB)

2 Risk budgeting
(RB)

3 Performance
budgeting (PB)

Ex-ante analysis
6=

Ex-post analysis

Important result

RB = PB
Figure 21: The 30/70 rule
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Weight budgeting versus risk budgeting

Let x = (x1, . . . , xn) be the weights of n assets in the portfolio. Let
R (x1, . . . , xn) be a coherent and convex risk measure. We have:

R (x1, . . . , xn) =
n∑

i=1

xi ·
∂R (x1, . . . , xn)

∂ xi

=
n∑

i=1

RC i (x1, . . . , xn)

Let b = (b1, . . . , bn) be a vector of budgets such that bi ≥ 0 and∑n
i=1 bi = 1. We consider two allocation schemes:

1 Weight budgeting (WB)
xi = bi

2 Risk budgeting (RB)

RC i = bi · R (x1, . . . , xn)
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Importance of the coherency and convexity properties

Figure 22: Risk Measure = 20 with a 50/30/20 budget rule
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Application to the volatility risk measure

Let Σ be the covariance matrix of the assets returns. We note x the vector
of the portfolio’s weights:

x =

 x1

...
xn


It follows that the portfolio volatility is equal to:

σ (x) =
√
x>Σx
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Computation of the marginal volatilities

The vector of marginal volatilities is equal to:

∂ σ (x)

∂ x
=


∂ σ (x)

∂ x1
...

∂ σ (x)

∂ xn


=

∂

∂ x

(
x>Σx

)1/2

=
1

2

(
x>Σx

)1/2−1
(2Σx)

=
Σx√
x>Σx

It follows that the marginal volatility of Asset i is given by:

∂ σ (x)

∂ xi
=

(Σx)i√
x>Σx

=
n∑

j=1

ρi,jσiσjxj

σ (x)
= σi

n∑
j=1

xj
ρi,jσj

σ (x)

Thierry Roncalli Asset Management (Lecture 2) 256 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition
Special cases
Properties
Numerical solution

Computation of the risk contributions

We deduce that the risk contribution of the i th asset is then:

RC i = xi ·
∂ σ (x)

∂ xi

=
xi · (Σx)i√

x>Σx

= σixi

n∑
j=1

xj
ρi,jσj

σ (x)
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The Euler allocation principle

We verify that the volatility satisfies the full allocation property:

n∑
i=1

RC i =
n∑

i=1

σixi

n∑
j=1

xj
ρi,jσj

σ (x)
=

1

σ (x)

n∑
i=1

n∑
j=1

xixjρi,jσiσj

=
σ2 (x)

σ (x)
= σ (x)

An alternative proof uses the definition of the dot product:

a · b =
n∑

i=1

aibi = a>b

Indeed, we have:

n∑
i=1

RC i =
n∑

i=1

xi · (Σx)i√
x>Σx

=
1√

x>Σx

n∑
i=1

xi ·(Σx)i =
1√

x>Σx
x>Σx = σ (x)
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Definition of the risk contribution

Definition

The marginal risk contribution of Asset i is:

MRi =
∂ σ (x)

∂ xi
=

(Σx)i√
x>Σx

The absolute risk contribution of Asset i is:

RC i = xi
∂ σ (x)

∂ xi
=

xi · (Σx)i√
x>Σx

The relative risk contribution of Asset i is:

RC?i =
RC i

σ (x)
=

xi · (Σx)i

x>Σx
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The Euler allocation principle

Remark

We have
∑n

i=1RC i = σ (x) and
∑n

i=1RC
?
i = 100%.
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Application

Example 2

We consider three assets. We assume that their expected returns are equal
to zero whereas their volatilities are equal to 30%, 20% and 15%. The
correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


We consider the portfolio x , which is given by:

x =

 50%
20%
30%
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Application

Using the relationship Σi,j = ρi,jσiσj , we deduce that the covariance
matrix is3:

Σ =

 9.00 4.80 2.25
4.80 4.00 0.90
2.25 0.90 2.25

× 10−2

It follows that the variance of the portfolio is:

σ2 (x) = 0.502 × 0.09 + 0.202 × 0.04 + 0.302 × 0.0225 +

2× 0.50× 0.20× 0.0480 + 2× 0.50× 0.30× 0.0225 +

2× 0.20× 0.30× 0.0090

= 4.3555%

The volatility is then σ (x) =
√

4.3555% = 20.8698%.

3The covariance term between assets 1 and 2 is equal to Σ1,2 = 80%× 30%× 20%
or Σ1,2 = 4.80%
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Application

The computation of the marginal volatilities gives:

Σx√
x>Σx

=
1

20.8698%

 6.1350%
3.4700%
1.9800%

 =

 29.3965%
16.6269%

9.4874%
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Application

Finally, we obtain the risk contributions by multiplying the weights by the
marginal volatilities:

x ◦ Σx√
x>Σx

=

 50%
20%
30%

 ◦
 29.3965%

16.6269%
9.4874%

 =

 14.6982%
3.3254%
2.8462%


We verify that the sum of risk contributions is equal to the volatility:

3∑
i=1

RC i = 14.6982% + 3.3254% + 2.8462% = 20.8698%
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Table 23: Risk decomposition of the portfolio’s volatility (Example 2)

Asset xi MRi RC i RC?i
1 50.00 29.40 14.70 70.43
2 20.00 16.63 3.33 15.93
3 30.00 9.49 2.85 13.64

σ (x) 20.87
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The ERC portfolio

Definition

Let Σ be the covariance matrix of asset returns

The risk measure corresponds to the volatility risk measure

The ERC portfolio is the unique portfolio x such that the risk
contributions are equal:

RC i = RCj ⇔
xi · (Σx)i√

x>Σx
=

xj · (Σx)j√
x>Σx

ERC = Equal Risk Contribution
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Example 3

3 assets

Volatilities are respectively equal to
20%, 30% and 15%

Correlations are set to 60% between
the 1st asset and the 2nd asset and
10% between the first two assets
and the 3rd asset

Budgets are set to 50%, 25% and
25%

For the ERC (Equal Risk
Contribution) portfolio, all the
assets have the same risk budget

Absolute Relative

1 50.00% 17.99% 9.00% 54.40%

2 25.00% 25.17% 6.29% 38.06%

3 25.00% 4.99% 1.25% 7.54%

Volatility 16.54%

Absolute Relative

1 41.62% 16.84% 7.01% 50.00%

2 15.79% 22.19% 3.51% 25.00%

3 42.58% 8.23% 3.51% 25.00%

Volatility 14.02%

Absolute Relative

1 30.41% 15.15% 4.61% 33.33%

2 20.28% 22.73% 4.61% 33.33%

3 49.31% 9.35% 4.61% 33.33%

Volatility 13.82%

Asset Weight
Marginal 

Risk

Risk Contribution

ERC approach

Asset Weight
Marginal 

Risk

Risk Contribution

Weight budgeting (or traditional approach)

Asset Weight
Marginal 

Risk

Risk Contribution

Risk budgeting approach

Thierry Roncalli Asset Management (Lecture 2) 267 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition
Special cases
Properties
Numerical solution

The concept of risk budgeting

We have:
σ (50%, 25%, 25%) = 16.54%

The marginal risk for the first asset is:

∂ σ (x)

∂ x1
= lim
ε→0

σ (x1 + ε, x2, x3)− σ (x1, x2, x3)

(x1 + ε)− x1

If ε = 1%, we have:

σ (0.51, 0.25, 0.25) = 16.72%

We deduce that:

∂ σ (x)

∂ x1
' 16.72%− 16.54%

1%
= 18.01%

whereas the true value is equal to:

∂ σ (x)

∂ x1
= 17.99%
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The concept of risk budgeting

Example 4

3 assets

Volatilities are respectively 30%,
20% and 15%

Correlations are set to 80% between
the 1st asset and the 2nd asset, 50%
between the 1st asset and the 3rd

asset and 30% between the 2nd

asset and the 3rd asset

Absolute Relative

1 50.00% 29.40% 14.70% 70.43%

2 20.00% 16.63% 3.33% 15.93%

3 30.00% 9.49% 2.85% 13.64%

Volatility 20.87%

Absolute Relative

1 31.15% 28.08% 8.74% 50.00%

2 21.90% 15.97% 3.50% 20.00%

3 46.96% 11.17% 5.25% 30.00%

Volatility 17.49%

Absolute Relative

1 19.69% 27.31% 5.38% 33.33%

2 32.44% 16.57% 5.38% 33.33%

3 47.87% 11.23% 5.38% 33.33%

Volatility 16.13%

ERC approach

Asset Weight
Marginal 

Risk

Risk Contribution

Asset Weight
Marginal 

Risk

Risk Contribution

Weight budgeting (or traditional) approach

Asset Weight
Marginal 

Risk

Risk Contribution

Risk budgeting approach
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The concept of risk budgeting

Question

We assume that the portfolio’s wealth is set to $1 000. Calculate the
nominal volatility of the previous WB, RB and ERC portfolios.
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The concept of risk budgeting

We have:

σ (xwb) = 103 × 20.87% = $208.7

σ (xrb) = 103 × 17.49% = $174.9

σ (xerc) = 103 × 16.13% = $161.3
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The concept of risk budgeting

Question

We increase the exposure of the 3 portfolios by $10 as follows:

∆x =

 ∆x1

∆x2

∆x3

 =

 $1
$5
$4


Calculate the nominal volatility of these new portfolios.
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The concept of risk budgeting

By assuming that ∆x ' 0, we have:

σ (xwb + ∆x) ≈ ($500 + $1)× 0.2940 +

($200 + $5)× 0.1663 +

($300 + $4)× 0.0949

≈ $210.2

σ (xrb + ∆x) ≈ $176.4 and σ (xerc + ∆x) ≈ $162.9.
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Uniform correlation

We assume a constant correlation matrix Cn (ρ), meaning that
ρi,j = ρ for all i 6= j
We have:

(Σx)i =
n∑

k=1

ρi,kσiσkxk

= σ2
i xi + ρσi

∑
k 6=i

σkxk

= σ2
i xi + ρσi

n∑
k=1

σkxk − ρσ2
i xi

= (1− ρ) xiσ
2
i + ρσi

n∑
k=1

xkσk

= σi

(
(1− ρ) xiσi + ρ

n∑
k=1

xkσk

)
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Uniform correlation

Since we have:

RC i =
xi (Σx)i

σ (x)

we deduce that RC i = RCj is equivalent to:

xiσi

(
(1− ρ) xiσi + ρ

n∑
k=1

xkσk

)
= xjσj

(
(1− ρ) xjσj + ρ

n∑
k=1

xkσk

)

It follows that xiσi = xjσj . Because
∑n

i=1 xi = 1, we deduce that:

xi =
σ−1

i∑n
j=1 σ

−1
j

Result

The weight allocated to Asset i is inversely proportional to its volatility
and does not depend on the value of the correlation
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Minimum uniform correlation

The global minimum variance portfolio is equal to:

xgmv =
Σ−11n

1>n Σ−11n

Let Σ = σσ> ◦ Cn (ρ) be the covariance matrix with Cn (ρ) the
constant correlation matrix

We have:
Σ−1 = Γ ◦ C−1

n (ρ)

with Γi,j = σ−1
i σ−1

j and:

C−1
n (ρ) =

ρ1n1>n − ((n − 1) ρ+ 1) In
(n − 1) ρ2 − (n − 2) ρ− 1
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Minimum uniform correlation

We deduce that the expression of the GMV weights are:

xgmv,i =
− ((n − 1) ρ+ 1)σ−2

i + ρ
∑n

j=1 (σiσj )
−1∑n

k=1

(
− ((n − 1) ρ+ 1)σ−2

k + ρ
∑n

j=1 (σkσj )
−1
)

The lower bound of Cn (ρ) is achieved for ρ = − (n − 1)−1

In this case, the solution becomes:

xgmv,i =

∑n
j=1 (σiσj )

−1∑n
k=1

∑n
j=1 (σkσj )

−1 =
σ−1

i∑n
k=1 σ

−1
k

Result

The ERC portfolio is equal to the GMV portfolio when the correlation is at
its lowest possible value:

lim
ρ→−(n−1)−1

xgmv = xerc
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Uniform volatility

If all volatilities are equal, i.e. σi = σ for all i , the risk contribution
becomes:

RC i =

(∑n
k=1 xixkρi,k

)
σ2

σ (x)

The ERC portfolio verifies then:

xi

(
n∑

k=1

xkρi,k

)
= xj

(
n∑

k=1

xkρj,k

)

We deduce that:

xi =

(∑n
k=1 xkρi,k

)−1∑n
j=1

(∑n
k=1 xkρj,k

)−1
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Uniform volatility

Result

The weight of asset i is inversely proportional to the weighted average of
correlations of Asset i

Remark

Contrary to the previous case, this solution is endogenous since xi is a
function of itself directly
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General case

In the general case, we have:

βi = β (ei | x) =
e>i Σx

x>Σx
=

(Σx)i

σ2 (x)

and:

RC i =
xi (Σx)i

σ (x)
= σ (x) xiβi

We deduce that RC i = RCj is equivalent to:

xiβi = xjβj

It follows that:

xi =
β−1

i∑n
j=1 β

−1
j
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General case

We notice that:

n∑
i=1

xiβi =
n∑

i=1

RC i

σ (x)
=

1

σ (x)

n∑
i=1

RC i = 1

and:
n∑

i=1

xiβi =
n∑

i=1

(
1∑n

j=1 β
−1
j

)
= 1

It follows that:
1∑n

j=1 β
−1
j

=
1

n

We finally obtain:

xi =
1

nβi
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General case

Result

The weight of Asset i is proportional to the inverse of its beta:

xi ∝ β−1
i

Remark

This solution is endogenous since xi is a function of itself because
βi = β (ei | x).
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General case

Example 5

We consider an investment universe of four assets with σ1 = 15%,
σ2 = 20%, σ3 = 30% and σ4 = 10%. The correlation of asset returns is
given by the following matrix:

ρ =


1.00
0.50 1.00
0.00 0.20 1.00
−0.10 0.40 0.70 1.00
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General case

Table 24: Composition of the ERC portfolio (Example 5)

Asset xi MRi βi RC i RC?i
1 31.34% 8.52% 0.80 2.67% 25.00%
2 17.49% 15.27% 1.43 2.67% 25.00%
3 13.05% 20.46% 1.92 2.67% 25.00%
4 38.12% 7.00% 0.66 2.67% 25.00%

Volatility 10.68%

We verify that:

x1 =
1

(4× 0.7978)
= 31.34%

Thierry Roncalli Asset Management (Lecture 2) 284 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition
Special cases
Properties
Numerical solution

Existence and uniqueness

We consider the following optimization problem:

y? (c) = arg min
1

2
y>Σy

u.c.
n∑

i=1

ln yi ≥ c

The Lagrange function is equal to:

L (y ;λc ) =
1

2
y>Σy − λc

(
n∑

i=1

ln yi − c

)

At the optimum, we have:

∂ L (y ;λc , λ)

∂ y
= 0n ⇔ (Σy)i −

λc

yi
= 0
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Existence and uniqueness

It follows that:
yi (Σy)i = λc

or equivalently:
RC i = RCj

Since we minimize a convex function subject to a lower convex
bound, the solution y? (c) exists and is unique
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Existence and uniqueness

Question

What is the difference between y? (c) and y? (c ′)?

Let y ′ = αy? (c). The first-order conditions are:

y?i (c) (Σy? (c))i = λc

and:
y ′i (Σy ′)i = α2λc = λc′

Since λc 6= 0, the Kuhn-Tucker condition becomes:

min

(
λc ,

n∑
i=1

ln y?i (c)− c

)
= 0⇔

n∑
i=1

ln y?i (c)− c = 0
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Existence and uniqueness

It follows that:
n∑

i=1

ln
y ′i (c)

α
= c

or:
n∑

i=1

ln y ′i (c) = c + n lnα = c ′

We deduce that:

α = exp

(
c ′ − c

n

)
y? (c ′) is a scaled solution of y? (c):

y? (c ′) = exp

(
c ′ − c

n

)
y? (c)
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Existence and uniqueness

The ERC portfolio is the solution y? (c) such that
∑n

i=1 y
?
i (c) = 1:

xerc =
y? (c)∑n

i=1 y
?
i (c)

and corresponds to the following value of the logarithmic barrier:

cerc = c − n ln
n∑

i=1

y?i (c)
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Existence and uniqueness

Theorem

Because of the previous results, xerc exists and is unique. This is the
solution of the following optimization problema:

xerc = arg min
1

2
x>Σx

u.c.


∑n

i=1 ln xi ≥ cerc
1>n x = 1
0n ≤ x ≤ 1n

aWe can add the last two constraints because they do not change the solution
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Location of the ERC portfolio

The global global minimum variance portfolio is defined by:

xgmv = arg minσ (x)

u.c. 1>n x = 1

We have:
L (x ;λ0) = σ (x)− λ0

(
1>n x − 1

)
The first-order condition is:

∂ L (x ;λ0)

∂ x
= 0n ⇔

∂ σ (x)

∂ x
− λ01n = 0n
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Location of the ERC portfolio

Theorem

The global minimum variance portfolio satisfies:

∂ σ (x)

∂ xi
=
∂ σ (x)

∂ xj

The marginal volatilities are then the same.
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Location of the ERC portfolio

The equally-weighted portfolio is defined by:

xi =
1

n

We deduce that:
xi = xj
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Location of the ERC portfolio

We have:
xi = xj (EW)

∂ σ (x)

∂ xi
=
∂ σ (x)

∂ xj
(GMV)

xi
∂ σ (x)

∂ xi
= xj

∂ σ (x)

∂ xj
(ERC)

The ERC portfolio is a combination of GMV and EW portfolios
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Volatility of the ERC portfolio

We consider the following optimization problem:

x? (c) = arg min
1

2
x>Σx

u.c.


∑n

i=1 ln xi ≥ c
1>n x = 1
0n ≤ x ≤ 1n

We know that there exists a scalar cerc such that:

x? (cerc) = xerc

If c = −∞, the logarithmic barrier constraint vanishes and we have:

x? (−∞) = xmv

where xmv is the long-only minimum variance portfolio
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Volatility of the ERC portfolio

We notice that the function f (x) =
∑n

i=1 ln xi such that 1>n x = 1
reaches its maximum when:

1

xi
= λ0

implying that xi = xj = n−1. In this case, we have:

cmax =
n∑

i=1

ln
1

n
= −n ln n

If c = −n ln n, we have:

x? (−n ln n) = xew

Because we have a convex minimization problem and a lower convex
bound, we deduce that:

c2 ≥ c1 ⇔ σ (x? (c2)) ≥ σ (x? (c1))
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Volatility of the ERC portfolio

Theorem

We obtain the following inequality:

σ (xmv) ≤ σ (xerc) ≤ σ (xew)

The ERC portfolio may be viewed as a portfolio “between” the MV
portfolio and the EW portfolio.

Remark

The ERC portfolio is a form of variance-minimizing portfolio subject to a
constraint of sufficient diversification in terms of weights

Relationship with naive diversification (1/n)
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Optimality of the ERC portfolio

Let us consider the tangency (or maximum Sharpe ratio) portfolio defined
by:

xmsr = arg max
µ (x)− r

σ (x)

where µ (x) = x>µ and σ (x) =
√
x>Σx . We recall that the portfolio is

MSR if and only if:
∂xi µ (x)− r

∂xi σ (x)
=
µ (x)− r

σ (x)

Therefore, the MSR portfolio xmsr verifies the following relationship:

µ− r1n =

(
µ (xmsr)− r

σ2 (xmsr)

)
Σxmsr

= SR (xmsr | r)
Σxmsr

σ (xmsr)
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Optimality of the ERC portfolio

If we assume a constant correlation matrix, the ERC portfolio is
defined by:

xi =
c

σi

where c =
(∑n

j=1 σ
−1
j

)−1

We have:

(Σx)i =
n∑

j=1

ρi,jσiσjxj = cσi

n∑
j=1

ρi,j = cσi (1 + ρ (n − 1))

We deduce that:

∂ σ (x)

∂ xi
= c

σi ((1− ρ) + ρn)

σ (x)
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Optimality of the ERC portfolio

The portfolio volatility is equal to:

σ2 (x) = σ (x)
∑n

i=1
xi
∂ σ (x)

∂ xi

= σ (x)
∑n

i=1

c

σi
· c σi ((1− ρ) + ρn)

σ (x)

= nc2 ((1− ρ) + ρn)

The ERC portfolio is the MSR portfolio if and only if:

µi − r =

(∑n
j=1 (µj − r) xj

σ2 (x)

)
(Σx)i

=

(∑n
j=1 (µj − r) cσ−1

j

nc2 ((1− ρ) + ρn)

)
cσi (1 + ρ (n − 1))

=

1

n

n∑
j=1

µj − r

σj

σi
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Optimality of the ERC portfolio

We can write this condition as follows:

µi = r + SR ·σi

where:

SR =
1

n

n∑
j=1

µj − r

σj

Theorem

The ERC portfolio is the tangency or MSR portfolio if and only if the
correlation is uniform and the Sharpe ratio is the same for all the assets
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Optimality of the ERC portfolio

Example 6

We consider an investment universe of five assets. The volatilities are
respectively equal to 5%, 7%, 9%, 10% and 15%. The risk-free rate is
equal to 2%. The correlation is uniform.
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Figure 23: Location of the ERC portfolio in the mean-variance diagram when the
Sharpe ratios are the same (Example 6)
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Optimality of the ERC portfolio

Example 7

We consider an investment universe of five assets. The volatilities are
respectively equal to 5%, 7%, 9%, 10% and 15%. The correlation matrix
is equal to:

ρ =


1.00
0.50 1.00
0.25 0.25 1.00
0.00 0.00 0.00 1.00
−0.25 −0.25 −0.25 0.00 1.00
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Figure 24: Location of the ERC portfolio in the mean-variance diagram when the
Sharpe ratios are the same (Example 7)
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The SQP approach

The ERC portfolio satisfies:

xi · (Σx)i = xj · (Σx)j

or:

xi · (Σx)i =
x>Σx

n
We deduce that:

xerc = arg min f (x)

u.c.

{
1>n x = 1
0n ≤ x ≤ 1n

and f (xerc) = 0

Remark

The optimization problem is solved using the sequential quadratic
programming (or SQP) algorithm
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The SQP approach

We can choose:

f (x) =
n∑

i=1

(
xi · (Σx)i −

1

n
x>Σx

)2

or:

f (x ; b) =
n∑

i=1

n∑
j=1

(
xi · (Σx)i − xj · (Σx)j

)2
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The Jacobi approach

We have:

βi (x) =
(Σx)i

x>Σx

The ERC portfolio satisfies:

xi =
β−1

i (x)∑n
j=1 β

−1
j (x)

or:

xi ∝
1

(Σx)i
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The Jacobi approach

The Jacobi algorithm consists in finding the fixed point by considering the
following iterations:

1 We set k ← 0 and we note x (0) the vector of starting values4

2 At iteration k + 1, we compute:

y
(k+1)
i ∝ 1

βi

(
x (k)

) =
1(

Σx (k)
)

i

and:

x
(k+1)
i =

y
(k+1)
i∑n

j=1 y
(k+1)
j

3 We iterate Step 2 until convergence
4For instance, we can use the following rule:

x
(0)
i =

σ−1
i∑n

j=1 σ
−1
j
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The Newton-Raphson approach

We consider the following optimization problem:

x∗ = arg min f (x)

The Newton-Raphson iteration is defined by:

x (k+1) = x (k) −∆x (k)

where ∆x (k) is the inverse of the Hessian matrix of f
(
x (k)

)
times the

gradient vector of f
(
x (k)

)
:

∆x (k) =
[
∂2

x f
(
x (k)

)]−1

∂x f
(
x (k)

)
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The Newton-Raphson approach

We consider the Lagrange function:

f (y) =
1

2
y>Σy − λc

n∑
i=1

ln yi

We choose a value of λc (e.g. λc = 1)

We note y−m the vector n × 1 matrix with elements
(
y−m

1 , . . . , y−m
n

)
and diag (y−m) the n × n diagonal matrix with elements(
y−m

1 , . . . , y−m
n

)
:

diag
(
y−m

)
=


y−m

1 0 0
0 y−m

2
. . . 0

0 0 y−m
n
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The Newton-Raphson approach

We apply the Newton-Raphson algorithm with:

∂y f (y) = Σy − λcy
−1

and:
∂2

y f (y) = Σ + λc diag
(
y−2

)
The solution is given by:

xerc =
y?∑n

i=1 y
?
i
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The Newton-Raphson approach

For the starting value y
(0)
i , we can assume that the correlations are

uniform:

y
(0)
i =

σ−1
i∑n

j=1 σ
−1
j

At the optimum, we recall that λc = y?i · (Σy?)i . We deduce that:

λc =
1

n

n∑
i=1

y?i · (Σy?)i =
σ2 (y?)

n

Therefore, we can choose:

λc =
σ2
(
y (0)
)

n
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The Newton-Raphson approach

From a numerical point of view, it may be important to control the
magnitude order α of y? (e.g. α = 10%, α = 1 or α = 10). For
instance, we don’t want that the magnitude order is 10−5 or 105. In
this case, we can use the following rule:

λc = nα2σ2 (xerc)

For example, if n = 10 and α = 5, and we guess that the volatility of
the ERC portfolio is around 10%, we set:

λc = 10× 52 × 0.102 = 2.5
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The CCD approach

Table 25: Cyclical coordinate descent algorithm

The goal is to find the solution x? = arg min f (x)
We initialize the vector x (0)

Set k ← 0
repeat

for i = 1 : n do
x

(k+1)
i = arg minκ f

(
x

(k+1)
1 , . . . , x

(k+1)
i−1 ,κ, x (k)

i+1, . . . , x
(k)
n

)
end for
k ← k + 1

until convergence
return x? ← x (k)
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The CCD approach

We have:

L (y ;λc ) = arg min
1

2
y>Σy − λc

n∑
i=1

ln yi

The first-order condition is equal to:

∂ L (y ;λ)

∂ yi
= (Σy)i −

λc

yi
= 0

or:
yi · (Σy)i − λc = 0

It follows that:

σ2
i y

2
i +

σi

∑
j 6=i

ρi,jσjyj

 yi − λc = 0
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The CCD approach

We recognize a second-degree equation:

αiy
2
i + βiyi + γi = 0

1 The polynomial function is convex because we have αi = σ2
i > 0

2 The product of the roots is negative:

y ′i y
′′
i =

γi

αi
= −λc

σ2
i

< 0

3 The discriminant is positive:

∆ = β2
i − 4αiγi =

σi

∑
j 6=i

ρi,jσjyj

2

+ 4σ2
i λc > 0

We always have two solutions with opposite signs. We deduce that the
solution is the positive root of the second-degree equation:

y?i = y ′′i =
−βi +

√
β2

i − 4αiγi

2αi

Thierry Roncalli Asset Management (Lecture 2) 317 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition
Special cases
Properties
Numerical solution

The CCD approach

The CCD algorithm consists in iterating the following formula:

y
(k+1)
i =

−β(k+1)
i +

√(
β

(k+1)
i

)2

− 4α
(k+1)
i γ

(k+1)
i

2α
(k+1)
i

where:

α
(k+1)
i = σ2

i

β
(k+1)
i = σi

(∑
j<i

ρi,jσjy
(k+1)
j +

∑
j>i

ρi,jσjy
(k)
j

)
γ

(k+1)
i = −λc

The ERC portfolio is the scaled solution y?:

xerc =
y?∑n

i=1 y
?
i
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Efficiency of the algorithms

CCD � NR � SQP � Jacobi
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Definition of RB portfolios

Definition

A risk budgeting (RB) portfolio x satisfies the following conditions:

RC1 = b1R (x)
...

RC i = biR (x)
...

RCn = bnR (x)

where R (x) is a coherent and convex risk measure and b = (b1, . . . , bn) is
a vector of risk budgets such that bi ≥ 0 and

∑n
i=1 bi = 1
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Definition of RB portfolios

Remark

The ERC portfolio is a particular case of RB portfolios when R (x) = σ (x)

and bi =
1

n
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Coherent risk measure

1 Subadditivity
R (x1 + x2) ≤ R (x1) +R (x2)

2 Homogeneity
R (λx) = λR (x) if λ ≥ 0

3 Monotonicity
if x1 ≺ x2, then R (x1) ≥ R (x2)

4 Translation invariance

if m ∈ R, then R (x + m) = R (x)−m
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Convex risk measure

The convexity property is defined as follows:

R (λx1 + (1− λ) x2) ≤ λR (x1) + (1− λ)R (x2)

This condition means that diversification should not increase the risk

Euler allocation principle

This property is necessary for the Euler allocation principle:

R (x) =
n∑

i=1

xi
∂R (x)

∂ xi
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Some risk measures

The portfolio loss is L (x) = −R (x) where R (x) is the portfolio return.
We consider then different risk measures:

Volatility of the loss

R (x) = σ (L (x)) = σ (x)

Standard deviation-based risk measure

R (x) = SDc (x) = E [L (x)] + c · σ (L (x)) = −µ (x) + c · σ (x)

Value-at-risk

R (x) = VaRα (x) = inf {` : Pr {L (x) ≤ `} ≥ α}

Expected shortfall

R (x) = ESα (x) = E [L (x) | L (x) ≥ VaRα (x)] =
1

1− α

∫ 1

α

VaRu (x) du
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Gaussian risk measures

We assume that the asset returns are normally distributed: R ∼ N (µ,Σ)

We have:

σ (x) =
√
x>Σx

SDc (x) = −x>µ+ c ·
√
x>Σx

VaRα (x) = −x>µ+ Φ−1 (α)
√
x>Σx

ESα (x) = −x>µ+

√
x>Σx

(1− α)
φ
(
Φ−1 (α)

)
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Gaussian risk contributions

Volatility σ (x)

RC i = xi ·
(Σx)i√
x>Σx

Standard deviation-based risk measure SDc (x)

RC i = xi ·
(
−µi + c

(Σx)i√
x>Σx

)
Value-at-risk VaRα (x)

RC i = xi ·
(
−µi + Φ−1 (α)

(Σx)i√
x>Σx

)
Expected shortfall ESα (x)

RC i = xi ·

(
−µi +

(Σx)i

(1− α)
√
x>Σx

φ
(
Φ−1 (α)

))
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Gaussian risk contributions

Example 8

We consider three assets. We assume that their expected returns are equal
to zero whereas their volatilities are equal to 30%, 20% and 15%. The
correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


The portfolio is equal to (50%, 20%, 30%).
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Gaussian risk contributions

Table 26: Risk decomposition of the portfolio (Example 8)

R (x) Asset xi MRi RC i RC?i

Volatility

1 50.00 29.40 14.70 70.43
2 20.00 16.63 3.33 15.93
3 30.00 9.49 2.85 13.64

σ (x) 20.87

Value-at-risk

1 50.00 68.39 34.19 70.43
2 20.00 38.68 7.74 15.93
3 30.00 22.07 6.62 13.64

VaR99% (x) 48.55

Expected shortfall

1 50.00 78.35 39.17 70.43
2 20.00 44.31 8.86 15.93
3 30.00 25.29 7.59 13.64

ES99% (x) 55.62

Thierry Roncalli Asset Management (Lecture 2) 328 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Gaussian risk contributions

Example 9

We consider three assets. We assume that their expected returns are equal
to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and
15%. The correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


The portfolio is equal to (50%, 20%, 30%).
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Gaussian risk contributions

Table 27: Risk decomposition of the portfolio (Example 9)

R (x) Asset xi MRi RC i RC?i

Volatility

1 50.00 29.40 14.70 70.43
2 20.00 16.63 3.33 15.93
3 30.00 9.49 2.85 13.64

σ (x) 20.87

Value-at-risk

1 50.00 58.39 29.19 72.71
2 20.00 33.68 6.74 16.78
3 30.00 14.07 4.22 10.51

VaR99% (x) 40.15

Expected shortfall

1 50.00 68.35 34.17 72.37
2 20.00 39.31 7.86 16.65
3 30.00 17.29 5.19 10.98

ES99% (x) 47.22

Thierry Roncalli Asset Management (Lecture 2) 330 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Non-Gaussian risk contributions

They are not frequently used in asset management and portfolio
allocation, except in the case of skewed assets (Bruder et al., 2016; Lezmi
et al., 2018)

Non-parametric risk contributions are given in Chapter 2 in Roncalli (2013)
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Gaussian RB portfolios

Example 10

We consider three assets. We assume that their expected returns are equal
to 10%, 5% and 8% whereas their volatilities are equal to 30%, 20% and
15%. The correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.80 1.00
0.50 0.30 1.00


The risk budgets are equal to (50%, 20%, 30%).
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Gaussian RB portfolios

Table 28: Risk budgeting portfolios (Example 10)

R (x) Asset xi MRi RC i RC?i

Volatility

1 31.14 28.08 8.74 50.00
2 21.90 15.97 3.50 20.00
3 46.96 11.17 5.25 30.00

σ (x) 17.49

Value-at-risk

1 29.18 54.47 15.90 50.00
2 20.31 31.30 6.36 20.00
3 50.50 18.89 9.54 30.00

VaR99% (x) 31.79

Expected shortfall

1 29.48 64.02 18.87 50.00
2 20.54 36.74 7.55 20.00
3 49.98 22.65 11.32 30.00

ES99% (x) 37.74
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Special cases

The case of uniform correlation5 ρi,j = ρ
1 Minimum correlation

xi

(
− 1

n − 1

)
=

σ−1
i∑n

j=1 σ
−1
j

2 Zero correlation

xi (0) =

√
biσ
−1
i∑n

j=1

√
bjσ
−1
j

3 Maximum correlation

xi (1) =
biσ
−1
i∑n

j=1 bjσ
−1
j

The general case

xi =
biβ
−1
i∑n

j=1 bjβ
−1
j

where βi is the beta of Asset i with respect to the RB portfolio
5The solution is noted xi (ρ).
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Existence and uniqueness

We have:
∂ σ (x)

∂ xi
=

xiσ
2
i + σi

∑
j 6=i xjρi,jσj

σ (x)

Suppose that the risk budget bk is equal to zero. This means that:

xk

xkσ
2
k + σk

∑
j 6=k

xjρk,jσj

 = 0

We obtain two solutions:

1 The first one is:
x ′k = 0

2 The second one verifies:

x ′′k = −
∑

j 6=k xjρk,jσj

σk
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Existence and uniqueness

If ρk,j ≥ 0 for all j , we have
∑

j 6=k xjρk,jσj ≥ 0 because xj ≥ 0 and
σj > 0. This implies that x ′′k ≤ 0 meaning that x ′k = 0 is the unique
positive solution

The only way to have x ′′k > 0 is to have some negative correlations
ρk,j . In this case, this implies that:∑

j 6=k

xjρk,jσj < 0

If we consider a universe of three assets, this constraint is verified for
k = 3 and a covariance matrix such that ρ1,3 < 0 and ρ2,3 < 0
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Existence and uniqueness

Example 11

We have σ1 = 20%, σ2 = 10%, σ3 = 5%, ρ1,2 = 50%, ρ1,3 = −25% and
ρ2,3 = −25%

If the risk budgets are equal to (50%, 50%, 0%), the two solutions are:

(33.33%, 66.67%, 0%)

and:
(20%, 40%, 40%)

Two questions

1 How many solutions do we have in the general case?

2 Which solution is the best?
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Table 29: First solution (Example 11)

Asset xi MRi RC i RC?i
1 33.33 17.32 5.77 50.00
2 66.67 8.66 5.77 50.00
3 0.00 −1.44 0.00 0.00

Volatility 11.55

Table 30: Second solution (Example 11)

Asset xi MRi RC i RC?i
1 20.00 16.58 3.32 50.00
2 40.00 8.29 3.32 50.00
3 40.00 0.00 0.00 0.00

Volatility 6.63
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Existence and uniqueness
The case with strictly positive risk budgets

We consider the following optimization problem:

y? = arg minR (y)

u.c.

{ ∑n
i=1 bi ln yi ≥ c

y ≥ 0n

where c is an arbitrary constant

The associated Lagrange function is:

L (y ;λ, λc ) = R (y)− λ>y − λc

(
n∑

i=1

bi ln yi − c

)

where λ ∈ Rn and λc ∈ R
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Existence and uniqueness
The case with strictly positive risk budgets

The solution y? verifies the following first-order condition:

∂ L (y ;λ, λc )

∂ yi
=
∂R (y)

∂ yi
− λi − λc

bi

yi
= 0

The Kuhn-Tucker conditions are:{
min (λi , yi ) = 0
min

(
λc ,
∑n

i=1 bi ln yi − c
)

= 0
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Existence and uniqueness
The case with strictly positive risk budgets

Because ln yi is not defined for yi = 0, it follows that yi > 0 and
λi = 0

We note that the constraint
∑n

i=1 bi ln yi = c is necessarily reached
(because the solution cannot be y? = 0n), then λc > 0 and we have:

yi
∂R (y)

∂ yi
= λcbi

We verify that the risk contributions are proportional to the risk
budgets:

RC i = λcbi
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Existence and uniqueness
The case with strictly positive risk budgets

Theorem

The optimization program has a unique solution and the RB portfolio is
equal to:

xrb =
y?∑n

i=1 y
?
i

Remark

We note that the convexity property of the risk measure is essential to the
existence and uniqueness of the RB portfolio. If R (x) is not convex, the
preceding analysis becomes invalid.

Thierry Roncalli Asset Management (Lecture 2) 342 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Existence and uniqueness
Effect on the solution of setting risk budgets to zero

Let N be the set of assets such that bi = 0

The Lagrange function becomes:

L (y ;λ, λc ) = R (y)− λ>y − λc

(∑
i /∈N

bi ln yi − c

)
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

The solution y? verifies the following first-order conditions:

∂ L (y ;λ, λc )

∂ yi
=

{
∂yi R (y)− λi − λcbiy

−1
i = 0 if i /∈ N

∂yi R (y)− λi = 0 if i ∈ N

If i /∈ N , the previous analysis is valid and we verify that risk
contributions are proportional to the risk budgets:

yi
∂R (y)

∂ yi
= λcbi

If i ∈ N , we must distinguish two cases:

1 If yi = 0, it implies that λi > 0 and ∂yi R (y) > 0
2 In the other case, if yi > 0, it implies that λi = 0 and ∂yi R (y) = 0

The solution yi = 0 or yi > 0 if i ∈ N will then depend on the
structure of the covariance matrix Σ (in the case of a Gaussian risk
measure)
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

Theorem

We conclude that the solution y? of the optimization problem exists and is
unique even if some risk budgets are set to zero. As previously, we deduce
the normalized RB portfolio xrb by scaling y?. This solution, noted S1,
satisfies the following relationships:

RC i = xi · ∂xi R (x) = bi if i /∈ N xi = 0 and ∂xi R (x) > 0 (i)
or

xi > 0 and ∂xi R (x) = 0 (ii)
if i ∈ N

The conditions (i) and (ii) are mutually exclusive for one asset i ∈ N , but
not necessarily for all the assets i ∈ N .
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

The previous analysis implies that there may be several solutions to the
following non-linear system when bi = 0 for i ∈ N :

RC1 = b1R (x)
...

RC i = biR (x)
...

RCn = bnR (x)

Let N = N1

⊔
N2 where N1 is the set of assets verifying the

condition (i) and N2 is the set of assets verifying the condition (ii)

The number of solutions is equal to 2m where m = |N2| is the
cardinality of N2
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Existence and uniqueness
Effect on the solution of setting risk budgets to zero

We note S2 the solution with xi = 0 for all assets such that bi = 0. Even if
S2 is the solution expected by the investor, the only acceptable solution is
S1. Indeed, if we impose bi = εi where εi > 0 is a small number for
i ∈ N , we obtain:

lim
εi→0
S = S1

The solution converges to S1, and not to S2 or the other solutions
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Remark

The non-linear system is not well-defined, whereas the optimization
problem is the right approach to define a RB portfolio

Definition

A RB portfolio is a minimum risk portfolio subject to a diversification
constraint, which is defined by the logarithmic barrier function
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Existence and uniqueness

Example 12

We consider a universe of three assets with σ1 = 20%, σ2 = 10% and
σ3 = 5%. The correlation of asset returns is given by the following matrix:

ρ =

 1.00
0.50 1.00
ρ1,3 ρ2,3 1.00


We would like to build a RB portfolio such that the risk budgets with
respect to the volatility risk measure are (50%, 50%, 0%). Moreover, we
assume that ρ1,3 = ρ2,3.
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Existence and uniqueness

Table 31: RB solutions when the risk budget b3 is equal to 0 (Example 12)

ρ1,3 = ρ2,3 Solution 1 2 3 σ (x)

−25%

xi 20.00% 40.00% 40.00%
S1 MRi 16.58% 8.29% 0.00% 6.63%

RC i 50.00% 50.00% 0.00%
xi 33.33% 66.67% 0.00%

S2 MRi 17.32% 8.66% −1.44% 11.55%
RC i 50.00% 50.00% 0.00%
xi 19.23% 38.46% 42.31%

S ′1 MRi 16.42% 8.21% 0.15% 6.38%
RC i 49.50% 49.50% 1.00%

25%
xi 33.33% 66.67% 0.00%

S1 MRi 17.32% 8.66% 1.44% 11.55%
RC i 50.00% 50.00% 0.00%

Thierry Roncalli Asset Management (Lecture 2) 350 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Existence and uniqueness

Figure 25: Evolution of the portfolio’s volatility with respect to x3
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Location of the RB portfolio

We have:
xi

bi
=

xj

bj
(WB)

∂R (x)

∂ xi
=
∂R (x)

∂ xj
(MR)

1

bi

(
xi
∂R (x)

∂ xi

)
=

1

bj

(
xj
∂R (x)

∂ xj

)
(ERC)

The RB portfolio is a combination of MR (long-only minimum risk)
and WB (weight budgeting) portfolios
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Risk of the RB portfolio

Theorem

We obtain the following inequality:

R (xmr) ≤ R (xrb) ≤ R (xwb)

The RB portfolio may be viewed as a portfolio “between” the MR portfolio
and the WB portfolio
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Diversification index

Definition

The diversification index is equal to:

D (x) =
R
(∑n

i=1 Li

)∑n
i=1R (Li )

=
R (x)∑n

i=1 xiR (ei )
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Diversification index

The diversification index is the ratio between the risk measure of
portfolio x and the weighted risk measure of the assets

If R is a coherent risk measure, we have D (x) ≤ 1

If D (x) = 1, it implies that the losses are comonotonic

If R is the volatility risk measure, we obtain:

D (x) =

√
x>Σx∑n
i=1 xiσi

It takes the value one if the asset returns are perfectly correlated
meaning that the correlation matrix is Cn (1)

Thierry Roncalli Asset Management (Lecture 2) 355 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Concentration index

Let π ∈ Rn
+ such that 1>n π = 1 ⇒ π is a probability distribution

The probability distribution π+ is perfectly concentrated if there exists
one observation i0 such that π+

i0
= 1 and π+

i = 0 if i 6= i0

When n tends to +∞, the limit distribution is noted π+
∞

On the opposite, the probability distribution π− such that π−i = 1/n
for all i = 1, . . . , n has no concentration
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Concentration index

Definition

A concentration index is a mapping function C (π) such that C (π)
increases with concentration and verifies:

C
(
π−
)
≤ C (π) ≤ C

(
π+
)

For instance, if π represents the weights of the portfolio, C (π)
measures then the weight concentration

By construction, C (π) reaches the minimum value if the portfolio is
equally weighted

To measure the risk concentration of the portfolio, we define π as the
distribution of the risk contributions. In this case, the portfolio
corresponding to the lower bound C (π−) = 0 is the ERC portfolio
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Herfindahl index

Definition

The Herfindahl index associated with π is defined as:

H (π) =
n∑

i=1

π2
i

This index takes the value 1 for the probability distribution π+ and
1/n for the distribution with uniform probabilities π−

To scale the statistics onto [0, 1], we consider the normalized index
H? (π) defined as follows:

H? (π) =
nH (π)− 1

n − 1
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Gini index

The Gini index is based on the Lorenz curve of inequality

Let X and Y be two random variables. The Lorenz curve y = L (x) is
defined by the following parameterization:{

x = Pr {X ≤ x}
y = Pr {Y ≤ y | X ≤ x}

The Lorenz curve admits two limit cases

1 If the portfolio is perfectly concentrated, the distribution of the
weights corresponds to π+

∞
2 On the opposite, the least concentrated portfolio is the equally

weighted portfolio and the Lorenz curve is the bisecting line y = x
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Gini index

Figure 26: Geometry of the Lorenz curve
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Gini index

Definition

The Gini index is then defined as:

G (π) =
A

A + B

with A the area between L (π−) and L (π), and B the area between L (π)
and L (π+

∞)

Thierry Roncalli Asset Management (Lecture 2) 361 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Definition of RB portfolios
Properties of RB portfolios
Diversification measures
Using risk factors instead of assets

Gini index

By construction, we have G (π−) = 0, G (π+
∞) = 1 and:

G (π) =
(A + B)− B

A + B

= 1− 1

A + B
B

= 1− 2

∫ 1

0

L (x) dx

In the case when π is a discrete probability distribution, we obtain:

G (π) =
2
∑n

i=1 iπi :n

n
∑n

i=1 πi :n
− n + 1

n

where {π1:n, . . . , πn:n} are the ordered statistics of {π1, . . . , πn}.
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Shannon entropy

Definition

The Shannon entropy is equal to:

I (π) = −
n∑

i=1

πi lnπi

The diversity index corresponds to the statistic:

I? (π) = exp (I (π))

We have I? (π−) = n and I? (π+) = 1
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Impact of the reparametrization on the asset universe

We consider a set of m primary assets (A′1, . . . ,A′m) with a
covariance matrix Ω

We define n synthetic assets (A1, . . . ,An) which are composed of the
primary assets

We denote W = (wi,j ) the weight matrix such that wi,j is the weight
of the primary asset A′j in the synthetic asset Ai (we have∑m

j=1 wi,j = 1)

The covariance matrix of the synthetic assets Σ is equal to WΩW>

The synthetic assets can be interpreted as portfolios of the primary
assets

For example, A′j may represent a stock whereas Ai may be an index
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Impact of the reparametrization on the asset universe

1 We consider a portfolio x = (x1, . . . , xn) defined with respect to the
synthetic assets. We have:

RC i = xi ·
(Σx)i√
x>Σx

2 We also define the portfolio with respect to the primary assets. In this
case, the composition is y = (y1, . . . , ym) where yj =

∑n
i=1 xiwi,j (or

y = W>x). We have:

RCj = yj ·
(Ωy)j√
y>Ωy
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Impact of the reparametrization on the asset universe

Example 13

We have six primary assets. The volatility of these assets is respectively
20%, 30%, 25%, 15%, 10% and 30%. We assume that the assets are not
correlated. We consider two equally weighted synthetic assets with:

W =

(
1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

)
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Impact of the reparametrization on the asset universe

Table 32: Risk decomposition of Portfolio #1 with respect to the synthetic
assets (Example 13)

Asset i xi MRi RC i RC?i
A1 36.00 9.44 3.40 33.33
A2 38.00 8.90 3.38 33.17
A3 26.00 13.13 3.41 33.50

Table 33: Risk decomposition of Portfolio #1 with respect to the primary assets
(Example 13)

Asset j yj MRj RCj RC?j
A′1 9.00 3.53 0.32 3.12
A′2 9.00 7.95 0.72 7.02
A′3 31.50 19.31 6.08 59.69
A′4 31.50 6.95 2.19 21.49
A′5 9.50 0.93 0.09 0.87
A′6 9.50 8.39 0.80 7.82
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Table 34: Risk decomposition of Portfolio #2 with respect to the synthetic
assets (Example 13)

Asset i xi MRi RC i RC?i
A1 48.00 9.84 4.73 49.91
A2 50.00 9.03 4.51 47.67
A3 2.00 11.45 0.23 2.42

Table 35: Risk decomposition of Portfolio #2 with respect to the primary assets
(Example 13)

Asset j yj MRj RCj RC?j
A′1 12.00 5.07 0.61 6.43
A′2 12.00 11.41 1.37 14.46
A′3 25.50 16.84 4.29 45.35
A′4 25.50 6.06 1.55 16.33
A′5 12.50 1.32 0.17 1.74
A′6 12.50 11.88 1.49 15.69
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Figure 27: Lorenz curve of risk contributions (Example 13)
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Risk decomposition with respect to the risk factors

We consider a set of n assets {A1, . . . , An} and a set of m risk
factors {F1, . . . , Fm}
Rt is the (n × 1) vector of asset returns at time t

Σ is the covariance matrix of asset returns

Ft is the (m × 1) vector of factor returns at time t

Ω is the covariance matrix of factor returns
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Linear factor model

We consider the linear factor model:

Rt = AFt + εt

where Ft and εt are two uncorrelated random vectors, εt is a centered
random vector (n × 1) of covariance D and A is the (n ×m) loadings
matrix

We have the following relationship:

Σ = AΩA> + D
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Risk decomposition with respect to the risk factors

We decompose the portfolio’s asset exposures x by the portfolio’s risk
factors exposures y in the following way:

x = B+y + B̃+ỹ

where:

B+ is the Moore-Penrose inverse of A>

B̃+ is any n × (n −m) matrix that spans the left nullspace of B+

ỹ corresponds to n −m residual (or additional) factors that have no
economic interpretation

It follows that: {
y = A>x

ỹ = B̃x

where B̃ = ker
(
A>
)>
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Risk decomposition I

We can show that the marginal risk of the jth factor exposure is given
by:

MR (Fj ) =
∂ σ (x)

∂ yj
=

(A+Σx)j

σ (x)

whereas its risk contribution is equal to:

RC (Fj ) = yj
∂ σ (x)

∂ yj
=

(
A>x

)
j
· (A+Σx)j

σ (x)
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Risk decomposition II

For the residual factors, we have:

MR
(
F̃j

)
=
∂ σ (x)

∂ ỹj
=

(
B̃Σx

)
j

σ (x)

and:

RC
(
F̃j

)
= ỹj

∂ σ (x)

∂ ỹj
=

(
B̃x
)

j
·
(
B̃Σx

)
j

σ (x)
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Remark

We can show that these risk contributions satisfy the allocation principle:

σ (x) =
m∑

j=1

RC (Fj ) +
n−m∑
j=1

RC
(
F̃j

)
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Risk decomposition with respect to the risk factors

Let pinv (C ) and null (C ) be the Moore-Penrose pseudo-inverse and the
orthonormal basis for the right null space of C

1 Computation of A+

A+ = pinv (A) =
(
A>A

)−1
A>

2 Computation of B
B = A>

3 Computation of B+

B+ = pinv (B) = B>
(
BB>

)−1

4 Computation of B̃

B̃ = pinv
(
null

(
B+>

))
·
(
In − B+A>

)
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Remark

The previous results can be extended to other coherent and convex risk
measures (Roncalli and Weisang, 2016)
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Example 14

We consider an investment universe with four assets and three factors.
The loadings matrix A is:

A =


0.9 0.0 0.5
1.1 0.5 0.0
1.2 0.3 0.2
0.8 0.1 0.7


The three factors are uncorrelated and their volatilities are 20%, 10% and
10%. We assume a diagonal matrix D with specific volatilities 10%, 15%,
10% and 15%.
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The correlation matrix of asset returns is (in %):

ρ =


100.0

69.0 100.0
79.5 76.4 100.0
66.2 57.2 66.3 100.0


and their volatilities are respectively equal to 21.19%, 27.09%, 26.25% and
23.04%.
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We obtain that:

A+ =

 1.260 −0.383 1.037 −1.196
−3.253 2.435 −1.657 2.797
−0.835 0.208 −1.130 2.348


and:

B̃ =
(

0.533 0.452 −0.692 −0.183
)
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Risk decomposition with respect to the risk factors

Table 36: Risk decomposition of the EW portfolio with respect to the assets
(Example 14)

Asset xi MRi RC i RC?i
1 25.00 18.81 4.70 21.97
2 25.00 23.72 5.93 27.71
3 25.00 24.24 6.06 28.32
4 25.00 18.83 4.71 22.00

Volatility 21.40

Table 37: Risk decomposition of the EW portfolio with respect to the risk factors
(Example 14)

Factor yj MRj RCj RC?j
F1 100.00 17.22 17.22 80.49
F2 22.50 9.07 2.04 9.53
F3 35.00 6.06 2.12 9.91

F̃1 2.75 0.52 0.01 0.07
Volatility 21.40
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Risk factor parity (or RFP) portfolios

RFP portfolios are defined by:

RC (Fj ) = bjR (x)

They are computed using the following optimization problem:

(y?, ŷ?) = arg min
m∑

j=1

(RC (Fj )− bjR (x))2

u.c. 1>n

(
B+y + B̃+ỹ

)
= 1
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Risk factor parity (or RFP) portfolios

Example 15

We consider an investment universe with four assets and three factors.
The loadings matrix A is:

A =


0.9 0.0 0.5
1.1 0.5 0.0
1.2 0.3 0.2
0.8 0.1 0.7


The three factors are uncorrelated and their volatilities are 20%, 10% and
10%. We assume a diagonal matrix D with specific volatilities 10%, 15%,
10% and 15%. We consider the following factor risk budgets:

b = (49%, 25%, 25%)
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Risk factor parity (or RFP) portfolios

Table 38: Risk decomposition of the RFP portfolio with respect to the risk
factors (Example 15)

Factor yj MRj RCj RC?j
F1 93.38 11.16 10.42 49.00
F2 24.02 22.14 5.32 25.00
F3 39.67 13.41 5.32 25.00

F̃1 16.39 1.30 0.21 1.00
Volatility 21.27

Table 39: Risk decomposition of the RFP portfolio with respect to the assets
(Example 15)

Asset xi MRi RC i RC?i
1 15.08 17.44 2.63 12.36
2 38.38 23.94 9.19 43.18
3 0.89 21.82 0.20 0.92
4 45.65 20.29 9.26 43.54

Volatility 21.27
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Minimizing the risk concentration between the risk factors

We now consider the following problem:

RC (Fj ) ' RC (Fk )

⇒ The portfolios are computed by minimizing the risk concentration
between the risk factors

Remark

We can use the Herfindahl index, the Gini index or the Shanon entropy
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Minimizing the risk concentration between the risk factors

Example 16

We consider an investment universe with four assets and three factors.
The loadings matrix A is:

A =


0.9 0.0 0.5
1.1 0.5 0.0
1.2 0.3 0.2
0.8 0.1 0.7


The three factors are uncorrelated and their volatilities are 20%, 10% and
10%. We assume a diagonal matrix D with specific volatilities 10%, 15%,
10% and 15%.
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Table 40: Risk decomposition of the balanced RFP portfolio with respect to the
risk factors (Example 16)

Factor yj MRj RCj RC?j
F1 91.97 7.91 7.28 33.26
F2 25.78 28.23 7.28 33.26
F3 42.22 17.24 7.28 33.26

F̃1 6.74 0.70 0.05 0.21
Volatility 21.88

Table 41: Risk decomposition of the balanced RFP portfolio with respect to the
assets (Example 16)

Asset xi MRi RC i RC?i
1 0.30 16.11 0.05 0.22
2 39.37 23.13 9.11 41.63
3 0.31 20.93 0.07 0.30
4 60.01 21.09 12.66 57.85

Volatility 21.88
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Minimizing the risk concentration between the risk factors

We have H? = 0, G = 0 and I? = 3
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Table 42: Balanced RFP portfolios with xi ≥ 10% (Example 16)

Criterion H (x) G (x) I (x)
x1 10.00 10.00 10.00
x2 22.08 18.24 24.91
x3 10.00 10.00 10.00
x4 57.92 61.76 55.09
H? 0.0436 0.0490 0.0453
G 0.1570 0.1476 0.1639
I? 2.8636 2.8416 2.8643
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Justification of diversified funds

Investor Profiles

1 Conservative (low risk)

2 Moderate (medium risk)

3 Aggressive (high risk)

Fund Profiles

1 Defensive (20% equities
and 80% bonds)

2 Balanced (50% equities
and 50% bonds)

3 Dynamic (80% equities
and 20% bonds)

Figure 28: The asset allocation puzzle
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What type of diversification is offered by diversified funds?

Figure 29: Equity (MSCI World) and bond (WGBI) risk
contributions

Diversified funds
=

Marketing idea?

Contrarian constant-mix
strategy

Deleverage of an equity
exposure

Low risk diversification

No mapping between
fund profiles and investor
profiles

Static weights

Dynamic risk
contributions
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Risk-balanced allocation

Multi-dimensional
target volatility
strategy

Trend-following
portfolio (if negative
correlation between
return and risk)

Dynamic weights

Static risk
contributions (risk
budgeting)

High diversification

Figure 30: Equity and bond allocation
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Characterization of the stock/bond market portfolio

Figure 31: Evolution of the equity weight for United States and Japan

Thierry Roncalli Asset Management (Lecture 2) 393 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Diversified funds
Risk premium
Risk parity strategies
Performance budgeting portfolios

Characterization of the stock/bond market portfolio

Figure 32: Evolution of the equity weight for Germany, France and UK
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Link between risk premium and risk contribution

Let πi and πM be the risk premium of Asset i and the market risk
premium. We have:

πi = βi · πM

=
cov (Ri ,RM )

σ (RM )
· πM

σ (RM )

=
∂ σ (xM )

∂ xi
· SR (xM )

The risk premium of Asset i is then proportional to the marginal volatility
of Asset i with respect to the market portfolio

Foundation of the risk budgeting approach

For the tangency portfolio, we have:

performance contribution = risk contribution
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Link between risk premium and risk contribution

Figure 33: Risk premia (in %) for the US market portfolio (SR (xM ) = 25%)
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Link between risk premium and risk contribution

Figure 34: Difference (in %) between EURO and US risk premia
(SR (xM ) = 25%)
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Sharpe theory of risk premia

The one-factor risk model

We deduce that:

Ri − Rf = αi + βi · (RM − Rf )︸ ︷︷ ︸
Systematic

Risk

+ εi︸ ︷︷ ︸
Specific

Risk

We necessarily have:

1 αi = 0

2 E [εi ] = 0

⇒ On average, only the systematic risk is rewarded, not the idiosyncratic
risk
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Sharpe theory of risk premia
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Figure 35: The security market line (SML)

Risk premium is an
increasing function of
the systematic risk

Risk premium may be
negative (meaning that
some assets can have a
return lower than the
risk-free asset!)

More risk 6= more return
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Black-Litterman theory of risk premia

In the Black-Litterman model, the expected (or ex-ante/implied) risk
premia are equal to:

π̃ = µ̃− r = SR (x | r)
Σx√
x>Σx

where SR (x | r) is the expected Sharpe ratio of the portfolio.
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Black-Litterman theory of risk premia

Example 17

We consider four assets. Their expected returns are equal to 5%, 6%, 8%
and 6% while their volatilities are equal to 15%, 20%, 25% and 30%. The
correlation matrix of asset returns is given by the following matrix:

C =


1.00
0.10 1.00
0.40 0.70 1.00
0.50 0.40 0.80 1.00


We also assume that the return of the risk-free asset is equal to 1.5%.
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Black-Litterman theory of risk premia

Table 43: Black-Litterman risk premia (Example 17)

CAPM Black-Litterman
Asset πi x?i xi π̃i xi π̃i

#1 3.50% 63.63% 25.00% 2.91% 40.00% 3.33%
#2 4.50% 19.27% 25.00% 4.71% 30.00% 4.97%
#3 6.50% 50.28% 25.00% 7.96% 20.00% 7.69%
#4 4.50% −33.17% 25.00% 9.07% 10.00% 8.18%
µ (x) 6.37% 6.25% 6.00%
σ (x) 14.43% 18.27% 15.35%
µ̃ (x) 6.37% 7.66% 6.68%
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Black-Litterman theory of risk premia

Figure 36: Equity and bond implied risk premia for diversified funds
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Performance assets versus hedging assets

We recall that:

π̃ = SR (x | r)
∂ σ (x)

∂ x

where σ (x) is the volatility of portfolio x

We have:

∂ σ (x)

∂ xi
=

(Σx)i

σ (x)

=

(
xiσ

2
i + σi

∑
j 6=i xjρi,jσj

)
σ (x)

We deduce that

π̃i = SR (x | r)

(
xiσ

2
i + σi

∑
j 6=i xjρi,jσj

)
σ (x)
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Performance assets versus hedging assets

In the two-asset case, we obtain:

π̃1 = c (x)

 x1σ
2
1︸︷︷︸

variance

+ ρσ1σ2 (1− x1)︸ ︷︷ ︸
covariance


and:

π̃2 = c (x)

 x2σ
2
2︸︷︷︸

variance

+ ρσ1σ2 (1− x2)︸ ︷︷ ︸
covariance


where c (x) is equal to SR (x | r) /σ (x) and ρ is the cross-correlation
between the two asset returns
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Performance assets versus hedging assets

In the two-asset case, the implied risk premium becomes:

π̃i =
SR (x | r)

σ (x)

xi · σ2
i︸ ︷︷ ︸

variance

+ (1− xi ) · ρσiσj︸ ︷︷ ︸
covariance


There are two components in the risk premium:

a variance risk component, which is an increasing function of the
volatility and the weight of the asset

a (positive or negative) covariance risk component, which depends on
the correlation between asset returns

Performance asset versus hedging asset

When π̃i > 0, the asset i is a performance asset for Portfolio x

When π̃i < 0, the asset i is a hedging asset for Portfolio x
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Performance assets versus hedging assets

Figure 37: Impact of the correlation on the expected risk premium (σ1 = 20%,
σ2 = 5% and SR (x) = 0.25)
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Are bonds performance or hedging assets?

Stocks are always considered as performance assets, while bonds may
be performance or hedging assets, depending on the region and the
period6

1990-2008: (Sovereign) bonds were perceived as performance assets

The 2008 GFC has strengthened the fly-to-quality characteristic of
bonds

2013-2017: Bonds are now more and more perceived as hedging
assets7

Diversified stock-bond portfolios ⇒ Deleveraged equity portfolios

6For instance bonds were hedging assets in 2008 and performance assets in 2011
7This is particular true in the US and Europe, where the implied risk premium is

negative. In Japan, the implied risk premium continue to be positive
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Diversified versus risk parity funds

Table 44: Statistics of diversified and risk parity portfolios (2000-2012)

Portfolio µ̂1Y σ̂1Y SR MDD γ1 γ2

Defensive 5.41 6.89 0.42 −17.23 0.19 2.67
Balanced 3.68 9.64 0.12 −33.18 −0.13 3.87
Dynamic 1.70 14.48 −0.06 −48.90 −0.18 5.96
Risk parity 5.12 7.29 0.36 −21.22 0.08 2.65
Static 4.71 7.64 0.29 −23.96 0.03 2.59
Leveraged RP 6.67 9.26 0.45 −23.74 0.01 0.78

The 60/40 constant mix strategy is not the right benchmark

Results depend on the investment universe (number/granularity of
asset classes)

What is the impact of rising interest rates?
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Optimality of the RB portfolio

We consider the utility function:

U (x) = (µ (x)− r)− φR (x)

Portfolio x is optimal if the vector of expected risk premia satisfies this
relationship:

π̃ = φ
∂R (x)

∂ x

If the RB portfolio is optimal, we deduce that the (excess) performance
contribution PC i of asset i is proportional to its risk budget:

PC i = xi π̃i

= φ · RC i

∝ bi
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Optimality of the RB portfolio

In the Black-Litterman approach of risk premia, we have:

π̃i = µ̃i − r = SR (x | r)
(Σx)i√
x>Σx

This implies that the (excess) performance contribution is equal to:

PC i = SR (x | r)
xi · (Σx)i√

x>Σx
= SR (x | r) · RC i

where SR (x | r) is the expected Sharpe ratio of the RB portfolio
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Optimality of the RB portfolio

Remark

From an ex-ante point of view, performance budgeting and risk budgeting
are equivalent
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Optimality of the RB portfolio

Example 18

We consider a universe of four assets. The volatilities are respectively
10%, 20%, 30% and 40%. The correlation of asset returns is given by the
following matrix:

ρ =


1.00
0.80 1.00
0.20 0.20 1.00
0.20 0.20 0.50 1.00


The risk-free rate is equal to zero
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Optimality of the RB portfolio

Table 45: Implied risk premia when b = (20%, 25%, 40%, 15%) (Example 18)

Asset xi MRi µ̃i PC i PC?i
1 40.91 7.10 3.55 1.45 20.00
2 25.12 14.46 7.23 1.82 25.00
3 25.26 23.01 11.50 2.91 40.00
4 8.71 25.04 12.52 1.09 15.00

Expected return 7.27

Table 46: Implied risk premia when b = (10%, 10%, 10%, 70%) (Example 18)

Asset xi MRi µ̃i PC i PC?i
1 35.88 5.27 2.63 0.94 10.00
2 17.94 10.53 5.27 0.94 10.00
3 10.18 18.56 9.28 0.94 10.00
4 35.99 36.75 18.37 6.61 70.00

Expected return 9.45
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Main result

There is no neutral allocation. Every portfolio corresponds to an active bet.
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Variation on the ERC portfolio

Question 1

We note Σ the covariance matrix of asset returns.
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Variation on the ERC portfolio

Question 1.a

What is the risk contribution RC i of asset i with respect to portfolio x?
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Variation on the ERC portfolio

Let R (x) be a risk measure of the portfolio x . If this risk measure satisfies
the Euler principle, we have (TR-RPB, page 78):

R (x) =
n∑

i=1

xi
∂R (x)

∂ xi

We can then decompose the risk measure as a sum of asset contributions.
This is why we define the risk contribution RC i of asset i as the product
of the weight by the marginal risk:

RC i = xi
∂R (x)

∂ xi

When the risk measure is the volatility σ (x), it follows that:

RC i = xi
(Σx)i√
x>Σx

=
xi

(∑n
k=1 ρi,kσiσkxk

)
σ (x)
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Variation on the ERC portfolio

Question 1.b

Define the ERC portfolio.
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Variation on the ERC portfolio

The ERC portfolio corresponds to the risk budgeting portfolio when the
risk measure is the return volatility σ (x) and when the risk budgets are
the same for all the assets (TR-RPB, page 119). It means that
RC i = RCj , that is:

xi
∂ σ (x)

∂ xi
= xj

∂ σ (x)

∂ xj
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Variation on the ERC portfolio

Question 1.c

Calculate the variance of the risk contributions. Define an optimization
program to compute the ERC portfolio. Find an equivalent maximization
program based on the L2 norm.
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Variation on the ERC portfolio

We have:

RC =
1

n

n∑
i=1

RC i

=
1

n
σ (x)

It follows that:

var (RC) =
1

n

n∑
i=1

(
RC i −RC

)2

=
1

n

n∑
i=1

(
RC i −

1

n
σ (x)

)2

=
1

n2σ (x)

n∑
i=1

(
nxi (Σx)i − σ

2 (x)
)2
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Variation on the ERC portfolio

To compute the ERC portfolio, we may consider the following optimization
program:

x? = arg min
n∑

i=1

(
nxi (Σx)i − σ

2 (x)
)2

Because we know that the ERC portfolio always exists (TR-RPB, page
108), the objective function at the optimum x? is necessarily equal to 0.
Another equivalent optimization program is to consider the L2 norm. In
this case, we have (TR-RPB, page 102):

x? = arg min
n∑

i=1

n∑
j=1

(
xi · (Σx)i − xj · (Σx)j

)2
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Variation on the ERC portfolio

Question 1.d

Let βi (x) be the beta of asset i with respect to portfolio x . Show that we
have the following relationship in the ERC portfolio:

xiβi (x) = xjβj (x)

Propose a numerical algorithm to find the ERC portfolio.
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Variation on the ERC portfolio

We have:

βi (x) =
(Σx)i

x>Σx

=
MRi

σ (x)

We deduce that:

RC i = xi · MRi

= xiβi (x)σ (x)

The relationship RC i = RCj becomes:

xiβi (x) = xjβj (x)

It means that the weight is inversely proportional to the beta:

xi ∝
1

βi (x)
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Variation on the ERC portfolio

We can use the Jacobi power algorithm (TR-RPB, page 308). Let x (k) be
the portfolio at iteration k. We define the portfolio x (k+1) as follows:

x (k+1) =
β−1

i

(
x (k)

)∑n
j=1 β

−1
j

(
x (k)

)
Starting from an initial portfolio x (0), the limit portfolio is the ERC
portfolio if the algorithm converges:

lim
k→∞

x (k) = xerc
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Question 1.e

We suppose that the volatilities are 15%, 20% and 25% and that the
correlation matrix is:

ρ =

 100%
50% 100%
40% 30% 100%


Compute the ERC portfolio using the beta algorithm.
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Starting from the EW portfolio, we obtain for the first five iterations:

k 0 1 2 3 4 5

x
(k)
1 (in %) 33.3333 43.1487 40.4122 41.2314 40.9771 41.0617

x
(k)
2 (in %) 33.3333 32.3615 31.9164 32.3529 32.1104 32.2274

x
(k)
3 (in %) 33.3333 24.4898 27.6714 26.4157 26.9125 26.7109

β1

(
x (k)

)
0.7326 0.8341 0.8046 0.8147 0.8113 0.8126

β2

(
x (k)

)
0.9767 1.0561 1.0255 1.0397 1.0337 1.0363

β3

(
x (k)

)
1.2907 1.2181 1.2559 1.2405 1.2472 1.2444
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The next iterations give the following results:

k 6 7 8 9 10 11

x
(k)
1 (in %) 41.0321 41.0430 41.0388 41.0405 41.0398 41.0401

x
(k)
2 (in %) 32.1746 32.1977 32.1878 32.1920 32.1902 32.1909

x
(k)
3 (in %) 26.7933 26.7593 26.7734 26.7676 26.7700 26.7690

β1

(
x (k)

)
0.8121 0.8123 0.8122 0.8122 0.8122 0.8122

β2

(
x (k)

)
1.0352 1.0356 1.0354 1.0355 1.0355 1.0355

β3

(
x (k)

)
1.2456 1.2451 1.2453 1.2452 1.2452 1.2452
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Finally, the algorithm converges after 14 iterations with the following
stopping criteria:

sup
i

∣∣∣x (k+1)
i − x

(k)
i

∣∣∣ ≤ 10−6

and we obtain the following results:

Asset xi MRi RC i RC?i
1 41.04% 12.12% 4.97% 33.33%
2 32.19% 15.45% 4.97% 33.33%
3 26.77% 18.58% 4.97% 33.33%
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Question 2

We now suppose that the return of asset i satisfies the CAPM model:

Ri = βiRm + εi

where Rm is the return of the market portfolio and εi is the idiosyncratic
risk. We note ε = (ε1, . . . , εn). We assume that Rm ⊥ ε, var (Rm) = σ2

m

and cov (ε) = D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
.
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Question 2.a

Calculate the risk contribution RC i .
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We have:
Σ = ββ>σ2

m + diag
(
σ̃2

1 , . . . , σ̃
2
n

)
We deduce that:

RC i =
xi

(∑n
k=1 βiβkσ

2
mxk + σ̃2

i xi

)
σ̃ (x)

=
xiβiB + x2

i σ̃
2
i

σ (x)

with:

B =
n∑

k=1

xkβkσ
2
m
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Question 2.b

We assume that βi = βj . Show that the ERC weight xi is a decreasing
function of the idiosyncratic volatility σ̃i .
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Using Equation 2.a, we deduce that the ERC portfolio satisfies:

xiβiB + x2
i σ̃

2
i = xjβjB + x2

j σ̃
2
j

or:
(xiβi − xjβj )B =

(
x2

j σ̃
2
j − x2

i σ̃
2
i

)
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If βi = βj = β, we have:

(xi − xj )βB =
(
x2

j σ̃
2
j − x2

i σ̃
2
i

)
Because β > 0, we deduce that:

xi > xj ⇔ x2
j σ̃

2
j − x2

i σ̃
2
i > 0

⇔ xj σ̃j > xi σ̃i

⇔ σ̃i < σ̃j

We conclude that the weight xi is a decreasing function of the specific
volatility σ̃i .
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Question 2.c

We assume that σ̃i = σ̃j . Show that the ERC weight xi is a decreasing
function of the sensitivity βi to the common factor.
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If σ̃i = σ̃j = σ̃, we have:

(xiβi − xjβj )B =
(
x2

j − x2
i

)
σ̃2

We deduce that:

xi > xj ⇔ (xiβi − xjβj )B < 0

⇔ xiβi < xjβj

⇔ βi < βj

We conclude that the weight xi is a decreasing function of the sensitivity
βi .
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Question 2.d

We consider the numerical application: β1 = 1, β2 = 0.9, β3 = 0.8,
β4 = 0.7, σ̃1 = 5%, σ̃2 = 5%, σ̃3 = 10%, σ̃4 = 10%, and σm = 20%. Find
the ERC portfolio.
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We obtain the following results:

Asset xi MRi RC i RC?i
1 21.92% 19.73% 4.32% 25.00%
2 24.26% 17.83% 4.32% 25.00%
3 25.43% 17.00% 4.32% 25.00%
4 28.39% 15.23% 4.32% 25.00%
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Weight concentration of a portfolio

Question 1

We consider the Lorenz curve defined by:

[0, 1] −→ [0, 1]

x 7−→ L (x)

We assume that L is an increasing function and L (x) > x .
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Question 1.a

Represent graphically the function L and define the Gini coefficient G
associated with L.
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We have represented the function y = L (x) in Figure 38. It verifies
L (x) ≥ x and L (x) ≤ 1. The Gini coefficient is defined as follows
(TR-RPB, page 127):

G =
A

A + B

=

(∫ 1

0

L (x) dx − 1

2

)/
1

2

= 2

∫ 1

0

L (x) dx − 1
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Figure 38: Lorenz curve
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Question 1.b

We set Lα (x) = xα with α ≥ 0. Is the function Lα a Lorenz curve?
Calculate the Gini coefficient G (α) with respect to α. Deduce G (0), G

(
1
2

)
and G (1).
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Figure 39: Function y = xα
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If α ≥ 0, the function Lα (x) = xα is increasing. We have Lα (1) = 1,
Lα (x) ≤ 1 and Lα (x) ≥ x . We deduce that Lα is a Lorenz curve. For the
Gini index, we have:

G (α) = 2

∫ 1

0

xα dx − 1

= 2

[
xα+1

α + 1

]1

0

− 1

=
1− α
1 + α

We deduce that G (0) = 1, G
(

1
2

)
= 1/3 et G (1) = 0. α = 0 corresponds to

the perfect concentration whereas α = 1 corresponds to the perfect
equality.
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Weight concentration of a portfolio

Question 2

Let w be a portfolio of n assets. We suppose that the weights are sorted
in a descending order: w1 ≥ w2 ≥ . . . ≥ wn.
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Weight concentration of a portfolio

Question 2.a

We define Lw (x) as follows:

Lw (x) =
i∑

j=1

wj if
i

n
≤ x <

i + 1

n

with Lw (0) = 0. Is the function Lw a Lorenz curve ? Calculate the Gini
coefficient with respect to the weights wi . In which cases does G take the
values 0 and 1?
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Weight concentration of a portfolio

We have Lw (0) = 0 and Lw (1) =
∑n

j=1 wj = 1. If x2 ≥ x1, we have
Lw (x2) ≥ Lw (x2). Lw is then a Lorenz curve. The Gini coefficient is
equal to:

G = 2

∫ 1

0

L (x) dx − 1

=
2

n

n∑
i=1

i∑
j=1

wj − 1

If wj = n−1, we have:

lim
n→∞
G = lim

n→∞

2

n

n∑
i=1

i

n
− 1

= lim
n→∞

2

n
· n (n + 1)

2n
− 1

= lim
n→∞

1

n
= 0
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Weight concentration of a portfolio

If w1 = 1, we have:

lim
n→∞
G = lim

n→∞
1− 1

n
= 1

We note that the perfect equality does not correspond to the case G = 0
except in the asymptotic case. This is why we may slightly modify the
definition of Lw (x):

Lw (x) =

{ ∑i
j=1 wj if x = n−1i∑i
j=1 wj + wi+1 (nx − i) if n−1i < x < n−1 (i + 1)

While the previous definition corresponds to a constant piecewise function,
this one defines an affine piecewise function. In this case, the computation
of the Gini index is done using a trapezoidal integration:

G =
2

n

n−1∑
i=1

i∑
j=1

wj +
1

2

− 1
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Question 2.b

The definition of the Herfindahl index is:

H =
n∑

i=1

w2
i

In which cases does H take the value 1? Show that H reaches its
maximum when wi = n−1. What is the interpretation of this result?
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Weight concentration of a portfolio

The Herfindahl index is equal to 1 if the portfolio is concentrated in only
one asset. We seek to minimize H =

∑n
i=1 w

2
i under the constraint∑n

i=1 wi = 1. The Lagrange function is then:

f (w1, . . . ,wn;λ) =
n∑

i=1

w2
i − λ

(
n∑

i=1

wi − 1

)

The first-order conditions are 2wi − λ = 0. We deduce that wi = wj . H
reaches its minimum when wi = n−1. It corresponds to the equally
weighted portfolio. In this case, we have:

H =
1

n
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Weight concentration of a portfolio

Question 2.c

We set N = H−1. What does the statistic N mean?
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Weight concentration of a portfolio

The statistic N is the degree of freedom or the equivalent number of
equally weighted assets. For instance, if H = 0.5, then N = 2. It is a
portfolio equivalent to two equally weighted assets.
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Question 3

We consider an investment universe of five assets. We assume that their
asset returns are not correlated. The volatilities are given in the table
below:

σi 2% 5% 10% 20% 30%

w
(1)
i 10% 20% 30% 40%

w
(2)
i 40% 20% 30% 10%

w
(3)
i 20% 15% 25% 35% 5%
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Question 3.a

Find the minimum variance portfolio w (4).
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The minimum variance portfolio is equal to:

w (4) =


82.342%
13.175%
3.294%
0.823%
0.366%
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Weight concentration of a portfolio

Question 3.b

Calculate the Gini and Herfindahl indices and the statistic N for the four
portfolios w (1), w (2), w (3) and w (4).
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For each portfolio, we sort the weights in descending order. For the

portfolio w (1), we have w
(1)
1 = 40%, w

(1)
2 = 30%, w

(1)
3 = 20%,

w
(1)
4 = 10% and w

(1)
5 = 0%. It follows that:

H
(
w (1)

)
=

5∑
i=1

(
w

(1)
i

)2

= 0.102 + 0.202 + 0.302 + 0.402

= 0.30

We also have:

G
(
w (1)

)
=

2

5

 4∑
i=1

i∑
j=1

w̃
(1)
j +

1

2

− 1

=
2

5

(
0.40 + 0.70 + 0.90 + 1.00 +

1

2

)
− 1

= 0.40
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For the portfolios w (2), w (3) and w (4), we obtain H
(
w (2)

)
= 0.30,

H
(
w (3)

)
= 0.25, H

(
w (4)

)
= 0.70, G

(
w (2)

)
= 0.40, G

(
w (3)

)
= 0.28 and

G
(
w (4)

)
= 0.71. We have N

(
w (2)

)
= N

(
w (1)

)
= 3.33, N

(
w (3)

)
= 4.00

and N
(
w (4)

)
= 1.44.
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Weight concentration of a portfolio

Question 3.c

Comment on these results. What differences do you make between
portfolio concentration and portfolio diversification?
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Weight concentration of a portfolio

All the statistics show that the least concentrated portfolio is w (3). The
most concentrated portfolio is paradoxically the minimum variance
portfolio w (4). We generally assimilate variance optimization to
diversification optimization. We show in this example that diversifying in
the Markowitz sense does not permit to minimize the concentration.
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The optimization problem of the ERC portfolio

Question 1

We consider four assets. Their volatilities are equal to 10%, 15%, 20%
and 25% whereas the correlation matrix of asset returns is:

ρ =


100%

60% 100%
40% 40% 100%
30% 30% 20% 100%
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The optimization problem of the ERC portfolio

Question 1.a

Find the long-only minimum variance, ERC and equally weighted
portfolios.
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The optimization problem of the ERC portfolio

The weights of the three portfolios are:

Asset MV ERC EW
1 87.51% 37.01% 25.00%
2 4.05% 24.68% 25.00%
3 4.81% 20.65% 25.00%
4 3.64% 17.66% 25.00%
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The optimization problem of the ERC portfolio

Question 1.b

We consider the following portfolio optimization problem:

x? (c) = arg min
√
x>Σx (1)

u.c.


∑n

i=1 ln xi ≥ c
1>n x = 1
x ≥ 0n

with Σ the covariance matrix of asset returns. We note λc and λ0 the
Lagrange coefficients associated with the constraints

∑n
i=1 ln xi ≥ c and

1>n x = 1. Write the Lagrange function of the optimization problem.
Deduce then an equivalent optimization problem that is easier to solve
than Problem (1).
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The optimization problem of the ERC portfolio

The Lagrange function is:

L (x ;λ, λ0, λc ) =
√
x>Σx − λ>x − λ0

(
1>n x − 1

)
− λc

(
n∑

i=1

ln xi − c

)

=

(
√
x>Σx − λc

n∑
i=1

ln xi

)
− λ>x − λ0

(
1>n x − 1

)
+ λcc

We deduce that an equivalent optimization problem is:

x̃? (λc ) = arg min
√
x̃>Σx̃ − λc

n∑
i=1

ln x̃i

u.c.

{
1>n x̃ = 1
x̃ ≥ 0n
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The optimization problem of the ERC portfolio

We notice a strong difference between the two problems because they
don’t use the same control variable. However, the control variable c of the
first problem may be deduced from the solution of the second problem:

c =
n∑

i=1

ln x̃?i (λc )

We also know that (TR-RPB, page 131):

c− ≤
n∑

i=1

ln xi ≤ c+

where c− =
∑n

i=1 ln (xmv)i and c+ = −n ln n. It follows that:{
x? (c) = x̃? (0) if c ≤ c−
x? (c) = x̃? (∞) if c ≥ c+

If c ∈ ]c−, c+[, there exists a scalar λc > 0 such that:

x? (c) = x̃? (λc )
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The optimization problem of the ERC portfolio

Question 1.c

Represent the relationship between λc and σ (x? (c)), c and σ (x? (c)) and
I? (x? (c)) and σ (x? (c)) where I? (x) is the diversity index of the
weights.
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The optimization problem of the ERC portfolio

For a given value λc ∈ [0,+∞[, we solve numerically the second problem
and find the optimized portfolio x̃? (λc ). Then, we calculate
c =

∑n
i=1 ln x̃?i (λc ) and deduce that x? (c) = x̃? (λc ). We finally obtain

σ (x? (c)) = σ (x̃? (λc )) and I? (x? (c)) = I? (x̃? (λc )). The relationships
between λc , c , I? (x? (c)) and σ (x? (c)) are reported in Figure 40.
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The optimization problem of the ERC portfolio

Figure 40: Relationship between λc , c, I? (x? (c)) and σ (x? (c))
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The optimization problem of the ERC portfolio

Question 1.d

Represent the relationship between λc and I? (RC), c and I? (RC) and
I? (x? (c)) and I? (RC) where I? (RC) is the diversity index of the risk
contributions.
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The optimization problem of the ERC portfolio

If we consider I? (RC) in place of σ (x? (c)), we obtain Figure 41.
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The optimization problem of the ERC portfolio

Figure 41: Relationship between λc , c, I? (x? (c)) and I? (RC)
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The optimization problem of the ERC portfolio

Question 1.e

Draw the relationship between σ (x? (c)) and I? (RC). Identify the ERC
portfolio.
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The optimization problem of the ERC portfolio

In Figure 42, we have reported the relationship between σ (x? (c)) and
I? (RC). The ERC portfolio satisfies the equation I? (RC) = n.
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The optimization problem of the ERC portfolio

Figure 42: Relationship between σ (x? (c)) and I? (RC)
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The optimization problem of the ERC portfolio

Question 2

We now consider a slight modification of the previous optimization
problem:

x? (c) = arg min
√
x>Σx (2)

u.c.

{ ∑n
i=1 ln xi ≥ c

x ≥ 0n
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The optimization problem of the ERC portfolio

Question 2.a

Why does the optimization problem (1) not define the ERC portfolio?
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The optimization problem of the ERC portfolio

Let us consider the optimization problem when we impose the constraint
1>n x = 1. The first-order condition is:

∂ σ (x)

∂ xi
− λi − λ0 −

λc

xi
= 0

Because xi > 0, we deduce that λi = 0 and:

xi
∂ σ (x)

∂ xi
= λ0xi + λc

If this solution corresponds to the ERC portfolio, we obtain:

RC i = RCj ⇔ λ0xi + λc = λ0xj + λc

If λ0 6= 0, we deduce that:
xi = xj

It corresponds to the EW portfolio meaning that the assumption
RC i = RCj is false.
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The optimization problem of the ERC portfolio

Question 2.b

Find the optimized portfolio of the optimization problem (2) when c is
equal to −10. Calculate the corresponding risk allocation.
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The optimization problem of the ERC portfolio

If c is equal to −10, we obtain the following results:

Asset xi MRi RC i RC?i
1 12.65% 7.75% 0.98% 25.00%
2 8.43% 11.63% 0.98% 25.00%
3 7.06% 13.89% 0.98% 25.00%
4 6.03% 16.25% 0.98% 25.00%

σ (x) 3.92%
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The optimization problem of the ERC portfolio

Question 2.c

Same question if c = 0.
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The optimization problem of the ERC portfolio

If c is equal to 0, we obtain the following results:

Asset xi MRi RC i RC?i
1 154.07% 7.75% 11.94% 25.00%
2 102.72% 11.63% 11.94% 25.00%
3 85.97% 13.89% 11.94% 25.00%
4 73.50% 16.25% 11.94% 25.00%

σ (x) 47.78%

Thierry Roncalli Asset Management (Lecture 2) 485 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds

The optimization problem of the ERC portfolio

Question 2.d

Demonstrate then that the solution to the second optimization problem is:

x? (c) = exp

(
c − cerc

n

)
xerc

where cerc =
∑n

i=1 ln xerc,i . Comment on this result.
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The optimization problem of the ERC portfolio

In this case, the first-order condition is:

∂ σ (x)

∂ xi
− λi −

λc

xi
= 0

As previously, λi = 0 because xi > 0 and we obtain:

xi
∂ σ (x)

∂ xi
= λc

The solution of the second optimization problem is then a non-normalized
ERC portfolio because

∑n
i=1 xi is not necessarily equal to 1. If we note

cerc =
∑n

i=1 ln (xerc)i , we deduce that:

xerc = arg min
√
x>Σx

u.c.

{ ∑n
i=1 ln xi ≥ cerc

x ≥ 0n
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The optimization problem of the ERC portfolio

Let x? (c) be the portfolio defined by:

x? (c) = exp

(
c − cerc

n

)
xerc

We have x? (c) > 0n,√
x? (c)>Σx? (c) = exp

(
c − cerc

n

)√
x>ercΣxerc

and:
n∑

i=1

ln x?i (c) =
n∑

i=1

ln

(
exp

(
c − cerc

n

)
xerc

)
i

= c − cerc +
n∑

i=1

ln (xerc)i

= c

We conclude that x? (c) is the solution of the optimization problem.
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The optimization problem of the ERC portfolio

x? (c) is then a leveraged ERC portfolio if c > cerc and a deleveraged ERC
portfolio if c < cerc.

In our example, cerc is equal to −5.7046. If c = −10, we have:

exp

(
c − cerc

n

)
= 34.17%

We verify that the solution of Question 2.b is such that
∑n

i=1 xi = 34.17%
and RC?i = RC?j .

If c = 0, we obtain:

exp

(
c − cerc

n

)
= 416.26%

In this case, the solution is a leveraged ERC portfolio.
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The optimization problem of the ERC portfolio

Question 2.e

Show that there exists a scalar c such that the Lagrange coefficient λ0 of
the optimization problem (1) is equal to zero. Deduce then that the
volatility of the ERC portfolio is between the volatility of the long-only
minimum variance portfolio and the volatility of the equally weighted
portfolio:

σ (xmv) ≤ σ (xerc) ≤ σ (xew)
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The optimization problem of the ERC portfolio

From the previous question, we know that the ERC optimization portfolio
is the solution of the second optimization problem if we use cerc for the
control variable. In this case, we have

∑n
i=1 x

?
i (cerc) = 1 meaning that

xerc is also the solution of the first optimization problem. We deduce that
λ0 = 0 if c = cerc. The first optimization problem is a convex problem
with a convex inequality constraint. The objective function is then an
increasing function of the control variable c :

c1 ≤ c2 ⇒ σ (x? (c1)) ≥ σ (x? (c2))
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The optimization problem of the ERC portfolio

We have seen that the minimum variance portfolio corresponds to
c = −∞, that the EW portfolio is obtained with c = −n ln n and that the
ERC portfolio is the solution of the optimization problem when c is equal
to cerc. Moreover, we have −∞ ≤ cerc ≤ −n ln n. We deduce that the
volatility of the ERC portfolio is between the volatility of the long-only
minimum variance portfolio and the volatility of the equally weighted
portfolio:

σ (xmv) ≤ σ (xerc) ≤ σ (xew)
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Risk parity funds

Question 1

We consider a universe of three asset classesa which are stocks (S), bonds
(B) and commodities (C). We have computed the one-year historical
covariance matrix of asset returns for different dates and we obtain the
following results (all the numbers are expressed in %):

31/12/1999 31/12/2002 30/12/2005
σi 12.40 5.61 12.72 20.69 7.36 13.59 7.97 7.01 16.93

100.00 100.00 100.00
ρi,j −5.89 100.00 −36.98 100.00 29.25 100.00

−4.09 −7.13 100.00 22.74 −13.12 100.00 15.75 15.05 100.00
31/12/2007 31/12/2008 31/12/2010

σi 12.94 5.50 14.54 33.03 9.73 29.00 16.73 6.88 16.93
100.00 −25.76 100.00 100.00

ρi,j −25.76 100.00 −16.26 100.00 15.31 100.00
31.91 6.87 100.00 47.31 9.13 100.00 64.13 15.46 100.00

aIn fact, we use the MSCI World index, the Citigroup WGBI index and the DJ UBS
Commodity index to represent these asset classes.
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Risk parity funds

Question 1.a

Compute the weights and the volatility of the risk paritya (RP portfolio)
portfolios for the different dates.

aHere, risk parity refers to the ERC portfolio when we do not take into account the
correlations.
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Risk parity funds

The RP portfolio is defined as follows:

xi =
σ−1

i∑n
j=1 σ

−1
j

We obtain the following results:

Date 1999 2002 2005 2007 2008 2010
S 23.89% 18.75% 38.35% 23.57% 18.07% 22.63%
B 52.81% 52.71% 43.60% 55.45% 61.35% 55.02%
C 23.29% 28.54% 18.05% 20.98% 20.58% 22.36%

σ (x) 4.83% 6.08% 6.26% 5.51% 11.64% 8.38%
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Risk parity funds

Question 1.b

Same question by considering the ERC portfolio.
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Risk parity funds

In the ERC portfolio, the risk contributions are equal for all the assets:

RC i = RCj

with:

RC i =
xi · (Σx)i√

x>Σx
(3)

We obtain the following results:

Date 1999 2002 2005 2007 2008 2010
S 23.66% 18.18% 37.85% 23.28% 17.06% 20.33%
B 53.12% 58.64% 43.18% 59.93% 66.39% 59.61%
C 23.22% 23.18% 18.97% 16.79% 16.54% 20.07%

σ (x) 4.82% 5.70% 6.32% 5.16% 10.77% 7.96%
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Risk parity funds

Question 1.c

What do you notice about the volatility of RP and ERC portfolios?
Explain these results.
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Risk parity funds

We notice that σ (xerc) ≤ σ (xrp) except for the year 2005. This date
corresponds to positive correlations between assets. Moreover, the
correlation between stocks and bonds is the highest. Starting from the RP
portfolio, it is then possible to approach the ERC portfolio by reducing the
weights of stocks and bonds and increasing the weight of commodities. At
the end, we find an ERC portfolio that has a slightly higher volatility.
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Risk parity funds

Question 1.d

Find the analytical expression of the volatility σ (x), the marginal risk
MRi , the risk contribution RC i and the normalized risk contribution RC?i
in the case of RP portfolios.
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Risk parity funds

The volatility of the RP portfolio is:

σ (x) =
1∑n

j=1 σ
−1
j

√
(σ−1)>Σσ−1

=
1∑n

j=1 σ
−1
j

√√√√ n∑
i=1

n∑
j=1

1

σiσj
ρi,jσiσj

=
1∑n

j=1 σ
−1
j

√
n + 2

∑
i>j

ρi,j

=
1∑n

j=1 σ
−1
j

√
n (1 + (n − 1) ρ̄)

where ρ̄ is the average correlation between asset returns.
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Risk parity funds

For the marginal risk, we obtain:

MRi =

(
Σσ−1

)
i

σ (x)
∑n

j=1 σ
−1
j

=
1√

n (1 + (n − 1) ρ̄)

n∑
j=1

ρi,jσiσj
1

σj

=
σi√

n (1 + (n − 1) ρ̄)

n∑
j=1

ρi,j

=
σi ρ̄i
√
n√

1 + (n − 1) ρ̄

where ρ̄i is the average correlation of asset i with the other assets
(including itself).
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Risk parity funds

The expression of the risk contribution is then:

RC i =
σ−1

i∑n
j=1 σ

−1
j

σi ρ̄i
√
n√

1 + (n − 1) ρ̄

=
ρ̄i
√
n√

1 + (n − 1) ρ̄
∑n

j=1 σ
−1
j

We deduce that the normalized risk contribution is:

RC?i =
ρ̄i
√
n

σ (x)
√

1 + (n − 1) ρ̄
∑n

j=1 σ
−1
j

=
ρ̄i

1 + (n − 1) ρ̄
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Risk parity funds

Question 1.e

Compute the normalized risk contributions of the previous RP portfolios.
Comment on these results.
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Risk parity funds

We obtain the following normalized risk contributions:

Date 1999 2002 2005 2007 2008 2010
S 33.87% 34.96% 34.52% 32.56% 34.45% 36.64%
B 32.73% 20.34% 34.35% 24.88% 24.42% 26.70%
C 33.40% 44.69% 31.14% 42.57% 41.13% 36.67%

We notice that the risk contributions are not exactly equal for all the
assets. Generally, the risk contribution of bonds is lower than the risk
contribution of equities, which is itself lower than the risk contribution of
commodities.
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Risk parity funds

Question 2

We consider four parameter sets of risk budgets:

Set b1 b2 b3

#1 45% 45% 10%
#2 70% 10% 20%
#3 20% 70% 10%
#4 25% 25% 50%
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Risk parity funds

Question 2.a

Compute the RB portfolios for the different dates.
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We obtain the following RB portfolios:

Date bi 1999 2002 2005 2007 2008 2010
S 45% 26.83% 22.14% 42.83% 27.20% 20.63% 25.92%
B 45% 59.78% 66.10% 48.77% 66.15% 73.35% 67.03%
C 10% 13.39% 11.76% 8.40% 6.65% 6.02% 7.05%
S 70% 40.39% 29.32% 65.53% 39.37% 33.47% 46.26%
B 10% 37.63% 51.48% 19.55% 47.18% 52.89% 37.76%
C 20% 21.98% 19.20% 14.93% 13.45% 13.64% 15.98%
S 20% 17.55% 16.02% 25.20% 18.78% 12.94% 13.87%
B 70% 69.67% 71.70% 66.18% 74.33% 80.81% 78.58%
C 10% 12.78% 12.28% 8.62% 6.89% 6.24% 7.55%
S 25% 21.69% 15.76% 34.47% 20.55% 14.59% 16.65%
B 25% 48.99% 54.03% 39.38% 55.44% 61.18% 53.98%
C 50% 29.33% 30.21% 26.15% 24.01% 24.22% 29.37%
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Risk parity funds

Question 2.b

Compute the implied risk premium π̃i of the assets for these portfolios if
we assume a Sharpe ratio equal to 0.40.
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Risk parity funds

To compute the implied risk premium π̃i , we use the following formula
(TR-RPB, page 274):

π̃i = SR (x | r) · MRi

= SR (x | r) ·
(Σx)i

σ (x)

where SR (x | r) is the Sharpe ratio of the portfolio.
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Risk parity funds

We obtain the following results:

Date bi 1999 2002 2005 2007 2008 2010
S 45% 3.19% 4.60% 2.49% 3.15% 8.64% 5.20%
B 45% 1.43% 1.54% 2.19% 1.29% 2.43% 2.01%
C 10% 1.42% 1.92% 2.82% 2.86% 6.58% 4.24%
S 70% 4.05% 6.45% 2.86% 4.31% 11.56% 6.32%
B 10% 0.62% 0.52% 1.37% 0.51% 1.04% 1.11%
C 20% 2.13% 2.81% 3.59% 3.61% 8.11% 5.23%
S 20% 2.06% 2.68% 1.91% 1.93% 5.61% 3.91%
B 70% 1.82% 2.10% 2.54% 1.71% 3.14% 2.42%
C 10% 1.42% 1.75% 2.79% 2.64% 5.82% 3.60%
S 25% 2.33% 3.78% 1.98% 2.74% 8.06% 5.13%
B 25% 1.03% 1.10% 1.74% 1.02% 1.92% 1.58%
C 50% 3.45% 3.95% 5.23% 4.69% 9.71% 5.82%

Thierry Roncalli Asset Management (Lecture 2) 511 / 1520



The ERC portfolio
Extensions to risk budgeting portfolios

Risk budgeting, risk premia and the risk parity strategy
Tutorial exercises

Variation on the ERC portfolio
Weight concentration of a portfolio
The optimization problem of the ERC portfolio
Risk parity funds

Risk parity funds

Question 2.c

Comment on these results.
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Risk parity funds

We have:
xi π̃i = SR (x | r) · RC i

We deduce that:

π̃i ∝
bi

xi

xi is generally an increasing function of bi . As a consequence, the
relationship between the risk budgets bi and the risk premiums π̃i is not
necessarily increasing. However, we notice that the bigger the risk budget,
the higher the risk premium. This is easily explained. If an investor
allocates more risk budget to one asset class than another investor, he
thinks that the risk premium of this asset class is higher than the other
investor.
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Risk parity funds

However, we must be careful. This interpretation is valid if we compare
two sets of risk budgets. It is false if we compare the risk budgets among
themselves. For instance, if we consider the third parameter set, the risk
budget of bonds is 70% whereas the risk budget of stocks is 20%. It does
not mean that the risk premium of bonds is higher than the risk premium
of equities. In fact, we observe the contrary. If we would like to compare
risk budgets among themselves, the right measure is the implied Sharpe
ratio, which is equal to:

SRi =
π̃i

σi

= SR (x | r) · MRi

σi

For instance, if we consider the most diversified portfolio, the marginal risk
is proportional to the volatility and we retrieve the result that Sharpe
ratios are equal if the MDP is optimal.
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Cap-weighted indexation and modern portfolio theory

Rationale of market-cap indexation

Separation Theorem: there is one unique risky portfolio owned by
investors called the tangency portfolio (Tobin, 1958)

CAPM: the tangency portfolio is the Market portfolio, best
represented by the capitalization-weighted index (Sharpe, 1964)

Performance of active management: negative alpha in equity
mutual funds on average (Jensen, 1968)

EMH: markets are efficient (Fama, 1970)

Passive management: launch of the first index fund (John
McQuown, Wells Fargo Investment Advisors, Samsonite Luggage
Corporation, 1971)

First S&P 500 index fund by Wells Fargo and American National
Bank in Chicago (1973)

The first listed ETF was the SPDRs (Ticker: SPY) in 1993
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Index funds

Mutual Fund (MF)

A mutual fund is a collective investment fund that are regulated and
sold to the general public

Exchange Traded Fund (ETF)

It is a mutual fund which trades intra-day on a securities exchange
(thanks to market makers)

Exchange Traded Product (ETP)

It is a security that is derivatively-priced and that trades intra-day on an
exchange. ETPs includes exchange traded funds (ETFs), exchange traded
vehicles (ETVs), exchange traded notes (ETNs) and certificates.

Thierry Roncalli Asset Management (Lecture 3) 521 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Pros of market-cap indexation

A convenient and recognized approach to participate to broad
equity markets

Management simplicity: low turnover & transaction costs
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Construction of an equity index

We consider an index universe composed of n stocks

Let Pi,t be the price of the i th stock and Ri,t be the corresponding
return between times t − 1 and t:

Ri,t =
Pi,t

Pi ,t−1
− 1

The value of the index Bt at time t is defined by:

Bt = ϕ
n∑

i=1

NiPi,t

where ϕ is a scaling factor and Ni is the total number of shares issued
by the company i
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Construction of an equity index

Another expression of Bt is8:

Bt = ϕ
n∑

i=1

NiPi,t−1 (1 + Ri,t)

= Bt−1

∑n
i=1 NiPi,t−1 (1 + Ri,t)∑n

i=1 NiPi,t−1

= Bt−1

n∑
i=1

wi,t−1 (1 + Ri,t)

where wi,t−1 is the weight of the i th stock in the index:

wi,t−1 =
NiPi,t−1∑n

i=1 NiPi,t−1

The computation of the index value Bt can be done at the closing
time t and also in an intra-day basis

8B0 can be set to an arbitrary value (e.g. 100, 500, 1000 or 5000)
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Construction of an equity index

Remark

The previous computation is purely theoretical because the portfolio
corresponds to all the shares outstanding of the n stocks ⇒ impossible to
hold this portfolio

Remark

Most of equity indices use floating sharesa instead of shares outstanding

aThey indicate the number of shares available for trading
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Replication of an equity index

In order to replicate this index, we must build a hedging strategy that
consists in investing in stocks

Let St be the value of the strategy (or the index fund):

St =
n∑

i=1

ni,tPi,t

where ni,t is the number of stock i held between t − 1 and t

The tracking error is the difference between the return of the strategy
and the return of the index:

et (S | B) = RS,t − RB,t
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Replication of an equity index

The quality of the replication process is measured by the volatility
σ (et (S | B)) of the tracking error. We may distinguish several cases:

1 Index funds with low tracking error volatility (less than 10 bps) ⇒
physical replication or synthetic replication

2 Index funds with moderate tracking error volatility (between 10 bps
and 50 bps) ⇒ sampling replication

3 Index funds with higher tracking error volatility (larger than 50 bps)
⇒ equity universes with liquidity problems and enhanced/tilted index
funds
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Replication of an equity index

In a capitalization-weighted index, the weights are given by:

wi,t =
Ci,t∑n

j=1 Cj,t
=

Ni,tPi,t∑n
j=1 Nj,tPj,t

where Ni,t and Ci,t = Ni,tPi,t are the number of shares outstanding
and the market capitalization of the i th stock

If we have a perfect match at time t − 1:

ni,t−1Pi,t−1∑n
i=1 ni,t−1Pi,t−1

= wi,t−1

we have a perfect match at time t:

ni,t = ni,t−1
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Replication of an equity index

We do not need to rebalance the hedging portfolio because of the
relationship:

ni,tPi,t ∝ wi,tPi,t

Therefore, it is not necessarily to adjust the portfolio of the strategy
(except if there are subscriptions or redemptions)

A CW index fund remains the most efficient investment in terms of
management simplicity, turnover and transaction costs
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Cons of market-cap indexation

Trend-following strategy: momentum bias leads to bubble risk
exposure as weight of best performers ever increases
⇒ Mid 2007, financial stocks represent 40% of the Eurostoxx 50 index

Growth bias as high valuation multiples stocks weight more than
low-multiple stocks with equivalent realized earnings.
⇒ Mid 2000, the 8 stocks of the technology/telecom sectors
represent 35% of the Eurostoxx 50 index
⇒ 21/2 years later after the dot.com bubble, these two sectors
represent 12%

Concentrated portfolios
⇒ The top 100 market caps of the S&P 500 account for around 70%

Lack of risk diversification and high drawdown risk: no portfolio
construction rules leads to concentration issues (e.g. sectors, stocks).
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Cons of market-cap indexation

Some illustrations

Mid 2000: 8 Technology/Telecom stocks represent 35% of the
Eurostoxx 50 index

In 2002: 7.5% of the Eurostoxx 50 index is invested into Nokia with a
volatility of 70%

Dec. 2006: 26.5% of the MSCI World index is invested in financial
stocks

June 2007: 40% of the Eurostoxx 50 is invested into Financials

January 2013: 20% of the S&P 500 stocks represent 68% of the S&P
500 risk

Between 2002 and 2012, two stocks contribute on average to more
than 20% of the monthly performance of the Eurostoxx 50 index
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Cons of market-cap indexation

Table 47: Weight and risk concentration of several equity indices (June 29, 2012)

Weights Risk contributions
Ticker G (x)

L (x) G (x)
L (x)

10% 25% 50% 10% 25% 50%
SX5P 30.8 24.1 48.1 71.3 26.3 19.0 40.4 68.6
SX5E 31.2 23.0 46.5 72.1 31.2 20.5 44.7 73.3
INDU 33.2 23.0 45.0 73.5 35.8 25.0 49.6 75.9
BEL20 39.1 25.8 49.4 79.1 45.1 25.6 56.8 82.5
DAX 44.0 27.5 56.0 81.8 47.3 27.2 59.8 84.8
CAC 47.4 34.3 58.3 82.4 44.1 31.9 57.3 79.7
AEX 52.2 37.2 61.3 86.0 51.4 35.3 62.0 84.7

HSCEI 54.8 39.7 69.3 85.9 53.8 36.5 67.2 85.9
NKY 60.2 47.9 70.4 87.7 61.4 49.6 70.9 88.1
UKX 60.8 47.5 73.1 88.6 60.4 46.1 72.8 88.7
SXXE 61.7 49.2 73.5 88.7 63.9 51.6 75.3 90.1
SPX 61.8 52.1 72.0 87.8 59.3 48.7 69.9 86.7

MEXBOL 64.6 48.2 75.1 91.8 65.9 45.7 78.6 92.9
IBEX 64.9 51.7 77.3 90.2 68.3 58.2 80.3 91.4
SXXP 65.6 55.0 76.4 90.1 64.2 52.0 75.5 90.0
NDX 66.3 58.6 77.0 89.2 64.6 56.9 74.9 88.6

TWSE 79.7 73.4 86.8 95.2 79.7 72.6 87.3 95.7
TPX 80.8 72.8 88.8 96.3 83.9 77.1 91.0 97.3

KOSPI 86.5 80.6 93.9 98.0 89.3 85.1 95.8 98.8

G (x) = Gini coefficient, L (x) = Lorenz curve
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Cons of market-cap indexation

Figure 43: Lorenz curve of several equity indices (June 29, 2012)

Thierry Roncalli Asset Management (Lecture 3) 533 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Capturing the equity risk premium

APPLE EXXON MSFT J&J IBM PFIZER CITI McDO
Cap-weighted allocation (in %)

Dec. 1999 1.05 12.40 38.10 7.94 12.20 12.97 11.89 3.46
Dec. 2004 1.74 22.16 19.47 12.61 11.00 13.57 16.76 2.70
Dec. 2008 6.54 35.03 14.92 14.32 9.75 10.30 3.15 5.98
Dec. 2010 18.33 22.84 14.79 10.52 11.29 8.69 8.51 5.02
Dec. 2012 26.07 20.55 11.71 10.12 11.27 9.62 6.04 4.61
Jun. 2013 20.78 19.80 14.35 11.64 11.36 9.51 7.79 4.77

Implied risk premium (in %)
Dec. 1999 5.96 2.14 8.51 3.61 5.81 5.91 6.19 2.66
Dec. 2004 3.88 2.66 2.79 2.03 2.32 3.90 3.02 1.86
Dec. 2008 9.83 11.97 10.48 6.24 7.28 8.06 17.15 6.28
Dec. 2010 5.38 3.85 4.42 2.29 3.66 3.76 6.52 2.54
Dec. 2012 5.87 2.85 3.58 1.44 2.80 1.77 5.91 1.88
Jun. 2013 5.59 2.79 3.60 1.55 2.92 1.91 5.24 1.82

Expected performance contribution (in %)
Dec. 1999 1.01 4.31 52.63 4.66 11.52 12.43 11.94 1.49
Dec. 2004 2.41 21.04 19.44 9.15 9.12 18.93 18.11 1.79
Dec. 2008 6.60 43.00 16.04 9.17 7.28 8.52 5.55 3.85
Dec. 2010 23.58 21.01 15.62 5.77 9.89 7.81 13.27 3.05
Dec. 2012 42.41 16.23 11.61 4.04 8.73 4.71 9.88 2.40
Jun. 2013 33.96 16.18 15.10 5.28 9.69 5.32 11.93 2.53
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Alternative-weighted indexation

Definition

Alternative-weighted indexation aims at building passive indexes where the
weights are not based on market capitalization
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Alternative-weighted indexation

Three kinds of responses:

1 Fundamental indexation (capturing alpha?)
1 Dividend yield indexation
2 RAFI indexation

2 Risk-based indexation (capturing diversification?)
1 Equally weighted portfolio
2 Minimum variance portfolio
3 Equal risk contribution portfolio
4 Most diversified portfolio

3 Factor investing (capturing normal returns or beta? abnormal returns
or alpha?)

1 The market risk factor is not the only systematic risk factor
2 Other factors: size, value, momentum, low beta, quality, etc.

Thierry Roncalli Asset Management (Lecture 3) 536 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Alternative-weighted indexation

2008

Smart Beta
=

Fundamental Indexation
+

Risk-Based Indexation

Today

Smart Beta
=

Risk-Based Indexation
+

Factor Investing
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Equally-weighted portfolio

The underlying idea of the equally weighted or ‘1/n’ portfolio is to
define a portfolio independently from the estimated statistics and
properties of stocks

If we assume that it is impossible to predict return and risk, then
attributing an equal weight to all of the portfolio components
constitutes a natural choice

We have:

xi = xj =
1

n
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Equally-weighted portfolio

The portfolio volatility is equal to:

σ2 (x) =
n∑

i=1

x2
i σ

2
i + 2

∑
i>j

xixjρi,jσiσj

=
1

n2

 n∑
i=1

σ2
i + 2

∑
i>j

ρi,jσiσj


If we assume that σi ≤ σmax and 0 ≤ ρi,j ≤ ρmax, we obtain:

σ2 (x) ≤ 1

n2

 n∑
i=1

σ2
max + 2

∑
i>j

ρmaxσ
2
max


≤ 1

n2

(
nσ2

max + 2
n (n − 1)

2
ρmaxσ

2
max

)
≤

(
1 + (n − 1) ρmax

n

)
σ2

max
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Equally-weighted portfolio

We deduce that:

lim
n→∞

σ (x) ≤ σmax (x) = σmax
√
ρmax

Table 48: Value of σmax (x) (in %)

σmax (in %)
5.00 10.00 15.00 20.00 25.00 30.00

ρmax (in %)

10.00 1.58 3.16 4.74 6.32 7.91 9.49
20.00 2.24 4.47 6.71 8.94 11.18 13.42
30.00 2.74 5.48 8.22 10.95 13.69 16.43
40.00 3.16 6.32 9.49 12.65 15.81 18.97
50.00 3.54 7.07 10.61 14.14 17.68 21.21
75.00 4.33 8.66 12.99 17.32 21.65 25.98
90.00 4.74 9.49 14.23 18.97 23.72 28.46
99.00 4.97 9.95 14.92 19.90 24.87 29.85

Thierry Roncalli Asset Management (Lecture 3) 540 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Equally-weighted portfolio

If the volatilities are the same (σi = σ) and the correlation matrix is
constant (ρi,j = ρ), we deduce that:

σ (x) = σ

√
1 + (n − 1) ρ

n

Correlations are more important than volatilities
to benefit from diversification (= risk reduction)
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Equally-weighted portfolio

Result

The main interest of the EW portfolio is the volatility reduction

It is called “naive diversification”
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Equally-weighted portfolio
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Figure 44: Illustration of the diversification effect (σ = 25%)
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Equally-weighted portfolio

Another interest of the EW portfolio is its good out-of-sample
performance:

“We evaluate the out-of-sample performance of the sample-based
mean-variance model, and its extensions designed to reduce esti-
mation error, relative to the naive 1/n portfolio. Of the 14 mod-
els we evaluate across seven empirical datasets, none is consis-
tently better than the 1/n rule in terms of Sharpe ratio, certainty-
equivalent return, or turnover, which indicates that, out of sample,
the gain from optimal diversification is more than offset by esti-
mation error” (DeMiguel et al., 2009)
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Minimum variance portfolio

The global minimum variance (GMV) portfolio corresponds to the
following optimization program:

xgmv = arg min
1

2
x>Σx

u.c. 1>n x = 1

Thierry Roncalli Asset Management (Lecture 3) 545 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Minimum variance portfolio

Figure 45: Location of the minimum variance portfolio in the efficient frontier
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Minimum variance portfolio

The Lagrange function is equal to:

L (x ;λ0) =
1

2
x>Σx − λ0

(
1>n x − 1

)
The first-order condition is:

∂ L (x ;λ0)

∂ x
= Σx − λ01n = 0n

We deduce that:
x = λ0Σ−11n

Since we have 1>n x = 1, the Lagrange multiplier satisfies:

1>n
(
λ0Σ−11n

)
= 1

or:

λ0 =
1

1>n Σ−11n
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Minimum variance portfolio

Theorem

The GMV portfolio is given by the following formula:

xgmv =
Σ−11n

1>n Σ−11n
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Minimum variance portfolio

The volatility of the GMV portfolio is equal to:

σ2 (xgmv) = x>gmvΣxgmv

=
1>n Σ−1

1>n Σ−11n
Σ

Σ−11n

1>n Σ−11n

=
1>n Σ−1ΣΣ−11n

(1>n Σ−11n)
2

=
1>n Σ−11n

(1>n Σ−11n)
2

=
1

1>n Σ−11n

Another expression of the GMV portfolio is:

xgmv = σ2 (xgmv) Σ−11n
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Minimum variance portfolio

Example 1

The investment universe is made up of 4 assets. The volatility of these
assets is respectively equal to 20%, 18%, 16% and 14%, whereas the
correlation matrix is given by:

ρ =


1.00
0.50 1.00
0.40 0.20 1.00
0.10 0.40 0.70 1.00
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Minimum variance portfolio

We have:

Σ =


400.00 180.00 128.00 28.00
180.00 324.00 57.60 100.80
128.00 57.60 256.00 156.80

28.00 100.80 156.80 196.00

× 104

It follows that:

Σ−1 =


54.35 −37.35 −50.55 51.89
−37.35 62.97 41.32 −60.11
−50.55 41.32 124.77 −113.85

51.89 −60.11 −113.85 165.60
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Minimum variance portfolio

We deduce that:

Σ−114 =


18.34

6.83
1.69

43.53


We also have 1>4 Σ−114 = 70.39, σ2 (xgmv) = 1/70.39 = 1.4206% and

σ (xgmv) =
√

1.4206% = 11.92%. Finally, we obtain:

xgmv =
Σ−114

1>4 Σ−114
=


26.05%

9.71%
2.41%

61.84%


We verify that

∑4
i=1 xgmv,i = 100% and

√
x>gmvΣxgmv = 11.92%
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Minimum variance portfolio

If we assume that the correlation matrix is constant – C = Cn (ρ), the
covariance matrix is Σ = σσ> ◦ Cn (ρ) with Cn (ρ) the constant
correlation matrix. We deduce that:

Σ−1 = Γ ◦ C−1
n (ρ)

with Γi,j = σ−1
i σ−1

j and:

C−1
n (ρ) =

ρ1n1>n − ((n − 1) ρ+ 1) In
(n − 1) ρ2 − (n − 2) ρ− 1

By using the trace property tr (AB) = tr (BA), we can show that:

xgmv,i =
− ((n − 1) ρ+ 1)σ−2

i + ρ
∑n

j=1 (σiσj )
−1∑n

k=1

(
− ((n − 1) ρ+ 1)σ−2

k + ρ
∑n

j=1 (σkσj )
−1
)
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Minimum variance portfolio

The denominator is the scaling factor such that 1>n xgmv = 1. We
deduce that the optimal weights are given by the following
relationship:

xgmv,i ∝
((n − 1) ρ+ 1)

σ2
i

− ρ

σi

n∑
j=1

1

σj
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Minimum variance portfolio

Here are some special cases:

1 The lower bound of Cn (ρ) is achieved for ρ = − (n − 1)−1 and we
have:

xgmv,i ∝ − ρ

σi

n∑
j=1

1

σj

∝ 1

σi

The weights are proportional to the inverse volatilities (GMV = ERC)

2 If the assets are uncorrelated (ρ = 0), we obtain:

xi ∝
1

σ2
i

The weights are proportional to the inverse variances
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Minimum variance portfolio

3 If the assets are perfectly correlated (ρ = 1), we have:

xgmv,i ∝
1

σi

 n

σi
−

n∑
j=1

1

σj


We deduce that:

xgmv,i ≥ 0 ⇔ n

σi
−

n∑
j=1

1

σj
≥ 0

⇔ σi ≤

1

n

n∑
j=1

σ−1
j

−1

⇔ σi ≤ H̄ (σ1, . . . , σn)

where H̄ (σ1, . . . , σn) is the harmonic mean of volatilities
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Minimum variance portfolio

Example 2

We consider a universe of four assets. Their volatilities are respectively
equal to 4%, 6%, 8% and 10%. We assume also that the correlation
matrix C is uniform and is equal to Cn (ρ).
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Minimum variance portfolio

Table 49: Global minimum variance portfolios

Asset
ρ

−20% 0% 20% 50% 70% 90% 99%
1 44.35 53.92 65.88 90.65 114.60 149.07 170.07
2 25.25 23.97 22.36 19.04 15.83 11.20 8.38
3 17.32 13.48 8.69 −1.24 −10.84 −24.67 −33.09
4 13.08 8.63 3.07 −8.44 −19.58 −35.61 −45.37

σ (x?) 1.93 2.94 3.52 3.86 3.62 2.52 0.87

Table 50: Long-only minimum variance portfolios

Asset
ρ

−20% 0% 20% 50% 70% 90% 99%
1 44.35 53.92 65.88 85.71 100.00 100.00 100.00
2 25.25 23.97 22.36 14.29 0.00 0.00 0.00
3 17.32 13.48 8.69 0.00 0.00 0.00 0.00
4 13.08 8.63 3.07 0.00 0.00 0.00 0.00

σ (x?) 1.93 2.94 3.52 3.93 4.00 4.00 4.00
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Minimum variance portfolio

In practice, we impose no short selling constraints

⇓
Smart beta products (funds and indices) corresponds

to long-only minimum variance portfolios
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Minimum variance portfolio

Remark

The minimum variance strategy is related to the low beta effect (Black,
1972; Frazzini and Pedersen, 2014) or the low volatility anomaly (Haugen
and Baker, 1991).
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Minimum variance portfolio

We consider the single-factor model of the CAPM:

Ri = αi + βiRm + εi

We have:
Σ = ββ>σ2

m + D

where:

β = (β1, . . . , βn) is the vector of betas

σ2
m is the variance of the market portfolio

D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
is the diagonal matrix of specific variances
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Minimum variance portfolio

Sherman-Morrison-Woodbury formula

Suppose u and v are two n× 1 vectors and A is an invertible n× n matrix.
We can show that:(

A + uv>
)−1

= A−1 − 1

1 + v>A−1u
A−1uv>A−1
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Minimum variance portfolio

We have:
Σ = D + (σmβ) (σmβ)>

We apply the Sherman-Morrison-Woodbury with A = D and u = v = σmβ:

Σ−1 =
(
D + (σmβ) (σmβ)>

)−1

= D−1 − 1

1 + (σmβ)>D−1 (σmβ)
D−1 (σmβ) (σmβ)> D−1

= D−1 − σ2
m

1 + σ2
m (β>D−1β)

(
D−1β

) (
D−1β

)>
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Minimum variance portfolio

We have:
D−1β = β̃

with β̃i = βi/σ̃
2
i and:

ϕ = β>D−1β

= β̃>β

=
n∑

i=1

β2
i

σ̃2
i

We obtain:

Σ−1 = D−1 − σ2
m

1 + ϕσ2
m

β̃β̃>

The GMV portfolio is equal to:

xgmv = σ2 (xgmv) Σ−11n

= σ2 (xgmv)

(
D−11n −

σ2
m

1 + ϕσ2
m

β̃β̃>1n

)
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Minimum variance portfolio

It follows that:

xgmv,i = σ2 (xgmv)

 1

σ̃2
i

−
σ2

m

(
β̃>1n

)
1 + ϕσ2

m

βi

σ̃2
i


=

σ2 (xgmv)

σ̃2
i

(
1− βi

β?

)
where:

β? =
1 + ϕσ2

m

σ2
m

(
β̃>1n

)
The minimum variance portfolio is positively exposed to stocks with low
beta: {

βi < β? ⇒ xgmv,i > 0
βi > β? ⇒ xgmv,i < 0

Moreover, the absolute weight is a decreasing function of the idiosyncratic
volatility: σ̃i ↘⇒ |xgmv,i | ↗
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Minimum variance portfolio

The previous formula has been found by Scherer (2011). Clarke et al.
(2011) have extended it to the long-only minimum variance:

xmv,i =
σ2 (xgmv)

σ̃2
i

(
1− βi

β?

)
where the threshold β? is defined as follows:

β? =
1 + σ2

m

∑
βi<β?

β̃iβi

σ2
m

∑
βi<β?

β̃i

In this case, if βi > β?, x?i = 0
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Minimum variance portfolio

Example 3

We consider an investment universe of five assets. Their beta is
respectively equal to 0.9, 0.8, 1.2, 0.7 and 1.3 whereas their specific
volatility is 4%, 12%, 5%, 8% and 5%. We also assume that the market
portfolio volatility is equal to 25%.
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Minimum variance portfolio

In the case of the GMV portfolio, we have ϕ = 1879.26 and
β? = 1.0972

In the case of the long-only MV portfolio, we have ϕ = 121.01 and
β? = 0.8307

Table 51: Composition of the MV portfolio

Asset βi β̃i
xi

Unconstrained Long-only
1 0.90 562.50 147.33 0.00
2 0.80 55.56 24.67 9.45
3 1.20 480.00 −49.19 0.00
4 0.70 109.37 74.20 90.55
5 1.30 520.00 −97.01 0.00

Volatility 11.45 19.19
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Minimum variance portfolio

In practice, we use a constrained long-only optimization program:

x? = arg min
1

2
x>Σx

u.c.

 1>n x = 1
0n ≤ x ≤ 1n

x ∈ DC

⇒ we need to impose some diversification constraints (x ∈ DC) because
Markowitz optimization leads to corner solutions that are not diversified
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Minimum variance portfolio

Three main approaches:

1 In order to reduce the concentration of a few number of assets, we
can use upper bound on the weights:

xi ≤ x+
i

For instance, we can set xi ≤ 5%, meaning that the weight of an
asset cannot be larger than 5%. We can also impose lower and upper
bounds by sector:

s−j ≤
∑
i∈Sj

xi ≤ s+
j

For instance, if we impose that 3% ≤
∑

i∈Sj
xi ≤ 20%, this implied

that the weight of each sector must be between 3% and 20%.
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Minimum variance portfolio

2 We can impose some constraints with respect to the benchmark
composition:

bi

m
≤ xi ≤ m · bi

where bi is the weight of asset i in the benchmark (or index) b. For
instance, if m = 2, the weight of asset i cannot be lower than 50% of
its weight in the benchmark. It cannot also be greater than twice of
its weight in the benchmark.

3 The third approach consists of imposing a weight diversification based
on the Herfindahl index:

H (x) =
n∑

i=1

xi
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Minimum variance portfolio

The inverse of the Herfindahl index is called the effective number of
bets (ENB):

N (x) = H−1 (x)

N (x) represents the equivalent number of equally-weighted assets.
We can impose a sufficient number of effective bets:

N (x) ≥ Nmin

During the period 2000-2020, the ENB of the S&P 500 index is
between 90 and 130:

90 ≤ N (b) ≤ 130

During the same period, the ENB of the S&P 500 minimum variance
portfolio is between 15 and 30:

15 ≤ N (x) ≤ 30

We conclude that the S&P 500 minimum variance portfolio is less
diversified than the S&P 500 index
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Minimum variance portfolio

We can impose:
N (x) ≥ m · N (b)

For instance, if m = 1.5, the ENB of the S&P 500 minimum variance
portfolio will be 50% larger than the ENB of the S&P 500 index
We notice that:

N (x) ≥ Nmin ⇔ H (x) ≤ N−1
min

⇔ x>x ≤ N−1
min

The optimization problem becomes:

x? (λ) = arg min
1

2
x>Σx + λ

(
x>x −N−1

min

)
u.c.

{
1>n x = 1
0n ≤ x ≤ 1n
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Minimum variance portfolio

We can rewrite the objective function as follows:

L (x ;λ) =
1

2
x>Σx + λx>Inx =

1

2
x> (Σ + 2λIn) x

We obtain a standard minimum variance optimization problem where the
covariance matrix is shrunk

Remark

The optimal solution is found by applying the bisection algorithm to the
QP problem in order to match the constraint:

N (x? (λ)) = Nmin

An alternative approach is to consider the ADMM algorithm (these
numerical problems are studied in Lecture 5)
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Most diversified portfolio

Definition

Choueifaty and Coignard (2008) introduce the concept of diversification
ratio:

DR (x) =

∑n
i=1 xiσi

σ (x)
=

x>σ√
x>Σx

DR (x) is the ratio between the weighted average volatility and the
portfolio volatility

The diversification ratio of a portfolio fully invested in one asset is
equal to one:

DR (ei ) = 1

In the general case, it is larger than one:

DR (x) ≥ 1
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Most diversified portfolio

The most diversified portfolio (or MDP) is defined as the portfolio which
maximizes the diversification ratio:

x? = arg max lnDR (x)

u.c.

{
1>n x = 1
0n ≤ x ≤ 1n
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Most diversified portfolio

The associated Lagrange function is equal to:

L (x ;λ0, λ) = ln

(
x>σ√
x>Σx

)
+ λ0

(
1>n x − 1

)
+ λ> (x − 0n)

= ln
(
x>σ

)
− 1

2
ln
(
x>Σx

)
+ λ0

(
1>n x − 1

)
+ λ>x

The first-order condition is:

∂ L (x ;λ0, λ)

∂ x
=

σ

x>σ
− Σx

x>Σx
+ λ01n + λ = 0n

whereas the Kuhn-Tucker conditions are:

min (λi , xi ) = 0 for i = 1, . . . , n
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Most diversified portfolio

The constraint 1>n x = 1 can always be matched because:

DR (ϕ · x) = DR (x)

We deduce that the MDP x? satisfies:

Σx?

x?>Σx?
=

σ

x?>σ
+ λ

or:

Σx? =
σ2 (x?)

x?>σ
σ + λσ2 (x?)

=
σ (x?)

DR (x?)
σ + λσ2 (x?)

If the long-only constraint is not imposed, we have λ = 0n
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Most diversified portfolio

The correlation between a portfolio x and the MDP x? is given by:

ρ (x , x?) =
x>Σx?

σ (x)σ (x?)

=
1

σ (x)DR (x?)
x>σ +

σ (x?)

σ (x)
x>λ

=
DR (x)

DR (x?)
+
σ (x?)

σ (x)
x>λ
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Most diversified portfolio

If x? is the long-only MDP, we obtain (because λ ≥ 0n and x>λ ≥ 0):

ρ (x , x?) ≥ DR (x)

DR (x?)

whereas we have for the unconstrained MDP:

ρ (x , x?) =
DR (x)

DR (x?)

The ‘core property’ of the MDP

“The long-only MDP is the long-only portfolio such that the cor-
relation between any other long-only portfolio and itself is greater
than or equal to the ratio of their diversification ratios” (Choueifaty
et al., 2013)
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Most diversified portfolio

The correlation between Asset i and the MDP is equal to:

ρ (ei , x
?) =

DR (ei )

DR (x?)
+
σ (x?)

σ (ei )
e>i λ

=
1

DR (x?)
+
σ (x?)

σi
λi
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Most diversified portfolio

Because λi = 0 if x?i > 0 and λi > 0 if x?i = 0, we deduce that:

ρ (ei , x
?) =

1

DR (x?)
if x?i > 0

and:

ρ (ei , x
?) ≥ 1

DR (x?)
if x?i = 0
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Most diversified portfolio

Another diversification concept

“Any stock not held by the MDP is more correlated to the MDP
than any of the stocks that belong to it. Furthermore, all stocks
belonging to the MDP have the same correlation to it. [...] This
property illustrates that all assets in the universe are effectively
represented in the MDP, even if the portfolio does not physically
hold them. [...] This is consistent with the notion that the most
diversified portfolio is the un-diversifiable portfolio” (Choueifaty et
al., 2013)
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Most diversified portfolio

Remark

In the case when the long-only constraint is omitted, we have
ρ (ei , x

?) = ρ (ej , x
?) meaning that the correlation with the MDP is the

same for all the assets
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Most diversified portfolio

Example 4

We consider an investment universe of four assets. Their volatilities are
equal to 20%, 10%, 20% and 25%. The correlation of asset returns is
given by the following matrix:

ρ =


1.00
0.80 1.00
0.40 0.30 1.00
0.50 0.10 −0.10 1.00
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Most diversified portfolio

Table 52: Composition of the MDP

Unconstrained Long-only
Asset x?i ρ (ei , x

?) x?i ρ (ei , x
?)

1 −18.15 61.10 0.00 73.20
2 61.21 61.10 41.70 62.40
3 29.89 61.10 30.71 62.40
4 27.05 61.10 27.60 62.40

σ (x?) 9.31 10.74
DR (x?) 1.64 1.60
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Most diversified portfolio

Assumption H0: all the assets have the same Sharpe ratio

µi − r

σi
= s

Under H0, the diversification ratio of portfolio x is proportional to its
Sharpe ratio:

DR (x) =
1

s

∑n
i=1 xi (µi − r)

σ (x)

=
1

s

x>µ− r

σ (x)

=
1

s
· SR (x | r)
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Most diversified portfolio

Optimality of the MDP

Under H0, maximizing the diversification ratio is then equivalent to
maximizing the Sharpe ratio:

MDP = MSR
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Most diversified portfolio

In the CAPM framework, Clarke et al. (2013) showed that:

x?i = DR (x?)
σiσ (x?)

σ̃2
i

(
1− ρi,m

ρ?

)
where σi =

√
β2

i σ
2
m + σ̃2

i is the volatility of asset i , ρi,m = βiσm/σi is the
correlation between asset i and the market portfolio and ρ? is the
threshold correlation given by this formula:

ρ? =

(
1 +

n∑
i=1

ρ2
i,m

1− ρ2
i,m

)/(
n∑

i=1

ρi,m

1− ρ2
i,m

)

The weights are then strictly positive if ρi,m < ρ?
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Most diversified portfolio

The MDP tends to be less concentrated than the MV portfolio because:

xmv,i =
1

σ̃2
i

× · · ·

xmdp,i =
σi

σ̃2
i

× · · · ≈ 1

σ̃i
× · · ·+ · · ·
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ERC portfolio

In Lecture 2, we have seen that the ERC portfolio corresponds to the
portfolio such that the risk contribution from each stock is made equal

The main advantages of the ERC allocation are the following:

1 It defines a portfolio that is well diversified in terms of risk and weights

2 Like the three previous risk-based methods, it does not depend on any
expected returns hypothesis

3 It is less sensitive to small changes in the covariance matrix than MV
or MDP portfolios (Demey et al., 2010)
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ERC portfolio

In the CAPM framework, Clarke et al. (2013) showed:

x?i =
σ2 (x?)

σ̃2
i

(√
β2

i

β?2
+

σ̃2
i

nσ2 (x?)
− βi

β?

)

where:

β? =
2σ2 (x?)

β (x?)σ2
m

It follows that:
lim

n→∞
xerc = xew
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Comparison of the 4 Methods

Equally-weighted (EW)

Weights are equal

Easy to understand

Contrarian strategy with a take-profit
scheme

The least concentrated in terms of weights

Do not depend on risks

Minimum variance (MV)

Low volatility portfolio

The only optimal portfolio not depending
on expected returns assumptions

Good out of sample performance

Concentrated portfolios

Sensitive to the covariance matrix

Most Diversified Portfolio (MDP)

Also known as the Max Sharpe Ratio
(MSR) portfolio of EDHEC

Based on the assumption that sharpe ratio
is equal for all stocks

It is the tangency portfolio if the previous
assumption is verified

Sensitive to the covariance matrix

Equal Risk Contribution (ERC)

Risk contributions are equal

Highly diversified portfolios

Less sensitive to the covariance matrix
(than the MV and MDP portfolios)

Not efficient for universe with a large
number of stocks (equivalent to the EW
portfolio)
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Some properties

In terms of bets�
�

�
∃i : wi = 0 (MV - MDP)

∀i : wi 6= 0 (EW - ERC)

In terms of risk factors�

�

�

�

xi = xj (EW)
∂ σ(x)
∂ xi

= ∂ σ(x)
∂ xj

(MV)

xi · ∂ σ(x)
∂ xi

= xj · ∂ σ(x)
∂ xj

(ERC)
1
σi
· ∂ σ(x)

∂ xi
= 1

σj
· ∂ σ(x)

∂ xj
(MDP)
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Some properties

Proof for the MDP portfolio

For the unconstrained MDP portfolio, we recall that the first-order
condition is given by:

∂ L (x ;λ0, λ)

∂ xi
=

σi

x>σ
−

(Σx)i

x>Σx
= 0

The scaled marginal volatility is then equal to the inverse of the
diversification ratio of the MDP:

1

σi
· ∂ σ (x)

∂ xi
=

1

σi
·

(Σx)i√
x>Σx

=
σ (x)

σi
·

(Σx)i

x>Σx

=
σ (x)

x>σ
=

1

DR (x)

Thierry Roncalli Asset Management (Lecture 3) 595 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Application to the Eurostoxx 50 index

Table 53: Composition in % (January 2010)
MV MDP MV MDP MV MDP MV MDP

CW MV ERC MDP 1/n 10% 10% 5% 5% CW MV ERC MDP 1/n 10% 10% 5% 5%

TOTAL 6.1 2.1 2 5.0 RWE AG (NEU) 1.7 2.7 2.7 2 7.0 5.0

BANCO SANTANDER 5.8 1.3 2 ING GROEP NV 1.6 0.8 0.4 2

TELEFONICA SA 5.0 31.2 3.5 2 10.0 5.0 5.0 DANONE 1.6 1.9 3.4 1.8 2 8.7 3.3 5.0 5.0

SANOFI-AVENTIS 3.6 12.1 4.5 15.5 2 10.0 10.0 5.0 5.0 IBERDROLA SA 1.6 2.5 2 5.1 5.0 1.2

E.ON AG 3.6 2.1 2 1.4 ENEL 1.6 2.1 2 5.0 2.9

BNP PARIBAS 3.4 1.1 2 VIVENDI SA 1.6 2.8 3.1 4.5 2 10.0 5.9 5.0 5.0

SIEMENS AG 3.2 1.5 2 ANHEUSER-BUSCH INB 1.6 0.2 2.7 10.9 2 2.1 10.0 5.0 5.0

BBVA(BILB-VIZ-ARG) 2.9 1.4 2 ASSIC GENERALI SPA 1.6 1.8 2

BAYER AG 2.9 2.6 3.7 2 2.2 5.0 5.0 5.0 AIR LIQUIDE(L') 1.4 2.1 2 5.0

ENI 2.7 2.1 2 MUENCHENER RUECKVE 1.3 2.1 2.1 2 3.1 5.0 5.0

GDF SUEZ 2.5 2.6 4.5 2 5.4 5.0 5.0 SCHNEIDER ELECTRIC 1.3 1.5 2

BASF SE 2.5 1.5 2 CARREFOUR 1.3 1.0 2.7 1.3 2 3.7 2.5 5.0 5.0

ALLIANZ SE 2.4 1.4 2 VINCI 1.3 1.6 2

UNICREDIT SPA 2.3 1.1 2 LVMH MOET HENNESSY 1.2 1.8 2

SOC GENERALE 2.2 1.2 3.9 2 3.7 5.0 PHILIPS ELEC(KON) 1.2 1.4 2

UNILEVER NV 2.2 11.4 3.7 10.8 2 10.0 10.0 5.0 5.0 L'OREAL 1.1 0.8 2.8 2 5.5 5.0 5.0

FRANCE TELECOM 2.1 14.9 4.1 10.2 2 10.0 10.0 5.0 5.0 CIE DE ST-GOBAIN 1.0 1.1 2

NOKIA OYJ 2.1 1.8 4.5 2 4.8 5.0 REPSOL YPF SA 0.9 2.0 2 5.0NOKIA OYJ 2.1 1.8 4.5 2 4.8 5.0 REPSOL YPF SA 0.9 2.0 2 5.0

DAIMLER AG 2.1 1.3 2 CRH 0.8 1.7 5.1 2 5.2 5.0

DEUTSCHE BANK AG 1.9 1.0 2 CREDIT AGRICOLE SA 0.8 1.1 2

DEUTSCHE TELEKOM 1.9 3.2 2.6 2 5.7 3.7 5.0 5.0 DEUTSCHE BOERSE AG 0.7 1.5 2 1.9

INTESA SANPAOLO 1.9 1.3 2 TELECOM ITALIA SPA 0.7 2.0 2 2.5

AXA 1.8 1.0 2 ALSTOM 0.6 1.5 2

ARCELORMITTAL 1.8 1.0 2 AEGON NV 0.4 0.7 2

SAP AG 1.8 21.0 3.4 11.2 2 10.0 10.0 5.0 5.0 VOLKSWAGEN AG 0.2 1.8 7.1 2 7.4 5.0

Total of components 50 11 50 17 50 14 16 20 23
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Some examples

To compare the risk-based methods, we report:

The weights xi in %

The relative risk contributions RC i in %

The weight concentration H? (x) in % and the risk concentration
H? (RC) in % where H? is the modified Herfindahl index9

The portfolio volatility σ (x) in %

The diversification ratio DR (x)

9We have:

H? (π) =
nH (π)− 1

n − 1
∈ [0, 1]
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Example 5

We consider an investment universe with four assets. We assume that the
volatility σi is the same and equal to 20% for all four assets. The
correlation matrix C is equal to:

C =


100%

80% 100%
0% 0% 100%
0% 0% −50% 100%
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Table 54: Weights and risk contributions (Example 5)

Asset
EW MV MDP ERC

xi RC i xi RC i xi RC i xi RC i

1 25.00 4.20 10.87 0.96 10.87 0.96 17.26 2.32
2 25.00 4.20 10.87 0.96 10.87 0.96 17.26 2.32
3 25.00 1.17 39.13 3.46 39.13 3.46 32.74 2.32
4 25.00 1.17 39.13 3.46 39.13 3.46 32.74 2.32

H? (x) 0.00 10.65 10.65 3.20
σ (x) 10.72 8.85 8.85 9.26
DR (x) 1.87 2.26 2.26 2.16
H? (RC) 10.65 10.65 10.65 0.00
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Example 6

We modify the previous example by introducing differences in volatilities.
They are 10%, 20%, 30% and 40% respectively. The correlation matrix
remains the same as in Example 5.
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Table 55: Weights and risk contributions (Example 6)

Asset
EW MV MDP ERC

xi RC i xi RC i xi RC i xi RC i

1 25.00 1.41 74.48 6.43 27.78 1.23 38.36 2.57
2 25.00 3.04 0.00 0.00 13.89 1.23 19.18 2.57
3 25.00 1.63 15.17 1.31 33.33 4.42 24.26 2.57
4 25.00 5.43 10.34 0.89 25.00 4.42 18.20 2.57

H? (x) 0.00 45.13 2.68 3.46
σ (x) 11.51 8.63 11.30 10.29
DR (x) 2.17 1.87 2.26 2.16
H? (RC) 10.31 45.13 10.65 0.00
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Example 7

We now reverse the volatilities of Example 6. They are now equal to 40%,
30%, 20% and 10%.

Thierry Roncalli Asset Management (Lecture 3) 602 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Capitalization-weighted indexation
Risk-based portfolios
Comparison of the four risk-based portfolios
The case of bonds

Some examples

Table 56: Weights and risk contributions (Example 7)

EW MV MDP ERC
Asset xi RC i xi RC i xi RC i xi RC i

1 25.00 9.32 0.00 0.00 4.18 0.74 7.29 1.96
2 25.00 6.77 4.55 0.29 5.57 0.74 9.72 1.96
3 25.00 1.09 27.27 1.74 30.08 2.66 27.66 1.96
4 25.00 0.00 68.18 4.36 60.17 2.66 55.33 1.96

H? (x) 0.00 38.84 27.65 19.65
σ (x) 17.18 6.40 6.80 7.82
DR (x) 1.46 2.13 2.26 2.16
H? (RC) 27.13 38.84 10.65 0.00
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Some examples

Example 8

We consider an investment universe of four assets. The volatility is
respectively equal to 15%, 30%, 45% and 60% whereas the correlation
matrix C is equal to:

C =


100%

10% 100%
30% 30% 100%
40% 20% −50% 100%
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Table 57: Weights and risk contributions (Example 8)

EW MV MDP ERC
Asset xi RC i xi RC i xi RC i xi RC i

1 25.00 2.52 82.61 11.50 0.00 0.00 40.53 4.52
2 25.00 5.19 17.39 2.42 0.00 0.00 22.46 4.52
3 25.00 3.89 0.00 0.00 57.14 12.86 21.12 4.52
4 25.00 9.01 0.00 0.00 42.86 12.86 15.88 4.52

H? (x) 0.00 61.69 34.69 4.61
σ (x) 20.61 13.92 25.71 18.06
DR (x) 1.82 1.27 2.00 1.76
H? (RC) 7.33 61.69 33.33 0.00
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Example 9

Now we consider an example with six assets. The volatilities are 25%,
20%, 15%, 18%, 30% and 20% respectively. We use the following
correlation matrix:

C =


100%

20% 100%
60% 60% 100%
60% 60% 60% 100%
60% 60% 60% 60% 100%
60% 60% 60% 60% 60% 100%
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Table 58: Weights and risk contributions (Example 9)

EW MV MDP ERC
Asset xi RC i xi RC i xi RC i xi RC i

1 16.67 3.19 0.00 0.00 44.44 8.61 14.51 2.72
2 16.67 2.42 6.11 0.88 55.56 8.61 18.14 2.72
3 16.67 2.01 65.16 9.33 0.00 0.00 21.84 2.72
4 16.67 2.45 22.62 3.24 0.00 0.00 18.20 2.72
5 16.67 4.32 0.00 0.00 0.00 0.00 10.92 2.72
6 16.67 2.75 6.11 0.88 0.00 0.00 16.38 2.72

H? (x) 0.00 37.99 40.74 0.83
σ (x) 17.14 14.33 17.21 16.31
DR (x) 1.24 1.14 1.29 1.25
H? (RC) 1.36 37.99 40.00 0.00
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Example 10

To illustrate how the MV and MDP portfolios are sensitive to specific
risks, we consider a universe of n assets with volatility equal to 20%. The
structure of the correlation matrix is the following:

C =


100%
ρ1,2 100%

0 ρ 100%
...

...
. . . 100%

0 ρ · · · ρ 100%
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Figure 46: Weight of the first two assets in AW portfolios (Example 10)
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Example 11

We assume that asset returns follow the one-factor CAPM model. The
idiosyncratic volatility σ̃i is set to 5% for all the assets whereas the
volatility of the market portfolio σm is equal to 25%.
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Figure 47: Weight with respect to the asset beta βi (Example 11)
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Smart beta products

MSCI Equal Weighted Indexes (EW)
www.msci.com/msci-equal-weighted-indexes

S&P 500 Equal Weight Index (EW)
www.spglobal.com/spdji/en/indices/equity/sp-500-equal-weight-index

FTSE UK Equally Weighted Index Series (EW)
www.ftserussell.com/products/indices/equally-weighted

FTSE Global Minimum Variance Index Series (MV)
www.ftserussell.com/products/indices/min-variance

MSCI Minimum Volatility Indexes (MV)
www.msci.com/msci-minimum-volatility-indexes

S&P 500 Minimum Volatility Index (MV)
www.spglobal.com/spdji/en/indices/strategy/sp-500-minimum-volatility-index

FTSE Global Equal Risk Contribution Index Series (ERC)
www.ftserussell.com/products/indices/erc

TOBAM MaxDiv Index Series (MDP)
www.tobam.fr/maximum-diversification-indexes
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Smart beta products

Largest ETF issuers in Europe

1 iShares (BlackRock)

2 Xtrackers (DWS)

3 Lyxor ETF

4 UBS ETF

5 Amundi ETF

Largest ETF issuers in US

1 iShares (BlackRock)

2 SPDR (State Street)

3 Vanguard

4 Invesco PowerShares

5 First Trust

Specialized smart beta ETF issuers: Wisdom Tree (US), Ossiam
(Europe), Research affiliates (US), etc.

Smart beta fund managers in Europe: Amundi, Ossiam, Quoniam,
Robeco, Seeyond, Tobam, Unigestion, etc.

ETFs, mutual funds, mandates
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The case of bonds

Two main problems:

1 Benchmarks = debt-weighted indexation (the weights are based on
the notional amount of the debt)

2 Fund management driven by the search of yield with little
consideration for credit risk (carry position 6= arbitrage position)

⇒ Time to rethink bond indexes? (Toloui, 2010)
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Bond indexation

Debt weighting

It is defined by:

xi =
DEBTi∑n

i=1 DEBTi

GDP weighting

It is defined by:

xi =
GDPi∑n

i=1 GDPi

Risk budgeting

It is defined by:

bi =
DEBTi∑n

i=1 DEBTi

or:

bi =
GDPi∑n

i=1 GDPi

⇒ The offering is very small compared to equity indices because of the
liquidity issues (see Roncalli (2013), Chapter 4 for more details)
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From CAPM to factor investing

How to define risk factors?

Risk factors are common factors that explain the cross-section variance of
expected returns

1964: Market or MKT (or BETA) factor

1972: Low beta or BAB factor

1981: Size or SMB factor

1985: Value or HML factor

1991: Low volatility or VOL factor

1993: Momentum or WML factor

2000: Quality or QMJ factor

Systematic risk factors 6= Idiosyncratic risk factors

Beta(s) 6= Alpha(s)
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Alpha or beta?

At the security level, there is a lot of idiosyncratic risk or alpha10:

Common Idiosyncratic
Risk Risk

GOOGLE 47% 53%
NETFLIX 24% 76%
MASTERCARD 50% 50%
NOKIA 32% 68%
TOTAL 89% 11%
AIRBUS 56% 44%

Carhart’s model with 4 factors, 2010-2014
Source: Roncalli (2017)

10The linear regression is:

Ri = αi +

nF∑
j=1

βj
iFj + εi

In our case, we measure the alpha as 1−R2
i where:

R2
i = 1− σ2 (εi )

σ2 (Ri )
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The concept of alpha

Jensen (1968) – How to measure the performance of active fund
managers?

RF
t = α + βRMKT

t + εt

Fund Return Rank Beta Alpha Rank
A 12% Best 1.0 −2% Worst
B 11% Worst 0.5 4% Best

Market return = 14%

⇒ ᾱ = −fees

It is the beginning of passive management:

John McQuown (Wells Fargo Bank, 1971)
Rex Sinquefield (American National Bank, 1973)
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Active management and performance persistence

Hendricks et al. (1993) – Hot Hands in Mutual Funds

cov
(
αJensen

t , αJensen
t−1

)
> 0

where:
αJensen

t = RF
t − βMKTRMKT

t

⇒ The persistence of the performance of active management is due to the
persistence of the alpha
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Risk factors and active management

Grinblatt et al. (1995) – Momentum investors versus Value
investors

“77% of mutual funds are momentum investors”

Carhart (1997): {
cov

(
αJensen

t , αJensen
t−1

)
> 0

cov
(
αCarhart

t , αCarhart
t−1

)
= 0

where:

αCarhart
t = RF

t −βMKTRMKT
t −βSMBRSMB

t −βHMLRHML
t −βWMLRWML

t

⇒ The (short-term) persistence of the performance of active management
is due to the (short-term) persistence of the performance of risk
factors
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Diversification and alpha

David Swensen’s rule for effective stock picking

Concentrated portfolio ⇒ No more than 20 bets?

Figure 48: Carhart’s alpha decreases with the
number of holding assets

US equity markets, 2000-2014
Source: Roncalli (2017)

“If you can identify six wonderful

businesses, that is all the

diversification you need. And you will

make a lot of money. And I can

guarantee that going into the seventh

one instead of putting more money

into your first one is going to be a

terrible mistake. Very few people

have gotten rich on their seventh

best idea.” (Warren Buffett,

University of Florida, 1998).
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Diversification and alpha

Figure 49: What proportion of return variance is
explained by the 4-factor model?

Morningstar database, 880 mutual funds, European equities
Carhart’s model with 4 factors, 2010-2014
Source: Roncalli (2017)

How many bets are there in large
portfolios of institutional investors?

1986 Less than 10% of institutional
portfolio return is explained by
security picking and market
timing (Brinson et al., 1986)

2009 Professors’ Report on the
Norwegian GPFG: Risk factors
represent 99.1% of the fund
return variation (Ang et al.,
2009)

Thierry Roncalli Asset Management (Lecture 3) 623 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Factor investing in equities
How many risk factors?
Construction of risk factors
Risk factors in other asset classes

Risk factors versus alpha

What lessons can we draw from this?

Idiosyncratic risks and specific bets disappear in (large) diversified
portfolios. Performance of institutional investors is then exposed to
(common) risk factors.

Alpha is not scalable, but risk factors are scalable

⇒ Risk factors are the only bets that are compatible with diversification

Alpha

Concentration

Scarce?
6=

Beta(s)

Diversification

Easy access?
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Factor investing and active management

Misconception about active management

Active management = α
Passive management = β

In this framework, passive management encompasses cap-weighted
indexation, risk-based indexation and factor investing because these
management styles do not pretend to create alpha
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Factor investing and active management

“The question is when is active manage-
ment good? The answer is never”

Eugene Fama, Morningstar ETF conference,
September 2014

“So people say, ‘I’m not going to try to beat the
market. The market is all-knowing.’ But how
in the world can the market be all-knowing, if
nobody is trying – well, not as many people –
are trying to beat it?”

Robert Shiller, CNBC, November 2017
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Factor investing and active management

Discretionary active management ⇒ specific/idiosyncratic risks &
rule-based management ⇒ factor investing and systematic risks?

Are common risk factors exogenous or endogenous?

Do risk factors exist without active management?

Risk factors first, active management second
or

Active management first, risk factors second

Factor investing needs active investing

Imagine a world without active managers, stock pickers, hedge funds,
etc.

⇒ Should active management be reduced to alpha management?
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Factor investing and active management

Market risk factor = average of active management

Low beta/low volatility strategies begin to be implemented in
2003-2004 (after the dot.com crisis)

Quality strategies begin to be implemented in 2009-2010 (after the
GFC crisis)

Alpha strategy ⇒ Risk Factor (or a beta strategy)
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Factor investing and active management

α or β?
“[...] When an alpha strategy is massively invested, it has an
enough impact on the structure of asset prices to become a risk
factor.
[...] Indeed, an alpha strategy becomes a common market risk
factor once it represents a significant part of investment portfolios
and explains the cross-section dispersion of asset returns” (Ron-
calli, 2020)

Thierry Roncalli Asset Management (Lecture 3) 629 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Factor investing in equities
How many risk factors?
Construction of risk factors
Risk factors in other asset classes

The factor zoo

Figure 50: Harvey et al. (2016)

“Now we have a zoo of new factors” (Cochrane, 2011).
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Factors, factors everywhere

“Standard predictive regressions fail to reject the hypothesis that
the party of the U.S. President, the weather in Manhattan, global
warming, El Niño, sunspots, or the conjunctions of the planets,
are significantly related to anomaly performance. These results are
striking, and quite surprising. In fact, some readers may be inclined
to reject some of this paper’s conclusions solely on the grounds
of plausibility. I urge readers to consider this option carefully,
however, as doing do so entails rejecting the standard methodology
on which the return predictability literature is built.”(Novy-Marx,
2014).

⇒ MKT, SMB, HML, WML, STR, LTR, VOL, IVOL, BAB, QMJ, LIQ,
TERM, CARRY, DIV, JAN, CDS, GDP, INF, etc.
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The alpha puzzle (Cochrane, 2011)

Chaos
E [Ri ]− Rf = αi

Sharpe (1964)
E [Ri ]− Rf = βm

i (E [Rm]− Rf )

Chaos again

E [Ri ]− Rf = αi + βm
i (E [Rm]− Rf )

Fama and French (1992)

E [Ri ]− Rf = βm
i (E [Rm]− Rf ) + βsmb

i E [Rsmb] + βhml
i E [Rhml ]

This is not the end of the story...
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The alpha puzzle (Cochrane, 2011)

It’s just the beginning!

Chaos again

E [Ri ]− Rf = αi + βm
i (E [Rm]− Rf ) + βsmb

i E [Rsmb] + βhml
i E [Rhml ]

Carhart (1997)

E [Ri ]−Rf = βm
i (E [Rm]− Rf )+βsmb

i E [Rsmb]+βhml
i E [Rhml ]+β

wml
i E [Rwml ]

Chaos again

E [Ri ]− Rf = αi + βm
i (E [Rm]− Rf ) + βsmb

i E [Rsmb] +

βhml
i E [Rhml ] + βwml

i E [Rwml ]

Etc.

How can alpha always come back?
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The alpha puzzle (Cochrane, 2011)

1. Because academic backtesting is not the real life

2. Because risk factors are not independent in practice

3. Because the explanatory power of risk factors is time-varying

4. Because alpha and beta are highly related
(beta strategy = successful alpha strategy)
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The issue of backtesting

Backtesting syndrome

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

0

100

200

300

400

500

600

Backtest

Benchmark

The blue line is above the red line ⇒ it’s OK!

⇒ Analytical models are important to understand a risk factor
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The professional consensus

There is now a consensus among professionals that five factors are
sufficient for the equity markets:

1 Size

Small cap stocks 6= Large cap stocks

2 Value

Value stocks 6= Non-value stocks (including growth stocks)

3 Momentum

Past winners 6= Past loosers

4 Low-volatility

Low-vol (or low-beta) stocks 6= High-vol (or high-beta stocks)

5 Quality

Quality stocks 6= Non-quality stocks (including junk stocks)
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The example of the value risk factor
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The example of the dividend yield risk factor

Book-to-price (value risk factor):

B2P =
B

P

Dividend yield (carry risk factor):

DY =
D

P

=
D

B
× B

P
= D2B×B2P

Value component (book and dividend = low-frequency, price =
high-frequency)

Low-volatility component (bond-like stocks)

Risk factors are not orthogonal, they are correlated
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The example of the dividend yield risk factor

Figure 51: Value, low beta and carry are not orthogonal risk factors

Source: Richard and Roncalli (2015)

Carry ' 60% Value + 40% Low-volatility
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The example of the dividend yield risk factor

Why Size + Value + Momentum + Low-volatility + Quality?

Why not Size + Carry + Momentum + Low-volatility + Quality
or Size + Carry + Momentum + Value + Quality?

Because:

Carry ' 60% Value + 40% Low-volatility

Value ' 167% Carry − 67% Low-volatility

Low-volatility ' 250% Carry − 150% Value

Question

Why Value + Momentum + Low-volatility + Quality
and not

Size + Value + Momentum + Low-volatility + Quality?
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General approach

We consider a universe U of stocks (e.g. the MSCI World Index)

We define a rebalancing period (e.g. every month, every quarter or
every year)

At each rebalancing date tτ :

We define a score Si (tτ ) for each stock i
Stocks with high scores are selected to form the long exposure L (tτ )
of the risk factor
Stocks with low scores are selected to form the short exposure S (tτ )
of the risk factor

We specify a weighting scheme wi (tτ ) (e.g. value weighted or equally
weighted)
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General approach

The performance of the risk factor between two rebalancing dates
corresponds to the performance of the long/short portfolio:

F (t) = F (tτ )·

 ∑
i∈L(tτ )

wi (tτ ) (1 + Ri (t))−
∑

i∈S(tτ )

wi (tτ ) (1 + Ri (t))


where t ∈ ]tτ , tτ+1] and F (t0) = 100.

In the case of a long-only risk factor, we only consider the long
portfolio:

F (t) = F (tτ ) ·

 ∑
i∈L(tτ )

wi (tτ ) (1 + Ri (t))
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The Fama-French approach

The SMB and HML factors are defined as follows:

SMBt =
1

3
(Rt (SV) + Rt (SN) + Rt (SG))−1

3
(Rt (BV) + Rt (BN) + Rt (BG))

and:

HMLt =
1

2
(Rt (SV) + Rt (BV))− 1

2
(Rt (SG) + Rt (BG))

with the following 6 portfolios11:

Value Neutral Growth
Small SV SN SG
Big BV BN BG

11We have:

The scores are the market equity (ME) and the book equity to market equity
(BE/ME)

The size breakpoint is the median market equity (Small = 50% and Big = 50%)

The value breakpoints are the 30th and 70th percentiles of BE/ME (Value =
30%, Neutral = 40% and Growth = 30%)
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The Fama-French approach

Homepage of Kenneth R. French

You can download data at the following webpage:

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html

Asia Pacific ex Japan

Developed

Developed ex US

Europe

Japan

North American

US
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Quintile portfolios

In this approach, we form five quintile portfolios:

Q1 corresponds to the stocks with the highest scores (top 20%)

Q2, Q3 and Q4 are the second, third and fourth quintile portfolios

Q5 corresponds to the stocks with the lowest scores (bottom 20%)

⇒ The long/short risk factor is the performance of Q1 − Q5, whereas the
long-only risk factor is the performance of Q1

Thierry Roncalli Asset Management (Lecture 3) 645 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Factor investing in equities
How many risk factors?
Construction of risk factors
Risk factors in other asset classes

The construction of risk factors

Table 59: An illustrative example

Asset Score Rank Quintile Selected L/S Weight
A1 1.1 3 Q2

A2 0.5 4 Q2

A3 −1.3 9 Q5 X Short −50%
A4 1.5 2 Q1 X Long +50%
A5 −2.8 10 Q5 X Short −50%
A6 0.3 5 Q3

A7 0.1 6 Q3

A8 2.3 1 Q1 X Long +50%
A9 −0.7 8 Q4

A10 −0.3 7 Q4
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The scoring system

Variable selection

Size: market capitalization

Value: Price to book, price to earnings, price to cash flow, dividend
yield, etc.

Momentum = one-year price return ex 1 month, 13-month price
return minus one-month price return, etc.

Low volatility = one-year rolling volatility, one-year rolling beta, etc.

Quality: Profitability, leverage, ROE, Debt to Assets, etc.
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The scoring system

Variable combination

Z-score averaging

Ranking system

Bottom exclusion

Etc.

⇒ Finally, we obtain one score for each stock (e.g. the value score, the
quality score, etc.)
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Single-factor exposure versus multi-factor portfolio

Single-factor

Trading bet

Tactical asset allocation (TAA)

If the investor believe that value
stocks will outperform growth
stocks in the next six months,
he will overweight value stocks
or add an exposure on the value
risk factor

Active management

Multi-factor

Long-term bet

Strategic asset allocation (SAA)

The investor believe that a
factor investing portfolio allows
to better capture the equity risk
premium than a CW index

Factor investing portfolio =
diversified portfolio (across risk
factors)
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Multi-factor portfolio

Long/short: Market + Size + Value + Momentum + Low-volatility
+ Quality

Long-only: Size + Value + Momentum + Low-volatility + Quality
(because the market risk factor is replicated by the other risk factors)
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Risk factors in sovereign bonds

“Market participants have long recognized the importance of iden-
tifying the common factors that affect the returns on U.S. govern-
ment bonds and related securities. To explain the variation in these
returns, it is critical to distinguish the systematic risks that have a
general impact on the returns of most securities from the specific
risks that influence securities individually and hence a negligible ef-
fect on a diversified portfolio” (Litterman and Scheinkman, 1991,
page 54).

⇒ The 3-factor model of Litterman and Scheinkman (1991) is based on
the PCA analysis:

the level of the yield curve

the steepness of the yield curve

the curvature of the yield curve
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Conventional bond model

Let Bi (t,Di ) be the zero-coupon bond price with maturity Di :

Bi (t,Di ) = e−(R(t)+Si (t)) Di

where R (t) is the risk-free interest rate and Si (t) is the credit spread

L-CAPM of Acharya and Pedersen (2005):

Ri (t) = (R (t) + Si (t)) Di︸ ︷︷ ︸
Gross return

− Li (t)

︸ ︷︷ ︸
Net return

where Li (t) is the illiquidity cost of Bond i
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Conventional bond model

We deduce that:

Bi (t,Di ) = e−((R(t)+Si (t)) Di−Li (t))

and:

d lnBi (t,Di ) = −Di dR (t)− Di dSi (t) + dLi (t)

= −Di dR (t)−DTSi (t)
dSi (t)

Si (t)
+ dLi (t)

where DTSi (t) = Di Si,t is the duration-time-spread factor
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Conventional bond model

Liquidity premia (Acharya and Pedersen, 2005)

The illiquidity premium dLi,t can be decomposed into an illiquidity level
component E [Li,t ] and three illiquidity covariance risks:

1 β (Li , LM )
An asset that becomes illiquid when the market becomes illiquid
should have a higher risk premium.

2 β (Ri , LM )
An asset that perform well in times of market illiquidity should have a
lower risk premium.

3 β (Li ,RM )
Investors accept a lower risk premium on assets that are liquid in a
bear market.
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Conventional bond model

By assuming that:

dLi,t = αi (t) + β (Li , LM ) dLM (t)

where αi is the liquidity return that is not explained by the liquidity
commonality, we obtain:

Ri (t) = αi (t)− Di dR (t)−DTSi (t)
dSi (t)

Si (t)
+ β (Li , LM ) dLM (t)

or:

Ri (t) = a (t)− Di dR (t)−DTSi (t)
dSi (t)

Si (t)
+ β (Li , LM ) dLM (t) + ui (t)
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Risk factors in corporate bonds

Conventional bond model (or the ‘equivalent’ CAPM for bonds)

The total return Ri (t) of Bond i at time t is equal to:

Ri (t) = a (t)−MDi (t) R I (t)−DTSi (t) RS (t) +LTPi (t) RL (t) +ui (t)

where:

a (t) is the constant/carry/zero intercept

MDi (t) is the modified duration

DTSi (t) is the duration-times-spread

LTPi (t) is the liquidity-time-price

ui (t) is the residual

⇒ R I (t), RS (t) and RL (t) are the return components due to interest
rate movements, credit spread variation and liquidity dynamics.
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Risk factors in corporate bonds

Figure 52: Conventional alpha decreases with the
number of holding assets
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Source: Amundi Research (2017)

There is less traditional
alpha in the bond market
than in the stock market
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Risk factors in corporate bonds

Since 2015

Houweling and van Zundert (2017) — HZ

Bektic, Neugebauer, Wegener and Wenzler (2017) — BNWW

Israel, Palhares and Richardson (2017) — IPR

Bektic, Wenzler, Wegener, Schiereck and Spielmann (2019) —
BWWSS

Ben Slimane, De Jong, Dumas, Fredj, Sekine and Srb (2019) —
BDDFSS

Etc.
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Risk factors in corporate bonds

Study HZ BWWSS IPR BNWW

Period 1994-2015
1996-2016 (US)

1997-2015 1999-2016
2000-2016 (EU)

Universe
Bloomberg Barclays BAML BAML BAML
US IG & HY US IG & HY, EU IG US IG & HY US IG & HY

Investment
1Y variation in total
assets

Low risk
Short maturity + Leverage × Duration ×

1Y equity beta
High rating Profitability

Momentum 6M bond return
6M bond return +

1Y stock return
6M stock return

Profitability Earnings-to-book

Size Market value of issuer Market capitalization Market capitalization

Value
Comparing OAS to Ma-
turity × Rating × 3M
OAS variation

Price-to-book

Comparing OAS to Du-
ration × Rating × Bond
return volatility + Im-
plied default probability

Price-to-book
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Risk factors in currency markets

What are the main risk factors for explaining the cross-section of
currency returns?

1 Momentum (cross-section or time-series)
2 Carry
3 Value (short-term, medium-term or long-term)

The dynamics of some currencies are mainly explained by:

Common risk factors (e.g. NZD or CAD)
Idiosyncratic risk factors (e.g. IDR or PEN)

Carry-oriented currency? (e.g. JPY 6= CHF)
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Risk factors in commodities

Two universal strategies:

Contango/backwardation
strategy
Trend-following strategy

CTA = Commodity Trading
Advisor

Only two risk factors?

Carry
Momentum

Figure 53: Contango and backwardation
movements in commodity futures
contracts
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Factor analysis of an asset

Carry Value Momentum

Asset

Quality Size Liquidity Volatility
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Factor analysis of an asset

Carry

• Yield

• Income
generation

• Risk arbitrage

Value

• Fair price

• Overvalued /
undervalued

• Fundamental

Momentum

• Price dynamics

• Trend-following

• Mean-reverting /
Reversal

Liquidity

• Tradability property (transaction cost,
execution time, scarcity)

• Supply/demande imbalance

• Bad times 6= good times
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The concept of alternative risk premia

There are many definitions of ARP:

ARP ≈ factor investing (FI)
(ARP = long/short portfolios, FI = long portfolios)

ARP ≈ all the other risk premia (RP) than the equity and bond risk
premia

ARP ≈ quantitative investment strategies (QIS)

Sell-side

CIBs & brokers

ARP = QIS

Buy-side

Asset managers & asset owners

ARP = FI (for asset managers)

ARP = RP (for asset owners)
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The concept of alternative risk premia

Alternative Risk Premia

Alternative (or real) assets

Private equity

Private debt

Real estate

Infrastructure

Traditional financial assets

Long/short risk factors
in equities, rates, credit,
currencies &
commodities

Risk premium strategy
(e.g. carry, momentum,
value, etc.)
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The concept of alternative risk premia

A risk premium is the expected excess return by the investor in order
to accept the risk ⇒ any (risky) investment strategy has a risk
premium!

Generally, the term “risk premium” is associated to asset classes:

The equity risk premium
The risk premium of high yield bonds

This means that a risk premium is the expected excess return by the
investor in order to accept a future economic risk that cannot be
diversifiable

For instance, the risk premium of a security does not integrate its
specific risk
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The concept of alternative risk premia

What is the relationship between a risk factor and a risk premium?

A rewarded risk factor may correspond a to risk premium, while a
non-rewarded risk factor is not a risk premium
A risk premium can be a risk factor if it helps to explain the
cross-section of expected returns
The case of cat bonds:

Risk premium 4
Risk factor 8
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Risk premia & non-diversifiable risk

Consumption-based model (Lucas, 1978; Cochrane, 2001)

A risk premium is a compensation for accepting (systematic) risk in
bad times.

We have:

Et [Rt+1 − Rf ,t ]︸ ︷︷ ︸
Risk premium

∝ −ρ (u′ (Ct+1) ,Rt+1)︸ ︷︷ ︸
Correlation term

× σ (u′ (Ct+1))︸ ︷︷ ︸
Smoothing term

× σ (Rt+1)︸ ︷︷ ︸
Volatility term

where Rt+1 is the one-period return of the asset, Rf ,t is the risk-free rate,
Ct+1 is the future consumption and u (C ) is the utility function.

Main results

Hedging assets help to smooth the consumption ⇒ low or negative
risk premium

In bad times, risk premium strategies are correlated and have a
negative performance (6= all-weather strategies)
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Risk premia & bad times

The market must
reward contrarian
and value investors,
not momentum
investors
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Behavioral finance and limits to arbitrage

Bounded rationality

Barberis and Thaler (2003), A Survey of Behavioral Finance.

Decisions of the other economic agents
⇓

Feedback effects on our decisions!

Killing Homo Economicus

[...] “conventional economics assumes that people are highly ra-
tional, super rational and unemotional. They can calculate like
a computer and have no self-control problems” (Richard Thaler,
2009).

“The people I study are humans that are closer to Homer Simpson”
(Richard Thaler, 2017).
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Behavioral finance and social preferences

For example, momentum may be a rational behavior if the investor is
not informed and his objective is to minimize the loss with respect to
the ‘average’ investor.

Absolute loss 6= relative loss

Loss aversion and performance asymmetry

Imitations between institutional investors ⇒ benchmarking

Home bias

What does the theory become if utility maximization includes the
performance of other economic agents?

⇒ The crowning glory of tracking error and relative performance!
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Behavioral finance and market anomalies

Previously

Positive expected excess returns
are explained by:

risk premia

Today

Positive expected excess returns
are explained by:

risk premia

or market anomalies

Market anomalies correspond to trading strategies that have delivered
good performance in the past, but their performance cannot be explained
by the existence of a systematic risk (in bad times). Their performance
can only be explained by behavioral theories.

⇒ Momentum, low risk and quality risk factors are three market anomalies
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The case of low risk assets

Figure 54: What is the impact of borrowing
constraints on the market portfolio?

The investor that targets
a 8% expected return
must choose Portfolio B

The demand for high
beta assets is higher than
this predicted by CAPM

This effect is called the
low beta anomaly

Low risk assets have a higher Sharpe ratio than high risk assets
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Skewness risk premia & market anomalies

Characterization of alternative risk premia

An alternative risk premium (ARP) is a risk premium, which is not
traditional

Traditional risk premia (TRP): equities, sovereign/corporate bonds
Currencies and some commodities are not TRP

The drawdown of an ARP must be positively correlated to bad times

Risk premia 6= insurance against bad times
(SMB, HML) 6= WML

Risk premia are an increasing function of the volatility and a
decreasing function of the skewness

In the market practice, alternative risk premia recover:

1 Skewness risk premia (or pure risk premia), which present high
negative skewness and potential large drawdown

2 Markets anomalies
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Payoff function of alternative risk premia

Figure 55: Which option profile may be considered as a
skewness risk premium?
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A myriad of alternative risk premia?

Figure 56: Mapping of risk premia strategies (based on existing products)

Strategy Equities Rates Credit Currencies Commodities

Carry
Dividend futures

High dividend yield

Forward rate bias Forward rate bias
Term structure slope Forward rate bias Forward rate bias Term structure slope
Cross-term-structure Cross-term-structure

Event
Buyback

Merger arbitrage
Growth Growth

Liquidity Amihud liquidity Turn-of-the-month Turn-of-the-month Turn-of-the-month

Low beta
Low beta

Low volatility

Momentum
Cross-section Cross-section

Time-series
Cross-section Cross-section

Time-series Time-series Time-series Time-series
Quality Quality

Reversal
Time-series

Time-series Time-series Time-series
Variance

Size Size

Value Value Value Value
PPP

ValueREER, BEER, FEER
NATREX

Volatility
Carry

Carry Carry Carry
Term structure

Source: Roncalli (2017)
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The carry risk premium
Underlying idea

Definition

The investor takes an investment risk

This investment risk is rewarded by a high and known yield

Financial theory predicts a negative mark-to-market return that may
reduce or write off the performance

The investor hopes that the impact of the mark-to-market will be
lower than the predicted value

⇒ Carry strategies are highly related to the concept of risk arbitrage12

The carry risk premium is extensively studied by Koijen et al. (2018)

The carry risk premium has a short put option profile

12An example is the carry strategy between pure money market instruments and
commercial papers = not the same credit risk, not the same maturity risk, but the
investor believes that the default will never occur!
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The carry risk premium
Not one but several carry strategies

Equity
Carry on dividend futures
Carry on stocks with high dividend yields (HDY)

Rates (sovereign bonds)
Carry on the yield curve (term structure & roll-down)

Credit (corporate bons)
Carry on bonds with high spreads
High yield strategy

Currencies
Carry on interest rate differentials (uncovered interest rate parity)

Commodities
Carry on contango & backwardation movements

Volatility
Carry on option implied volatilities
Short volatility strategy

⇒ Many implementation methods: security-slope, cross-asset, long/short,
long-only, basis arbitrage, etc.
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The carry risk premium
Analytical model

Let Xt be the capital allocated at time t to finance a futures position
(or an unfunded forward exposure) on asset St

By assuming that the futures price expires at the future spot price
(Ft+1 = St+1), Koijen et al. (2018) showed that:

Rt+1 (Xt)− Rf =
Ft+1 − Ft

Xt

=
St+1 − Ft

Xt

=
St − Ft

Xt
+
Et [St+1]− St

Xt
+

St+1 − Et [St+1]

Xt
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The carry risk premium
Analytical model

At time t + 1, the excess return of this investment is then equal to:

Rt+1 (Xt)− Rf = Ct +
Et [∆St+1]

Xt
+ εt+1

where εt+1 = (St+1 − Et [St+1]) /Xt is the unexpected price change
and Ct is the carry:

Ct =
St − Ft

Xt

It follows that the expected excess return is the sum of the carry and
the expected price change:

Et [Rt+1 (Xt)]− Rf = Ct +
Et [∆St+1]

Xt

The nature of these two components is different:
1 The carry is an ex-ante observable quantity (known value)
2 The price change depends on the dynamic model of St (unknown

value)
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The carry risk premium
Analytical model

If we assume that the spot price does not change (no-arbitrage
assumption H), the expected excess return is equal to the carry:

Et [∆St+1]

Xt
= −Ct

The carry investor will prefer Asset i to Asset j if the carry of Asset i
is higher:

Ci,t ≥ Cj,t =⇒ Ai � Aj

The carry strategy would then be long on high carry assets and short
on low carry assets.

Remark

In the case of a fully-collateralized position Xt = Ft , the value of the carry
becomes:

Ct =
St

Ft
− 1
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The carry risk premium
Currency carry (or the carry trade strategy)

Let St , it and rt be the spot exchange rate, the domestic interest rate
and the foreign interest rate for the period [t, t + 1]

The forward exchange rate Ft is equal to:

Ft =
1 + it
1 + rt

St

The carry is approximately equal to the interest rate differential:

Ct =
rt − it
1 + it

' rt − it
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The carry risk premium
Currency carry (or the carry trade strategy)

The carry strategy is long on currencies with high interest rates and
short on currencies with low interest rates

We can consider the following carry scoring (or ranking) system:

Ct = rt

Uncovered interest rate parity (UIP)

An interest rate differential of 10% ⇒ currency depreciation of 10%
per year

In 10 years, we must observe a depreciation of 65%!
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The carry risk premium
Currency carry (or the carry trade strategy)

ARS Argentine peso KRW Korean won
AUD Australian dollar LTL Lithuanian litas
BGN Bulgarian lev LVL Latvian lats
BHD Bahraini dinar MXN Mexican peso
BRL Brazilian real MYR Malaysian ringgit
CAD Canadian dollar NOK Norwegian krone
CHF Swiss franc NZD New Zealand dollar
CLP Chilean peso PEN Peruvian new sol
CNY/RMB Chinese yuan (Renminbi) PHP Philippine peso
COP Colombian peso PLN Polish zloty
CZK Czech koruna RON new Romanian leu
DKK Danish krone RUB Russian rouble
EUR Euro SAR Saudi riyal
GBP Pound sterling SEK Swedish krona
HKD Hong Kong dollar SGD Singapore dollar
HUF Hungarian forint THB Thai baht
IDR Indonesian rupiah TRY Turkish lira
ILS Israeli new shekel TWD new Taiwan dollar
INR Indian rupee USD US dollar
JPY Japanese yen ZAR South African rand
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The carry risk premium
Currency carry (or the carry trade strategy)

Baku et al. (2019, 2020) consider the most liquid currencies:

G10 AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK and USD

EM BRL, CLP, CZK, HUF, IDR, ILS, INR, KRW, MXN, PLN, RUB,
SGD, TRY, TWD and ZAR

G25 G10 + EM

They build currency risk factors using the following characteristics:

The portfolio is equally-weighted and rebalanced every month

The portfolio is notional-neutral (number of long exposures = number
of short exposures)

3/3 for G10, 4/4 for EM and 7/7 for G25

The long (resp. short) exposures correspond to the highest (resp.
lowest) scores
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The carry risk premium
Currency carry (or the carry trade strategy)

Scoring system: Si,t = Ci,t = ri,t

The carry strategy is long on currencies with high interest rates and
short on currencies with low interest rates

Table 60: Risk/return statistics of the carry risk factor (2000-2018)

G10 EM G25
Excess return (in %) 3.75 11.21 7.22
Volatility (in %) 9.35 9.12 8.18
Sharpe ratio 0.40 1.23 0.88
Maximum drawdown (in %) −31.60 −25.27 −17.89

Source: Baku et al. (2019, 2020)
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The carry risk premium
Currency carry (or the carry trade strategy)

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

100

150

200

250

500

750

Figure 57: Cumulative performance of the carry risk factor

Source: Baku et al. (2019, 2020)

Thierry Roncalli Asset Management (Lecture 3) 687 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The carry risk premium
Equity carry

We have:

Ct '
Et [Dt+1]

St
− rt

where Et [Dt+1] is the risk-neutral expected dividend for time t + 1

If we assume that dividends are constant, the carry is the difference
between the dividend yield yt and the risk-free rate rt :

Ct = yt − rt

The carry strategy is long on stocks with high dividend yields and
short on stocks with low dividend yields

This strategy may be improved by considering forecasts of dividends.
In this case, we have:

Ct '
Et [Dt+1]

St
− rt =

Dt + Et [∆Dt+1]

St
− rt = yt + gt − rt

where gt is the expected dividend growth
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The carry risk premium
Equity carry

Carry strategy with dividend futures

Another carry strategy concerns dividend futures. The underlying idea is to
take a long position on dividend futures where the dividend premium is the
highest and a short position on dividend futures where the dividend
premium is the lowest. Because dividend futures are on equity indices, the
market beta exposure is generally hedged.

Why do we observe a premium on dividend futures?

⇒ Because of the business of structured products and options
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The carry risk premium
Bond carry

The price of a zero-coupon bond with maturity date T is equal to:

Bt (T ) = e−(T−t)Rt (T )

where Rt (T ) is the corresponding zero-coupon rate

Let Ft (T ,m) denote the forward interest rate for the period
[T ,T + m], which is defined as follows:

Bt (T + m) = e−mFt (T ,m)Bt (T )

We deduce that:

Ft (T ,m) = − 1

m
ln

Bt (T + m)

Bt (T )

It follows that the instantaneous forward rate is given by this equation:

Ft (T ) = Ft (T , 0) =
−∂ lnBt (T )

∂ T
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The carry risk premium
Bond carry

Figure 58: Movements of the yield curve

Thierry Roncalli Asset Management (Lecture 3) 691 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The carry risk premium
Bond carry

Figure 59: Sport and forward interest rates
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The carry risk premium
Bond carry

1 The first carry strategy (“forward rate bias”) consists in being long
the forward contract on the forward rate Ft (T ,m) and selling it at
time t + dt with t + dt ≤ T

Forward rates are generally higher than spot rates
Under the hypothesis (H) that the yield curve does not change, rolling
forward rate agreements can then capture the term premium and the
roll down
The carry of this strategy is equal to:

Ct = Rt (T )− rt︸ ︷︷ ︸
term premium

+ ∂T̄ R̄t

(
T̄
)︸ ︷︷ ︸

roll down

where R̄t

(
T̄
)

is the zero-coupon rate with a constant time to maturity
T̄ = T − t
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The carry risk premium
Bond carry

Implementation

We notice that the difference is higher for long maturities. However, the
risk associated with such a strategy is that of a rise in interest rates. This
is why this carry strategy is generally implemented by using short-term
maturities (less than two years)
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The carry risk premium
Bond carry

2 The second carry strategy (“carry slope”) corresponds to a long
position in the bond with maturity T2 and a short position in the
bond with maturity T1

The exposure of the two legs are adjusted in order to obtain a
duration-neutral portfolio
This strategy is known as the slope carry trade
We have:

Ct = (Rt (T2)− rt)− D2 (T1)

Dt (T1)
(Rt (T1)− rt)︸ ︷︷ ︸

duration neutral slope

+

∂T̄ R̄t

(
T̄2

)
− D2 (T1)

Dt (T1)
∂T̄ R̄t

(
T̄1

)
︸ ︷︷ ︸

duration neutral roll down
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The carry risk premium
Bond carry

Implementation

The classical carry strategy is long 10Y/short 2Y
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The carry risk premium
Bond carry

3 The third carry strategy (“cross-carry slope”) is a variant of the
second carry strategy when we consider the yield curves of several
countries

Implementation

The portfolio is long on positive or higher slope carry and short on
negative or lower slope carry
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The carry risk premium
Credit carry

We consider a long position on a corporate bond and a short position on
the government bond with the same duration

The carry is equal to:

Ct = st (T )︸ ︷︷ ︸
spread

+ ∂T̄ R̄?t
(
T̄
)
− ∂T̄ R̄t

(
T̄
)︸ ︷︷ ︸

roll down difference

where st (T ) = R?t (T )− Rt (T ) is the credit spread, R?t (T ) is the
yield-to-maturity of the credit bond and R?t (T ) is the yield-to-maturity of
the government bond
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The carry risk premium
Credit carry

Two implementations

1 The first one is to build a long/short portfolio with corporate bond
indices or baskets. The bond universe can be investment grade or
high yield. In the case of HY bonds, the short exposure can be an IG
bond index

2 The second approach consists in using credit default swaps (CDS).
Typically, we sell credit protection on HY credit default indices (e.g.
CDX.NA.HY) and buy protection on IG credit default indices (e.g.
CDX.NA.IG)
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The carry risk premium
Commodity carry

Figure 60: Contango and backwardation
movements in commodity futures contracts

Source: Roncalli (2013)

Figure 61: Term structure of crude oil
futures contracts

Source: Roncalli (2013)
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The carry risk premium
Volatility carry (or the short volatility strategy)

Volatility carry risk premium

Long volatility ⇒ negative carry (6= structural exposure)

Short volatility ⇒ positive carry, but the highest skewness risk

The P&L of selling and delta-hedging an option is equal to:

Π =
1

2

∫ T

0

er(T−t)S2
t Γt

(
Σ2

t − σ2
t

)
dt

where St is the price of the underlying asset, Γt is the gamma
coefficient, Σt is the implied volatility and σt is the realized volatility

Σt ≥ σt =⇒ Π > 0

3 main reasons:

1 Asymmetric risk profile between the seller and the buyer
2 Hedging demand imbalances
3 Liquidity preferences
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The carry risk premium
Volatility carry (or the short volatility strategy)

Figure 62: Non-parametric payoff of the US
short volatility strategy

Income generation

Short put option profile

Strategic asset allocation (6=
tactical asset allocation)

Time horizon is crucial!

It is a skewness risk premium!

Carry strategies exhibit concave payoffs
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The value risk premium
Definition

Let Si,t be the market price of Asset i

Let S?i be the fundamental price (or the fair value) of Asset i

The value of Asset i is the relative difference between the two prices:

Vi,t =
S?i − Si,t

Si,t

The value investor will prefer Asset i to Asset j if the value of Asset i
is higher:

Vi,t ≥ Vj,t =⇒ Ai � Aj
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The value risk premium
The value strategy is an active management bet

The price of Asset i is undervalued if and only if its value is negative:

Vi,t ≤ 0⇔ S?i ≤ Si,t

The value investor should sell securities with negative values

The price of Asset i is overvalued if and only if its value is positive:

Vi,t ≥ 0⇔ S?i ≥ Si,t

The value investor should buy securities with positive values

Remark

While carry is an objective measure, value is a subjective measure,
because the fair value is different from one investor to another (e.g. stock
picking = value strategy)
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The value risk premium
Computing the fair value

We need a model to estimate the fundamental price S?i :

Stocks: discounted cash flow (DCF) method, fundamental measures
(B2P, PE, DY, EBITDA/EV, etc.), machine learning model, etc.

Sovereign bonds: macroeconomic model, flows model, etc.

Corporate bonds: Merton model, structural model, econometric
model, etc.

Foreign exchange rates: purchasing power parity (PPP), real effective
exchange rate (REER), BEER, FEER, NATREX, etc.

Commodities: statistical model (5-year average price), etc.
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The value risk premium
Equity value

The equity strategy

If we assume that the weight of asset i is proportional to its book-to-price:

wi,t ∝
Bi,t

Pi,t

We obtain:

wi,t = Bi,t

/∑n

j=1
Bj,t︸ ︷︷ ︸

Fundamental component

×
∑n

j=1
Pj,t

/
Pi,t︸ ︷︷ ︸

Reversal component

× a cross-effect term︸ ︷︷ ︸
' constant

The value risk factor can be decomposed into two main components:

a fundamental indexation pattern

a reversal-based pattern

⇒ Reversal strategies ≈ value strategies
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The value risk premium
Equity value

In equities, the frequency of the reversal pattern is ≤ 1 month or ≥
18 months

In currencies and commodities, the frequency of the reversal pattern
is very short (one or two weeks) or very long (≥ 3 years)

⇒ Value strategy in currencies and commodities?
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The value risk premium
The payoff of the equity value risk premium

We consider two Eurozone Value indices calculated by the same index
sponsor

The index sponsor uses the same stock selection process

The index sponsor uses two different weighting schemes:

The first index considers a capitalization-weighted portfolio
The second index considers a minimum variance portfolio

⇒ We recall that the payoff of the low-volatility strategy is long put +
short call
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The value risk premium
The payoff of the equity value risk premium
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Figure 63: Which Eurozone value index has the right payoff?
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The value risk premium
The payoff of the equity value risk premium

Answer

The payoff of the equity value risk premium is:

Short Put + Long Call

⇒ It is a skewness risk premium too!

The design of the strategy is crucial (some weighting schemes may
change or destroy the desired payoff!)

Are the previous results valid for other asset classes, e.g. rates or
currencies?
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The value risk premium
Misunderstanding of the equity value risk premium

The dot-com crisis (2000-2003)

If we consider the S&P 500 index, we
obtain:

55% of stocks post a negative
performance

≈ 75% of MC

45% of stocks post a positive
performance

Maximum drawdown = 49 %

Small caps stocks ↗
Value stocks ↗

The GFC crisis (2008)

If we consider the S&P 500 index, we
obtain:

95% of stocks post a negative
performance

≈ 97% of MC

5% of stocks post a positive
performance

Maximum drawdown = 56 %

Small caps stocks ↘
Value stocks ↘

What is the impact of the liquidity risk premium?
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The value risk premium
Extension to other asset classes

Corporate bonds

Houweling and van Zundert (2017)
Ben Slimane et al. (2019)
Roncalli (2020)

Currencies

MacDonald (1995)
Menkhoff et al. (2016)
Baku et al. (2019, 2020)
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The momentum risk premium
Definition

Let Si,t be the market price of Asset i

We assume that:

dSi,t

Si,t
= µi,t dt + σi,t dWi,t

The momentum of Asset i corresponds to its past trend:

Mi,t = µ̂i,t

The momentum investor will prefer Asset i to Asset j if the
momentum of Asset i is higher:

Mi,t ≥Mj,t =⇒ Ai � Aj
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The momentum risk premium
Computing the momentum measure

Past return (e.g. one-month, three-month, one-year, etc.)

Mi,t =
Si,t − Si,t−h

Si,t−h

Lagged past return13

Econometric and statistical trend estimators (see Bruder et al. (2011)
for a survey)

13For instance, the WML risk factor is generally implemented using the one-month
lag of the twelve-month return:

Mi,t =
Si,t−1M − Si,t−13M

Si,t−13M

because the stock market is reversal within a one-month time horizon
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The momentum risk premium
Three momentum strategies

1 Cross-section momentum (CSM)

Mi,t ≥Mj,t =⇒ Ai � Aj

2 Time-series momentum (TSM)

Mi,t > 0 =⇒ Ai � 0 and Mi,t < 0 =⇒ Ai ≺ 0

3 Reversal strategy:

Mi,t ≥Mj,t =⇒ Ai ≺ Aj

Remark

Generally, the momentum risk premium corresponds to the CSM or TSM
strategies. When we speak about momentum strategies, we can also
include reversal strategies, which are more considered as trading strategies
with high turnover ratios and very short holding periods (generally
intra-day or daily frequency, less than one week most of the time)
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The momentum risk premium
Cross-section versus time-series

Time-series momentum (TSM)

The portfolio is long (resp.
short) on the asset if it has a
positive (resp. negative)
momentum

This strategy is also called
“trend-following” or
“trend-continuation”

HF: CTA and managed futures

Between asset classes

Cross-section momentum (CSM)

The portfolio is long (resp.
short) on assets that present a
momentum higher (resp. lower)
than the others

This strategy is also called
“winners minus losers” (or
WML) by Carhart (1997)

Within an asset class (equities,
currencies)

⇒ These two momentum risk premia are very different and not well
understood!

Thierry Roncalli Asset Management (Lecture 3) 716 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The momentum risk premium
Understanding the TSM strategy

Some results (Jusselin et al., 2017)

EWMA is the optimal trend estimator (Kalman-Bucy filtering)

Two components

a short-term component given by the payoff (dynamics)
a long-term component given by the trading impact (performance)

Main important parameters

The Sharpe ratio
The duration of the moving average
The correlation matrix
The term structure of the volatility

Too much leverage kills momentum (high ruin probability)
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The momentum risk premium
Understanding the TSM strategy

Some results (Jusselin et al., 2017)

The issue of diversification

Time-series momentum likes zero-correlated assets (e.g. multi-asset
momentum premium)
Cross-section momentum likes highly correlated assets (e.g. equity
momentum factor)
The number of assets decreases the P&L dispersion
The symmetry puzzle
The n/ρ trade-off

Short-term versus long-term momentum

Short-term momentum is more risky than long-term momentum
The Sharpe ratio of long-term momentum is higher
The choice of the EWMA duration is more crucial for long-term
momentum
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The momentum risk premium
Understanding the TSM strategy

Some results (Jusselin et al., 2017)

The momentum strategy outperforms the buy-and-hold strategy when
the Sharpe ratio is lower than 35%

The specific nature of equities and bonds

Performance of equity momentum is explained by leverage patterns
Performance of bond momentum is explained by frequency patterns

A lot of myths about the performance of CTAs (equity contribution,
option profile, hedging properties)

Momentum strategies are not alpha or absolute return strategies, but
diversification strategies
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The momentum risk premium
Trend-following strategies (or TSM) exhibit a convex payoff
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Figure 64: Option profile of the trend-following strategy

λ is the parameter of the
EWMA estimator

τ = 1/λ is the duration
of the EWMA estimator

Market anomaly: the
systematic risk is limited
in bad times

Trend-following
strategies exhibit a
convex payoff
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The momentum risk premium
The loss of a trend-following strategy is bounded
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Figure 65: Cumulative distribution function of gt

(st = 0)

st is the Sharpe ratio

gt is the trading impact

The loss is bounded

The gain may be infinite

The return variance of
short-term momentum
strategies is larger than
the return variance of
long-term momentum
strategies

The skewness is positive

Thierry Roncalli Asset Management (Lecture 3) 721 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The momentum risk premium
Trend-following strategies exhibit positive skewness
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Figure 66: Statistical moments of the momentum
strategy

Short-term
trend-following strategies
are more risky than
long-term
trend-following strategies

The skewness is positive

It is a market anomaly,
not a skewness risk
premium
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The momentum risk premium
Short-term versus long-term trend-following strategies
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Figure 67: Sharpe ratio of the momentum strategy

When the Sharpe ratio
of the underlying is lower
than 35%, the
momentum strategy
dominates the
buy-and-hold strategy

The Sharpe ratio of
long-term momentum
strategies is higher than
the Sharpe ratio of
short-term momentum
strategies
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The momentum risk premium
Relationship with the Black-Scholes robustness

Figure 68: Admissible region for positive P&L

Delta-hedging: implied
volatility vs realized
volatility

Trend-following:
duration vs realized
Sharpe ratio

The critical value for the
Sharpe ratio is 1.41 for
3M and 0.71 for 1Y
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The momentum risk premium
Impact of the correlation on trend-following strategies
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Figure 69: Cumulative distribution function of gt

(st = 0)

Sign of correlation does
not matter when the
Sharpe ratio of assets is
zero

Symmetry puzzle

positive correlation
=

negative correlation
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The momentum risk premium
Correlation and diversification

Long-only versus long/short diversification

We consider a portfolio (α1, α2) composed of two assets. We have:

σ (ρ) =
√
α2

1σ
2
1 + 2ρα1α2σ1σ2 + α2

2σ
2
2

In the case of a long-only portfolio, the best case for diversification is
reached when the correlation is equal to −1:

|α1σ1 − α2σ2| = σ (−1) ≤ σ (ρ) ≤ σ (1) = α1σ1 + α2σ2

In the case of a long/short portfolio, we generally have
sgn (α1α2) = sgn (ρ). Therefore, the best case for diversification is
reached when the correlation is equal to zero: σ (0) ≤ σ (ρ). Indeed,
when the correlation is −1, the investor is long on one asset and short
on the other asset, implying that this is the same bet.
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The momentum risk premium
The number of assets/correlation trade-off
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Figure 70: Impact of the number of assets on
Pr {gt ≤ g} (st = 2, ρ = 80%)

Correlation is not the
friend of time-series
momentum

A momentum strategy
prefers a few number of
assets with high Sharpe
ratio absolute values
than a large number of
assets with low Sharpe
ratio absolute values
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The momentum risk premium
TSM versus CSM

Time-series momentum

Absolute trends{
µ̂i,t ≥ 0⇒ ei,t ≥ 0
µ̂i,t < 0⇒ ei,t < 0

CTA hedge funds

Alternative risk premia in
multi-asset portfolios

Cross-section momentum

Relative trends{
µ̂i,t ≥ µ̄t ⇒ ei,t ≥ 0
µ̂i,t < µ̄t ⇒ ei,t < 0

where:

µ̄t =
1

n

n∑
j=1

µ̂j,t

Statistical arbitrage / relative value

Factor investing in equity portfolios

Beta strategy or Alpha strategy?
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The momentum risk premium
Performance of cross-section momentum risk premium
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Figure 71: Sharpe ratio of the CSM strategy

Correlation is the
friend of cross-section
momentum!

Statistical arbitrage /
relative value
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The momentum risk premium
Naive replication of the SG CTA Index
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Figure 72: Comparison between the cumulative
performance of the naive replication strategy and the SG
CTA Index

The performance of
trend-followers comes
from the trading impact

Currencies and
commodities are the
main contributors!

Mixing asset classes is
the key point in order to
capture the
diversification premium
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The momentum risk premium
Trend-following strategies benefit from traditional risk premia

Table 61: Exposure average of the trend-following strategy (in %)

Asset Average Short Long Short Long
Class Exposure Exposure Exposure Frequency Frequency
Bond 58% −100% 122% 29% 71%
Equity 52% −88% 160% 44% 56%
Currency 18% −103% 115% 45% 55%
Commodity 23% −108% 113% 41% 59%

The specific nature of bonds: long exposure frequency > short
exposure frequency; long leverage ≈ short leverage

The specific nature of equities: short exposure frequency ≈ long
exposure frequency; long leverage > short leverage
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The momentum risk premium
The myth of short selling

Equity and bond momentum strategies benefit from the existence of a
risk premium

Currency and commodity momentum strategies benefit from (positive
/ negative) trend patterns

Leverage management � short management

The case of equities in the 2008 GFC, the stock-bond correlation and
the symmetry puzzle

The good performance of CTAs in 2008 is not explained by their
short exposure in equities, but by their long exposure in bonds
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The momentum risk premium
The reversal strategy

The reversal strategy may be defined as the opposite of the
momentum strategy (CSM or TSM)

It is also known as the mean-reverting strategy

How to reconciliate reversal and trend-following strategies?

Because they don’t use the same trend windows and holding periods14

14Generally, reversal strategies use short-term or very long-term trends while
trend-following strategies use medium-term trends
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The momentum risk premium
The reversal strategy

The mean-reverting (or autocorrelation) strategy

Let Ri,t = lnSi,t − lnSi,t−1 be the one-period return

We note ρi (h) = ρ (Ri,t ,Ri,t−h) the autocorrelation function

Asset i exhibits a mean-reverting pattern if the short-term
autocorrelation ρi (1) is negative

In this case, the short-term reversal is defined by the product of the
autocorrelation and the current return:

Ri,t = ρi (1) · Ri,t

The short-term reversal strategy is then defined by the following rule:

Ri,t ≥ Rj,t =⇒ i � j
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The momentum risk premium
The reversal strategy

First implementation of the autocorrelation strategy

• If Ri,t is positive, meaning that the current return Ri,t is negative, we
should buy the asset, because a negative return is followed by a
positive return on average

• If Ri,t is negative, meaning that the current return Ri,t is positive, we
should sell the asset, because a positive return is followed by a
negative return on average
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The momentum risk premium
The reversal strategy

The variance swap strategy

We assume that the one-period asset return follows an AR(1) process:

Ri,t = ρRi,t−1 + εt

where |ρ| < 1, εt ∼ N
(
0, σ2

ε

)
and cov (εt , εt−j ) = 0 for j ≥ 1

Let RV (h) be the annualized realized variance of the h-period asset
return Ri,t (h) = ln Si,t − lnSi,t−h

Hamdan et al. (2016) showed that:

E [RV (h)] = φ (h)E [RV (1)]

where:

φ (h) = 1 + 2ρ
1− ρh−1

1− ρ
− 2

∑h−1

j=1

j

h
ρj
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The momentum risk premium
The reversal strategy

The variance swap strategy

We notice that:

lim
h→∞

E [RV (h)] =

(
1 +

2ρ

1− ρ

)
· E [RV (1)]

When the autocorrelation is negative, this implies that the long-term
frequency variance is lower than the short-term frequency variance

More generally, we have:{
E [RV (h)] < E [RV (1)] if ρ < 0
E [RV (h)] ≥ E [RV (1)] otherwise
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The momentum risk premium
The reversal strategy

Figure 73: Variance ratio (RV (h)− RV (1)) /RV (1) (in %)
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The momentum risk premium
The reversal strategy

Second implementation of the autocorrelation strategy

• The spread between daily/weekly and weekly/monthly variance swaps
depends on the autocorrelation of daily returns

• The reversal strategy consists in being long on the daily/weekly
variance swaps and short on the weekly/monthly variance swaps
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The momentum risk premium
The reversal strategy

The long-term reversal strategy

The long-term return reversal is defined by the difference between
long-run and short-period average prices:

Ri,t = S̄LT
i,t − S̄ST

i,t

Typically, S̄ST
i,t is the average price over the last year and S̄LT

i,t is the
average price over the last five years

The long-term return reversal strategy follows the same rule as the
short-term reversal strategy

This reversal strategy is equivalent to a value strategy because the
long-run average price can be viewed as an estimate of the
fundamental price in some asset classes
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The momentum risk premium
The reversal strategy

Implementation of the long-term reversal strategy

• If Ri,t is positive, the long-term mean of the asset price is above its
short-term mean ⇒ we should buy the asset

• If Ri,t is negative, the long-term mean of the asset price is below its
short-term mean ⇒ we should sell the asset
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The liquidity risk premium
What means “liquidity risk”?

“[...] there is also broad belief among users of financial liquidity
— traders, investors and central bankers — that the principal
challenge is not the average level of financial liquidity ... but its
variability and uncertainty ” (Persaud, 2003).
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The liquidity risk premium
The liquidity-adjusted CAPM

L-CAPM (Acharya and Pedersen, 2005)

We note Li the relative (stochastic) illiquidity cost of Asset i . At the
equilibrium, we have:

E [Ri − Li ]− Rf = β̃i (E [RM − LM ]− Rf )

where:

β̃i =
cov (Ri − Li ,RM − LM )

var (RM − LM )

CAPM in the frictionless economy
⇓

CAPM in net returns (including illiquidity costs)
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The liquidity risk premium
The liquidity-adjusted CAPM

The liquidity-adjusted beta can be decomposed into four beta(s):

β̃i = βi + β (Li,, LM )− β (Ri,, LM )− β (Li,,RM )

where:

βi = β (Ri,RM ) is the standard market beta;
β (Li,, LM ) is the beta associated to the commonality in liquidity with
the market liquidity;
β (Ri,, LM ) is the beta associated to the return sensitivity to market
liquidity;
β (Li,,RM ) is the beta associated to the liquidity sensitivity to market
returns.

The risk premium is equal to:

πi = E [Li ] + (βi + β (Li,, LM ))πM −(
β̃iE [LM ] + (β (Ri,, LM ) + β (Li,,RM ))πM

)
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The liquidity risk premium
The liquidity-adjusted CAPM

Acharya and Pedersen (2005)

If assets face some liquidity costs, the relationship between the risk
premium and the beta of asset i becomes:

E [Ri ]− Rf = αi + βi (E [RM ]− Rf )

where αi is a function of the relative liquidity of Asset i with respect to
the market portfolio and the liquidity beta(s):

αi =
(
E [Li ]− β̃iE [LM ]

)
+

β (Li,, LM )πM − β (Ri,, LM )πM − β (Li,,RM )πM
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The liquidity risk premium
Disentangling the liquidity alpha

We deduce that:
αi 6= E [Li ]

meaning that the risk premium of an illiquid asset is not the
systematic risk premium plus a premium due the illiquidity level:

E [Ri ]− Rf 6= E [Li ] + βi (E [RM ]− Rf )

The 4 liquidity premia are highly correlated15 (E [Li ], β (Li,, LM ),
β (Ri,, LM ) and β (Li,,RM )).

Acharaya and Pedersen (2005) found that E [Li ] represents 75% of αi

on average. The 25% remaining are mainly explained by the liquidity
sensitivity to market returns – β (Li,,RM ).

15For instance, we have ρ
(
β
(
Li,, LM

)
, β
(
Ri,, LM

))
= −57%,

ρ
(
β
(
Li,, LM

)
, β
(
Li,,RM

))
= −94% and ρ

(
β
(
Ri,, LM

)
, β
(
Li,,RM

))
= 73%.
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The liquidity risk premium
Three liquidity risks

In fact, we have:

αi = illiquidity level + illiquidity covariance risks

1 β (Li,, LM )

An asset that becomes illiquid when the market becomes illiquid
should have a higher risk premium
Substitution effects when the market becomes illiquid

2 β (Ri,, LM )

Assets that perform well in times of market illiquidity should have a
lower risk premium
Relationship with solvency constraints

3 β (Li,,RM )

Investors accept a lower risk premium on assets that are liquid in a
bear market
Selling markets 6= buying markets
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The liquidity risk premium
How does market liquidity impact risk premia?

Three main impacts

Effect on the risk premium

Effect on the price dynamics
If liquidity is persistent, negative shock to liquidity implies low current
returns and high predicted future returns:

cov (Li,t ,Ri,t) < 0 and ∂Li,tEt [Ri,t+1] > 0

Effect on portfolio management

Sovereign bonds

Corporate bonds

Stocks

Small caps

Private equities
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The liquidity risk premium
Application to stocks

Pastor and Stambaugh (2003) include a liquidity premium in the
Fama-French-Carhart model:

E [Ri ]− Rf = βM
i (E [RM ]− Rf ) + βSMB

i E [RSMB ] + βHML
i E [RHML] +

βWML
i E [RWML] + βLIQ

i E [RLIQ ]

where LIQ measures the shock or innovation of the aggregate liquidity.

Alphas of decile portfolios sorted
on predicted liquidity beta(s)

Long Q10 / Short Q1:

9.2% wrt 3F Fama-French
model

7.5% wrt 4F Carhart model
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The liquidity risk premium
Impact of the liquidity on the stock market

The dot-com crisis (2000-2003)

If we consider the S&P 500 index, we
obtain:

55% of stocks post a negative
performance

≈ 75% of MC

45% of stocks post a positive
performance

Maximum drawdown = 49 %

Small caps stocks ↗
Value stocks ↗

The GFC crisis (2008)

If we consider the S&P 500 index, we
obtain:

95% of stocks post a negative
performance

≈ 97% of MC

5% of stocks post a positive
performance

Maximum drawdown = 56 %

Small caps stocks ↘
Value stocks ↘
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The liquidity risk premium
The specific status of the stock market

The interconnectedness nature of illiquid assets and liquid assets: the
example of the Global Financial Crisis

Subprime crisis ⇔ banks (credit risk)

Banks ⇔ asset management, e.g. hedge funds (funding & leverage
risk)

Asset management ⇔ equity market (liquidity risk)

Equity market ⇔ banks (asset-price & collateral risk)

The equity market is the ultimate liquidity provider:
GFC � internet bubble

Remark

1/3 of the losses in the stock market is explained by the liquidity supply
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The liquidity risk premium
Relationship between diversification & liquidity

During good times

Medium correlation between
liquid assets

Illiquid assets have low impact
on liquid assets

Low substitution effects

Main effect:

E [Li ]

During bad times

High correlation between liquid
assets

Illiquid assets have a high
impact on liquid assets

High substitution effects

Main effects:

β (Li ,RM ) and β (Ri , LM )
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The skewness puzzle

Skewness aggregation 6= volatility aggregation

When we accumulate long/short skewness risk premia in a portfolio, the
volatility of this portfolio decreases dramatically, but its skewness risk
generally increases!

Skewness diversification 6= volatility diversification

σ (X1 + X2) ≤ σ (X1) + σ (X2)

|γ1 (X1 + X2)| � |γ1 (X1) + γ1 (X2)|

Skewness is not a convex risk measure
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Example 12

We assume that (X1,X2) follows a bivariate log-normal distribution
LN

(
µ1, σ

2
1 , µ2, σ

2
2 , ρ
)
. This implies that lnX1 ∼ N

(
µ1, σ

2
1

)
,

lnX2 ∼ N
(
µ2, σ

2
2

)
and ρ is the correlation between lnX1 and lnX2.
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The skewness puzzle

We recall that the skewness of X1 is equal to:

γ1 (X1) =
µ3 (X1)

µ
3/2
2 (X1)

=
e3σ2

1 − 3eσ
2
1 + 2(

eσ
2
1 − 1

)3/2

whereas the skewness of X1 + X2 is equal to:

γ1 (X1 + X2) =
µ3 (X1 + X2)

µ
3/2
2 (X1 + X2)

where µn (X ) is the nth central moment of X
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In order to find the skewness of the sum X1 + X2, we need a preliminary
result. By denoting X = α1 lnX1 + α2 lnX2, we have16:

E
[
eX
]

= eµX + 1
2σ

2
X

where:
µX = α1µ1 + α2µ2

and:
σ2

X = α2
1σ

2
1 + α2

2σ
2
2 + 2α1α2ρσ1σ2

It follows that:

E [Xα1
1 Xα2

2 ] = eα1µ1+α2µ2+ 1
2 (α2

1σ
2
1+α2

2σ
2
2+2α1α2ρσ1σ2)

16Because X is a Gaussian random variable
Thierry Roncalli Asset Management (Lecture 3) 756 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Definition
Carry, value, momentum and liquidity
Portfolio allocation with ARP

The skewness puzzle

We have:

µ2 (X1 + X2) = µ2 (X1) + µ2 (X2) + 2 cov (X1,X2)

where:
µ2 (X1) = e2µ1+σ2

1

(
eσ

2
1 − 1

)
and:

cov (X1,X2) = (eρσ1σ2 − 1) eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2
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The skewness puzzle

For the third moment of X1 + X2, we use the following formula:

µ3 (X1 + X2) = µ3 (X1) + µ3 (X2) + 3 (cov (X1,X1,X2) + cov (X1,X2,X2))

where:
µ3 (X1) = e2µ1+ 3

2σ
2
1

(
e3σ2

1 − 3eσ
2
1 + 2

)
and:

cov (X1,X1,X2) = (eρσ1σ2 − 1) e2µ1+σ2
1+µ2+

σ2
2

2

(
eσ

2
1+ρσ1σ2 + eσ

2
2 − 2

)
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The skewness puzzle

We deduce that:

γ1 (X1 + X2) =
µ3 (X1 + X2)

µ
3/2
2 (X1 + X2)

where:

µ2 (X1 + X2) = e2µ1+σ2
1

(
eσ

2
1 − 1

)
+ e2µ2+σ2

2

(
eσ

2
2 − 1

)
+

2 (eρσ1σ2 − 1) eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2

and:

µ3 (X1 + X2) = e2µ1+ 3
2σ

2
1

(
e3σ2

1 − 3eσ
2
1 + 2

)
+ e2µ2+ 3

2σ
2
2

(
e3σ2

2 − 3eσ
2
2 + 2

)
+

3 (eρσ1σ2 − 1) e2µ1+σ2
1+µ2+

σ2
2

2

(
eσ

2
1+ρσ1σ2 + eσ

2
2 − 2

)
+

3 (eρσ1σ2 − 1) eµ1+ 1
2σ

2
1+2µ2+σ2

2

(
eσ

2
2+ρσ1σ2 + eσ

2
1 − 2

)
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The skewness puzzle

Figure 74: Skewness aggregation of the random vector (−X1,−X3)
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Why?

Volatility diversification works very well with L/S risk premia:

σ (R (x)) ≈ σ̄√
n

Drawdown diversification don’t work very well because bad times are
correlated and are difficult to hedge:

DD (x) ≈ DD
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The skewness puzzle

Figure 75: Cumulative performance of US 10Y bonds, US equities and US short
volatility

Source: Bruder et al. (2016)
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The correlation puzzle

We consider the Gaussian random vector (R1,R2,R3), whose volatilities
are equal to 25%, 12% and 9.76%. The correlation matrix is given by:

C =

 100%
−25.00% 100%

55.31% 66.84% 100%


Good diversification? (correlation approach)

If Ri represents an asset return (or an excess return), we conclude that
(R1,R2,R3) is a well-diversified investment universe

Bad diversification? (payoff approach)

However, we have:
R3 = 0.30R1 + 0.70R2
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The correlation puzzle

Fantasies about correlations

Negative correlations are good for diversification

Positive correlations are bad for diversification

If ρ (R1,R2) is close to −1, can we hedge Asset 1 with Asset 2?

If ρ (R1,R2) is close to −1, can we diversify Asset 1 with Asset 2?

If ρ (R1,R2) is close to +1, can we hedge Asset 1 with a short
position on Asset 2?

If ρ (R1,R2) is close to +1, can we diversify Asset 1 with a short
position on Asset 2?

Does ρ (R1,R2) = −70% correspond to a better diversification
pattern than ρ (R1,R2) = +70%?

There is a confusion between diversification and hedging!
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Table 62: Correlation matrix between asset classes (2000-2016)

Equity Bond
US Euro UK Japan US Euro UK Japan

Equity

US 100%
Euro 78% 100%
UK 79% 87% 100%

Japan 53% 57% 55% 100%

Bond

US −35% −39% −32% −29% 100%
Euro −17% −16% −16% −16% 58% 100%
UK −31% −37% −30% −31% 72% 63% 100%

Japan −17% −18% −16% −33% 37% 31% 36% 100%

Correlation = Pearson correlation = Linear correlation
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The payoff approach

Let us consider a Gaussian random vector defined as follows:(
Y
X

)
∼ N

((
µy

µx

)
,

(
Σyy Σyx

Σxy Σxx

))
The conditional distribution of Y given X = x is a MN distribution:

µy |x = E [Y | X = x ] = µy + Σyx Σ−1
xx (x − µx )

and:
Σyy |x = σ2 [Y | X = x ] = Σyy − Σyx Σ−1

xx Σxy

We deduce that:

Y = µy + Σyx Σ−1
xx (x − µx ) + u

=
(
µy − Σyx Σ−1

xx µx

)︸ ︷︷ ︸
β0

+ Σyx Σ−1
xx︸ ︷︷ ︸

β>

x + u

where u is a centered Gaussian random variable with variance s2 = Σyy |x .
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The payoff approach

Correlation = linear payoff

It follows that the payoff function is defined by the curve:

y = f (x)

where:

f (x) = E [R2 | R1 = x ]

=
(
µ2 − β2|1µ1

)
+ β2|1x
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The payoff approach
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Figure 76: Linear payoff function with respect to the S&P 500 Index

A long-only diversified stock-bond portfolio makes sense!
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The payoff approach

Figure 77: Worst diversification case

What is good diversification? What is bad diversification?

Negative correlation does not necessarily imply good diversification!
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The payoff approach

Concave payoff

Negative skewness

Positive vega

Hit ratio ≥ 50%

Gain frequency > loss
frequency

Average gain < average loss

Positively correlated with bad
times

Volatility Carry 6=

Convex payoff

Positive skewness

Negative vega

Hit ratio ≤ 50%

Gain frequency < loss
frequency

Average gain > average loss

Negatively correlated with bad
times?

Time-series Momentum
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-15

-10

-5
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15

Diversified

Alpha

Carry

Momentum

Figure 78: What does portfolio optimization produce with convex and concave
strategies?

Momentum = low allocation during good times and high allocation
after bad times

Carry = high allocation during good times and low allocation after
bad times
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The payoff approach

The magic formula

Long-run positive correlations, but...

...negative correlations is bad times
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Figure 79: Stock/bond payoff (EUR)

Daily diversification is different than 3-year diversification
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Exercise

We note Σ the covariance matrix of n asset returns. In what follows, we
consider the equally weighted portfolio based on the universe of these n
assets.
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Question 1

Let Σi,j = ρi,jσiσj be the elements of the covariance matrix Σ.
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Question 1.a

Compute the volatility σ (x) of the EW portfolio.
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The elements of the covariance matrix are Σi,j = ρi,jσiσj . If we consider a
portfolio x = (x1, . . . , xn), its volatility is:

σ (x) =
√
x>Σx

=

√√√√ n∑
i=1

x2
i σ

2
i + 2

∑
i>j

xixjρi,jσiσj

For the equally weighted portfolio, we have xi = n−1 and:

σ (x) =
1

n

√√√√ n∑
i=1

σ2
i + 2

∑
i>j

ρi,jσiσj

Thierry Roncalli Asset Management (Lecture 3) 777 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Equally-weighted portfolio

Question 1.b

Let σ0 (x) and σ1 (x) be the volatility of the EW portfolio when the asset
returns are respectively independent and perfectly correlated. Calculate
σ0 (x) and σ1 (x).
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We have:

σ0 (x) =
1

n

√√√√ n∑
i=1

σ2
i

and:

σ1 (x) =
1

n

√√√√ n∑
i=1

n∑
j=1

σiσj =
1

n

√√√√ n∑
i=1

σi

n∑
j=1

σj

=
1

n

√√√√( n∑
i=1

σi

)2

=

∑n
i=1 σi

n

= σ̄
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Question 1.c

We assume that the volatilities are the same. Find the expression of the
portfolio volatility with respect to the mean correlation ρ̄. What is the
value of σ (x) when ρ̄ is equal to zero? What is the value of σ (x) when n
tends to +∞?
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If σi = σj = σ, we obtain:

σ (x) =
σ

n

√
n + 2

∑
i>j

ρi,j

Let ρ̄ be the mean correlation. We have:

ρ̄ =
2

n2 − n

∑
i>j

ρi,j

We deduce that: ∑
i>j

ρi,j =
n (n − 1)

2
ρ̄
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We finally obtain:

σ (x) =
σ

n

√
n + n (n − 1) ρ̄

= σ

√
1 + (n − 1) ρ̄

n

When ρ̄ is equal to zero, the volatility σ (x) is equal to σ/
√
n. When the

number of assets tends to +∞, it follows that:

lim
n→∞

σ (x) = σ
√
ρ̄
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Question 1.d

We assume that the correlations are uniform (ρi,j = ρ). Find the
expression of the portfolio volatility as a function of σ0 (x) and σ1 (x).
Comment on this result.
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If ρi,j = ρ, we obtain:

σ (x) =
1

n

√√√√ n∑
i=1

n∑
j=1

ρi,jσiσj

=
1

n

√√√√ n∑
i=1

σ2
i + ρ

n∑
i=1

n∑
j=1

σiσj − ρ
n∑

i=1

σ2
i

=
1

n

√√√√(1− ρ)
n∑

i=1

σ2
i + ρ

n∑
i=1

n∑
j=1

σiσj
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We have:
n∑

i=1

σ2
i = n2σ2

0 (x)

and:
n∑

i=1

n∑
j=1

σiσj = n2σ2
1 (x)

It follows that:

σ (x) =
√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

When the correlation is uniform, the variance σ2 (x) is the weighted
average between σ2

0 (x) and σ2
1 (x).
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Question 2.a

Compute the normalized risk contributions RC?i of the EW portfolio.
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The risk contributions are equal to:

RC?i =
xi · (Σx)i

σ2 (x)

In the case of the EW portfolio, we obtain:

RC?i =

∑n
j=1 ρi,jσiσj

n2σ2 (x)

=
σ2

i + σi

∑
j 6=i ρi,jσj

n2σ2 (x)
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Question 2.b

Deduce the risk contributions RC?i when the asset returns are respectively
independent and perfectly correlateda.

aWe note them RC?0,i and RC?1,i .
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If asset returns are independent, we have:

RC?0,i =
σ2

i∑n
i=1 σ

2
i

In the case of perfect correlation, we obtain:

RC?1,i =
σ2

i + σi

∑
j 6=i σj

n2σ̄2

=
σi

∑
j σj

n2σ̄2

=
σi

nσ̄
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Question 2.c

Show that the risk contribution RC i is proportional to the ratio between
the mean correlation of asset i and the mean correlation of the asset
universe when the volatilities are the same.
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If σi = σj = σ, we obtain:

RC?i =
σ2 + σ2

∑
j 6=i ρi,j

n2σ2 (x)

=
σ2 + (n − 1)σ2ρ̄i

n2σ2 (x)

=
1 + (n − 1) ρ̄i

n (1 + (n − 1) ρ̄)

It follows that:

lim
n→∞

1 + (n − 1) ρ̄i

1 + (n − 1) ρ̄
=
ρ̄i

ρ̄

We deduce that the risk contributions are proportional to the ratio
between the mean correlation of asset i and the mean correlation of the
asset universe.
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Question 2.d

We assume that the correlations are uniform (ρi,j = ρ). Show that the risk
contribution RC i is a weighted average of RC?0,i and RC?1,i .
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We recall that we have:

σ (x) =
√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

It follows that:

RC i = xi ·
(1− ρ)σ0 (x) ∂xiσ0 (x) + ρσ1 (x) ∂xiσ1 (x)√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

=
(1− ρ)σ0 (x)RC0,i + ρσ1 (x)RC1,i√

(1− ρ)σ2
0 (x) + ρσ2

1 (x)

We then obtain:

RC?i =
(1− ρ)σ2

0 (x)

σ2 (x)
RC?0,i +

ρσ1 (x)

σ2 (x)
RC?1,i

We verify that the risk contribution RC i is a weighted average of RC?0,i
and RC?1,i .
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Question 3

We suppose that the return of asset i satisfies the CAPM model:

Ri = βiRm + εi

where Rm is the return of the market portfolio and εi is the specific risk.
We note β = (β1, . . . , βn) and ε = (ε1, . . . , εn). We assume that Rm ⊥ ε,
var (Rm) = σ2

m and cov (ε) = D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
.
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Question 3.a

Calculate the volatility of the EW portfolio.
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We have:
Σ = ββ>σ2

m + D

We deduce that:

σ (x) =
1

n

√√√√σ2
m

n∑
i=1

n∑
j=1

βiβj +
n∑

i=1

σ̃2
i
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Question 3.b

Calculate the risk contribution RC i .
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The risk contributions are equal to:

RC i =
xi · (Σx)i

σ (x)

In the case of the EW portfolio, we obtain:

RC i =
xi ·
(
σ2

mβi

∑n
j=1 xjβj + xi σ̃

2
i

)
n2σ (x)

=
σ2

mβi

∑n
j=1 βj + σ̃2

i

n2σ (x)

=
nσ2

mβi β̄ + σ̃2
i

n2σ (x)

Thierry Roncalli Asset Management (Lecture 3) 798 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure
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Question 3.c

Show that RC i is approximately proportional to βi if the number of assets
is large. Illustrate this property using a numerical example.
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When the number of assets is large and βi > 0, we obtain:

RC i '
σ2

mβi β̄

nσ (x)

because β̄ > 0. We deduce that the risk contributions are approximately
proportional to the beta coefficients:

RC?i '
βi∑n

j=1 βj

In Figure 80, we compare the exact and approximated values of RC?i . For
that, we simulate βi and σ̃i with βi ∼ U[0.5,1.5] and σ̃i ∼ U[0,20%] whereas
σm is set to 25%. We notice that the approximated value is very close to
the exact value when n increases.
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Figure 80: Comparing the exact and approximated values of RC?i
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Exercise

We consider a universe of n assets. We note σ = (σ1, . . . , σn) the vector
of volatilities and Σ the covariance matrix.
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Question 1

In what follows, we consider non-constrained optimized portfolios.
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Most diversified portfolio

Question 1.a

Define the diversification ratioDiversification ratio DR (x) by considering a
general risk measure R (x). How can one interpret this measure from a
risk allocation perspective?
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Let R (x) be the risk measure of the portfolio x . We note Ri = R (ei ) the
risk associated to the i th asset. The diversification ratio is the ratio
between the weighted mean of the individual risks and the portfolio risk
(TR-RPB, page 168):

DR (x) =

∑n
i=1 xiRi

R (x)

If we assume that the risk measure satisfies the Euler allocation principle,
we have:

DR (x) =

∑n
i=1 xiRi∑n
i=1RC i

Thierry Roncalli Asset Management (Lecture 3) 805 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

Question 1.b

We assume that the weights of the portfolio are positive. Show that
DR (x) ≥ 1 for all risk measures satisfying the Euler allocation principle.
Find an upper bound of DR (x).
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If R (x) satisfies the Euler allocation principle, we know that Ri ≥MRi

(TR-RPB, page 78). We deduce that:

DR (x) ≥
∑n

i=1 xiRi∑n
i=1 xiRi

≥ 1

Let xmr be the portfolio that minimizes the risk measure. We have:

DR (x) ≤ supRi

R (xmr)
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Question 1.c

We now consider the volatility risk measure. Calculate the upper bound of
DR (x).

Thierry Roncalli Asset Management (Lecture 3) 808 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

If we consider the volatility risk measure, the minimum risk portfolio is the
minimum variance portfolio. We have (TR-RPB, page 164):

σ (xmv) =
1√

1>n Σ1n

We deduce that:

DR (x) ≤
√

1>n Σ−11n · supσi

Thierry Roncalli Asset Management (Lecture 3) 809 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure
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Question 1.d

What is the most diversified portfolio (or MDP)? In which case does it
correspond to the tangency portfolio? Deduce the analytical expression of
the MDP and calculate its volatility.
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Most diversified portfolio

The MDP is the portfolio which maximizes the diversification ratio when
the risk measure is the volatility (TR-RPB, page 168). We have:

x? = arg maxDR (x)

u.c. 1>n x = 1
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If we consider that the risk premium πi = µi − r of the asset i is
proportional to its volatility σi , we obtain:

SR (x | r) =
µ (x)− r

σ (x)

=

∑n
i=1 xi (µi − r)

σ (x)

= s

∑n
i=1 xiσi

σ (x)

= s · DR (x)

where s is the coefficient of proportionality. Maximizing the diversification
ratio is equivalent to maximizing the Sharpe ratio.
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We recall that the expression of the tangency portfolio is:

x? =
Σ−1 (µ− r1n)

1>n Σ−1 (µ− r1n)

We deduce that the weights of the MDP are:

x? =
Σ−1σ

1>n Σ−1σ

The volatility of the MDP is then:

σ (x?) =

√
σ>Σ−1

1>n Σ−1σ
Σ

Σ−1σ

1>n Σ−1σ

=

√
σ>Σ−1σ

1>n Σ−1σ
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Question 1.e

Demonstrate then that the weights of the MDP are in some sense
proportional to Σ−1σ.
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We recall that another expression of the unconstrained tangency portfolio
is:

x? =
σ2 (x?)

(µ (x?)− r)
Σ−1 (µ− r1n)

We deduce that the MDP is also:

x? =
σ2 (x?)

σ̄ (x?)
Σ−1σ

where σ̄ (x?) = x?>σ. Nevertheless, this solution is endogenous.
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Question 2

We suppose that the return of asset i satisfies the CAPM:

Ri = βiRm + εi

where Rm is the return of the market portfolio and εi is the specific risk.
We note β = (β1, . . . , βn) and ε = (ε1, . . . , εn). We assume that Rm ⊥ ε,
var (Rm) = σ2

m and cov (ε) = D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
.
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Question 2.a

Compute the correlation ρi,m between the asset return and the market
return. Deduce the relationship between the specific risk σ̃i and the total
risk σi of asset i .
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We have:
cov (Ri ,Rm) = βiσ

2
m

We deduce that:

ρi,m =
cov (Ri ,Rm)

σiσm

= βi
σm

σi
(4)

and:

σ̃i =
√
σ2

i − β2
i σ

2
m

= σi

√
1− ρ2

i,m (5)
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Question 2.b

Show that the solution of the MDP may be written as:

x?i = DR (x?)
σiσ (x?)

σ̃2
i

(
1− ρi,m

ρ?

)
(6)

with ρ? a scalar to be determined.

Thierry Roncalli Asset Management (Lecture 3) 819 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Most diversified portfolio

We know that (TR-RPB, page 167):

Σ−1 = D−1 − 1

σ−2
m + β̃>β

β̃β̃>

where β̃i = βi/σ̃
2
i .
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We deduce that:

x? =
σ2 (x?)

σ̄ (x?)

(
D−1σ − 1

σ−2
m + β̃>β

β̃β̃>σ

)
and:

x?i =
σ2 (x?)

σ̄ (x?)

(
σi

σ̃2
i

− β̃>σ

σ−2
m + β̃>β

β̃i

)

=
σiσ

2 (x?)

σ̄ (x?) σ̃2
i

(
1− β̃>σ

σ−1
m + σmβ̃>β

σmσ̃
2
i β̃i

σi

)

=
σiσ

2 (x?)

σ̄ (x?) σ̃2
i

(
1− β̃>σ

σ−1
m + σmβ̃>β

ρi,m

)

= DR (x?)
σiσ (x?)

σ̃2
i

(
1− ρi,m

ρ?

)
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Using Equations (4) and (5), ρ? is defined as follows:

ρ? =
σ−1

m + σmβ̃
>β

β̃>σ

=

1 +
n∑

j=1

σ2
mβ

2
j

σ̃2
j

/ n∑
j=1

σmβjσj

σ̃2
j


=

1 +
n∑

j=1

ρ2
j,m

1− ρ2
j,m

/ n∑
j=1

ρj,m

1− ρ2
j,m
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Question 2.c

In which case is the optimal weight x?i positive?
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The optimal weight x?i is positive if:

1− ρi,m

ρ?
≥ 0

or equivalently:
ρi,m ≤ ρ?
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Question 2.d

Are the weights of the MDP a decreasing or an increasing function of the
specific risk σ̃i ?
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We recall that:

ρi,m = βi
σm

σi

=
βiσm√

β2
i σ

2
m + σ̃2

i

If βi < 0, an increase of the idiosyncratic volatility σ̃i increases ρi,m and
decreases the ratio σi/σ̃

2
i . We deduce that the weight is a decreasing

function of the specific volatility σ̃i . If βi > 0, an increase of the
idiosyncratic volatility σ̃i decreases ρi,m and decreases the ratio σi/σ̃

2
i . We

cannot conclude in this case.
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Question 3

In this question, we illustrate that the MDP may be very different than the
minimum variance portfolio.
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Question 3.a

In which case does the MDP coincide with the minimum variance
portfolio?
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The MDP coincide with the MV portfolio when the volatility is the same
for all the assets.
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Question 3.b

We consider the following parameter values:

i 1 2 3 4
βi 0.80 0.90 1.10 1.20
σ̃i 0.02 0.05 0.15 0.15

with σm = 20%. Calculate the unconstrained MDP with Formula (6).
Compare it with the unconstrained MV portfolio. What is the result if we
consider a long-only portfolio?
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The formula cannot be used directly, because it depends on σ (x?) and
DR (x?). However, we notice that:

x?i ∝
σi

σ̃2
i

(
1− ρi,m

ρ?

)
It suffices then to rescale these weights to obtain the solution. Using the
numerical values of the parameters, ρ? = 98.92% and we obtain the
following results:

βi ρi,m
xi ∈ R xi ≥ 0

MDP MV MDP MV
x?1 0.80 99.23% −27.94% 211.18% 0.00% 100.00%
x?2 0.90 96.35% 43.69% −51.98% 25.00% 0.00%
x?3 1.10 82.62% 43.86% −24.84% 39.24% 0.00%
x?4 1.20 84.80% 40.39% −34.37% 35.76% 0.00%

σ (x?) 24.54% 13.42% 23.16% 16.12%
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Question 3.c

We assume that the volatility of the assets is 10%, 10%, 50% and 50%
whereas the correlation matrix of asset returns is:

ρ =


1.00
0.90 1.00
0.80 0.80 1.00
0.00 0.00 −0.25 1.00


Calculate the (unconstrained and long-only) MDP and MV portfolios.
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The results are:

xi ∈ R xi ≥ 0
MDP MV MDP MV

x?1 −36.98% 60.76% 0.00% 48.17%
x?2 −36.98% 60.76% 0.00% 48.17%
x?3 91.72% −18.54% 50.00% 0.00%
x?4 82.25% −2.98% 50.00% 3.66%

σ (x?) 48.59% 6.43% 30.62% 9.57%
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Question 3.d

Comment on these results.
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These two examples show that the MDP may have a different behavior
than the minimum variance portfolio. Contrary to the latter, the most
diversified portfolio is not necessarily a low-beta or a low-volatility
portfolio.
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Exercise

We consider a universe of five assets. Their expected returns are 6%, 10%,
6%, 8% and 12% whereas their volatilities are equal to 10%, 20%, 15%,
25% and 30%. The correlation matrix of asset returns is defined as follows:

ρ =


100%

60% 100%
40% 50% 100%
30% 30% 20% 100%
20% 10% 10% −50% 100%


We assume that the risk-free rate is equal to 2%.
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Question 1

We consider unconstrained portfolios. For each portfolio, compute the risk
decomposition.
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Question 1.a

Find the tangency portfolio.
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To compute the unconstrained tangency portfolio, we use the analytical
formula (TR-RPB, page 14):

x? =
Σ−1 (µ− r1n)

1>n Σ−1 (µ− r1n)

We obtain the following results:

Asset xi MRi RC i RC?i
1 11.11% 6.56% 0.73% 5.96%
2 17.98% 13.12% 2.36% 19.27%
3 2.55% 6.56% 0.17% 1.37%
4 33.96% 9.84% 3.34% 27.31%
5 34.40% 16.40% 5.64% 46.09%
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Question 1.b

Determine the equally weighted portfolio.
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We obtain the following results for the equally weighted portfolio:

Asset xi MRi RC i RC?i
1 20.00% 7.47% 1.49% 13.43%
2 20.00% 15.83% 3.17% 28.48%
3 20.00% 9.98% 2.00% 17.96%
4 20.00% 9.89% 1.98% 17.80%
5 20.00% 12.41% 2.48% 22.33%
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Question 1.c

Compute the minimum variance portfolio.

Thierry Roncalli Asset Management (Lecture 3) 842 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Computation of risk-based portfolios

For the minimum variance portfolio, we have:

Asset xi MRi RC i RC?i
1 74.80% 9.08% 6.79% 74.80%
2 −15.04% 9.08% −1.37% −15.04%
3 21.63% 9.08% 1.96% 21.63%
4 10.24% 9.08% 0.93% 10.24%
5 8.36% 9.08% 0.76% 8.36%
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Question 1.d

Calculate the most diversified portfolio.

Thierry Roncalli Asset Management (Lecture 3) 844 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Computation of risk-based portfolios

For the most diversified portfolio, we have:

Asset xi MRi RC i RC?i
1 −14.47% 4.88% −0.71% −5.34%
2 4.83% 9.75% 0.47% 3.56%
3 18.94% 7.31% 1.38% 10.47%
4 49.07% 12.19% 5.98% 45.24%
5 41.63% 14.63% 6.09% 46.06%
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Question 1.e

Find the ERC portfolio.
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For the ERC portfolio, we have:

Asset xi MRi RC i RC?i
1 27.20% 7.78% 2.12% 20.00
2 13.95% 15.16% 2.12% 20.00
3 20.86% 10.14% 2.12% 20.00
4 19.83% 10.67% 2.12% 20.00
5 18.16% 11.65% 2.12% 20.00
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Question 1.f

Compare the expected return µ (x), the volatility σ (x) and the Sharpe
ratio SR (x | r) of the different portfolios. Calculate then the tracking
error volatility σ (x | b), the beta β (x | b) and the correlation ρ (x | b) if
we assume that the benchmark b is the tangency portfolio.
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We recall the definition of the statistics:

µ (x) = µ>x

σ (x) =
√
x>Σx

SR (x | r) =
µ (x)− r

σ (x)

σ (x | b) =

√
(x − b)>Σ (x − b)

β (x | b) =
x>Σb

b>Σb

ρ (x | b) =
x>Σb√

x>Σx
√
b>Σb
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We obtain the following results:

Statistic x? xew xmv xmdp xerc
µ (x) 9.46% 8.40% 6.11% 9.67% 8.04%
σ (x) 12.24% 11.12% 9.08% 13.22% 10.58%

SR (x | r) 60.96% 57.57% 45.21% 58.03% 57.15%
σ (x | b) 0.00% 4.05% 8.21% 4.06% 4.35%
β (x | b) 100.00% 85.77% 55.01% 102.82% 81.00%
ρ (x | b) 100.00% 94.44% 74.17% 95.19% 93.76%

We notice that all the portfolios present similar performance in terms of
Sharpe Ratio. The minimum variance portfolio shows the smallest Sharpe
ratio, but it also shows the lowest correlation with the tangency portfolio.
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Question 2

Same questions if we impose the long-only portfolio constraint.
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The tangency portfolio, the equally weighted portfolio and the ERC
portfolio are already long-only. For the minimum variance portfolio, we
obtain:

Asset xi MRi RC i RC?i
1 65.85% 9.37% 6.17% 65.85%
2 0.00% 13.11% 0.00% 0.00%
3 16.72% 9.37% 1.57% 16.72%
4 9.12% 9.37% 0.85% 9.12%
5 8.32% 9.37% 0.78% 8.32%
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For the most diversified portfolio, we have:

Asset xi MRi RC i RC?i
1 0.00% 5.50% 0.00% 0.00%
2 1.58% 9.78% 0.15% 1.26%
3 16.81% 7.34% 1.23% 10.04%
4 44.13% 12.23% 5.40% 43.93%
5 37.48% 14.68% 5.50% 44.77%
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The results become:

Statistic x? xew xmv xmdp xerc
µ (x) 9.46% 8.40% 6.68% 9.19% 8.04%
σ (x) 12.24% 11.12% 9.37% 12.29% 10.58%

SR (x | r) 60.96% 57.57% 49.99% 58.56% 57.15%
σ (x | b) 0.00% 4.05% 7.04% 3.44% 4.35%
β (x | b) 100.00% 85.77% 62.74% 96.41% 81.00%
ρ (x | b) 100.00% 94.44% 82.00% 96.06% 93.76%
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Question 1

We would like to build a carry trade strategy using a cash neutral portfolio
with equal weights and a notional amount of $100 mn. We use the data
given in Table 63. The holding period is equal to three months.

Table 63: Three-month interest rates (March, 15th 2000)

Currency AUD CAD CHF EUR GBP
Interest rate (in %) 5.74 5.37 2.55 3.79 6.21

Currency JPY NOK NZD SEK USD
Interest rate (in %) 0.14 5.97 6.24 4.18 6.17
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Question 1.a

Build the carry trade exposure with two funding currencies and two asset
currencies.
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We rank the currencies according to their interest rate from the lowest to
the largest value:

1. JPY 2. CHF 3. EUR 4. SEK 5. CAD
6. AUD 7. NOK 8. USD 9. GBP 10. NZD

We deduce that the carry trade portfolio is:

1 long $50 mn on NZD

2 long $50 mn on GBP

3 short $50 mn on JPY

4 short $50 mn on CHF
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Question 1.b

Same question with five funding currencies and two asset currencies.
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The portfolio becomes:

1 long $50 mn on NZD and GBP

2 short $20 mn on JPY, CHF, EUR, SEK and CAD
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Question 1.c

What is the specificity of the portfolio if we use five funding currencies and
five asset currencies.
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The portfolio is:

1 long $20 mn on NZD, GBP, USD, NOK and AUD

2 short $20 mn on JPY, CHF, EUR, SEK and CAD

The asset notional is not equal to the funding notional, because the
funding notional is equal to $100 mn and the asset notional is equal to $80
mn. Indeed, we don’t need to invest the $20 mn USD exposure since the
portfolio currency is the US dollar.
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Question 1.d

Calculate an approximation of the carry trade P&L if we assume that the
spot foreign exchange rates remain constant during the next three months.
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If we consider the last portfolio, we have:

PnL ≈ 20× 1

4
(6.24% + 6.21% + 6.17% + 5.97% + 5.74%)−

20× 1

4
(0.14% + 2.55% + 3.79% + 4.18% + 5.37%)

= $0.71 mn

If the spot foreign exchange rates remain constant during the next three
months, the quarterly P&L is approximated equal to $710 000.
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Question 2

We consider the data given in Tables 64 and 65.

Table 64: Three-month interest rates (March, 21th 2005)

Currency BRL CZK HUF KRW MXN
Interest rate (in %) 18.23 2.45 8.95 3.48 8.98

Currency PLN SGD THB TRY TWD
Interest rate (in %) 6.63 1.44 2.00 19.80 1.30

Table 65: Annualized volatility of foreign exchange rates (March, 21th 2005)

Currency BRL CZK HUF KRW MXN
Volatility (in %) 11.19 12.57 12.65 6.48 6.80

Currency PLN SGD THB TRY TWD
Volatility (in %) 11.27 4.97 4.26 11.61 4.12
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Question 2.a

Let Σ be the covariance matrix of the currency returns. Which expected
returns are used by the carry investor? Write the mean-variance
optimization problem if we assume a cash neutral portfolio.
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Let Ci and C = (C1, . . . , Cn) be the carry of Currency i and the vector of
carry values. The carry investor assumes that µi = Ci . We deduce that the
mean-variance optimization problem is:

x? (γ) = arg min
1

2
x>Σx − γx>C

u.c. 1>n x = 0

The constraint 1>n x = 0 indicates that the portfolio is cash neutral. If we
target a portfolio volatility σ?, we use the bisection algorithm in order to
find the optimal value of γ such that:

σ (x? (γ)) = σ?
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Question 2.b

By assuming a zero correlation between the currencies, calibrate the cash
neutral portfolio when the objective function is to target a 3% portfolio
volatility.
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We obtain the following solution:

Currency BRL CZK HUF KRW MXN
Weight 15.05% −1.28% 4.11% −1.57% 14.30%

Currency PLN SGD THB TRY TWD
Weight 2.76% −13.59% −14.42% 15.52% −20.87%
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Question 2.c

Same question if we use the following correlation matrix:

ρ =



1.00
0.30 1.00
0.38 0.80 1.00
0.00 0.04 0.08 1.00
0.50 0.30 0.34 0.12 1.00
0.35 0.70 0.78 0.06 0.30 1.00
0.33 0.49 0.56 0.29 0.27 0.53 1.00
0.30 0.34 0.34 0.38 0.29 0.35 0.53 1.00
0.43 0.39 0.48 0.10 0.38 0.41 0.35 0.43 1.00
0.03 0.07 0.06 0.63 0.09 0.07 0.30 0.40 0.20 1.00
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The solution becomes:

Currency BRL CZK HUF KRW MXN
Weight 13.69% −9.45% 4.58% 17.31% 6.56%

Currency PLN SGD THB TRY TWD
Weight 2.07% −17.79% −20.86% 17.98% −14.10%
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Question 2.d

Calculate the carry of this optimized portfolio. For each currency, deduce
the maximum value of the devaluation (or revaluation) rate that is
compatible with a positive P&L.
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The carry of the portfolio is equal to:

C (x) =
n∑

i=1

xi · Ci

We find C (x) = 6.7062% per year. We deduce that the maximum value of
the devaluation or revaluation rate Di that is compatible with a positive
P&L is equal to:

Di =
6.7062%

4
= 1.6765%

This figure is valid for an exposure of 100%.
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By considering the weights, we deduce that:

Di = −C (x)

4xi

Finally, we obtain the following compatible devaluation (negative sign −)
and revaluation (positive sign +) rates:

Currency BRL CZK HUF KRW MXN
Di −12.25% +17.75% −36.64% −9.69% −25.55%

Currency PLN SGD THB TRY TWD
Di −81.08% +9.43% +8.04% −9.32% +11.89%

Thierry Roncalli Asset Management (Lecture 3) 873 / 1520



Risk-based indexation
Factor investing

Alternative risk premia
Tutorial exercises

Equally-weighted portfolio
Most diversified portfolio
Computation of risk-based portfolios
Building a carry trade exposure

Building a carry trade exposure

Question 2.e

Repeat Question 2.b assuming that the volatility target is equal 5%.
Calculate the leverage ratio. Comment on these results.
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We obtain the following results:

Currency BRL CZK HUF KRW MXN
Weight 25.08% −2.13% 6.84% −2.62% 23.83%

Currency PLN SGD THB TRY TWD
Weight 4.60% −22.65% −24.03% 25.86% −34.78%

The leverage ratio of this portfolio is equal to
∑n

i=1 |xi | = 172.43%,
whereas it is equal to 103.47% and 124.37% for the portfolios of Questions
2.b and 2.c. This is perfectly normal because the leverage is proportional
to the volatility.
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Question 2.f

Find the analytical solution of the optimal portfolio x? when we target a
volatility σ?.
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The Lagrange function is equal to:

L (x ;λ0) =
1

2
x>Σx − γx>C + λ0

(
1>n x − 0

)
The first-order condition is equal to:

∂ L (x ;λ0)

∂ x
= Σx − γC + λ01n = 0n

It follows that:
x = Σ−1 (γC − λ01n)
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The cash neutral constraint implies that:

1>n Σ−1 (γC − λ01n) = 0

We deduce that:

λ0 = γ
1>n Σ−1C
1>n Σ−11n

Therefore, the optimal solution is equal to:

x? =
γΣ−1

1>n Σ−11n

((
1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)
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The volatility of the optimal portfolio is equal:

σ2 (x?) = x?>Σx?

=
(
γC>−λ01>n

)
Σ−1ΣΣ−1 (γC − λ01n)

=
(
γC>−λ01>n

)
Σ−1 (γC − λ01n)

= γ2C>Σ−1C + λ2
01>n Σ−11n − 2γλ0C>Σ−11n

= γ2

(
C>Σ−1C−

(
1>n Σ−1C

)2

1>n Σ−11n

)

=
γ2

1>n Σ−11n

((
1>n Σ−11n

) (
C>Σ−1C

)
−
(
1>n Σ−1C

)2
)
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We deduce that:

γ =

√
1>n Σ−11n√

(1>n Σ−11n) (C>Σ−1C)− (1>n Σ−1C)
2
σ (x?)

Finally, we obtain:

x? = σ (x?)
Σ−1

((
1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)√
(1>n Σ−11n)

2
(C>Σ−1C)− (1>n Σ−11n) (1>n Σ−1C)

2

= σ?
Σ−1

((
1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)√
(1>n Σ−11n)

2
(C>Σ−1C)− (1>n Σ−11n) (1>n Σ−1C)

2
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Question 2.g

We assume that the correlation matrix is the identity matrix In. Find the
expression of the threshold value C? such that all currencies with a carry Ci

larger than C? form the long leg of the portfolio.
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We recall that:

x? ∝ Σ−1
((

1>n Σ−11n

)
C−
(
1>n Σ−1C

)
1n

)
If ρ = In, we have:

1>n Σ−11n =
n∑

j=1

1

σ2
j

and:

1>n Σ−1C =
n∑

j=1

Cj

σ2
j

We deduce that:

x?i ∝
1

σ2
i

 n∑
j=1

1

σ2
j

 Ci−

 n∑
j=1

Cj

σ2
j
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The portfolio is long on the currency i if:

Ci ≥ C?

where:

C? =

 n∑
j=1

1

σ2
j

−1 n∑
j=1

Cj

σ2
j

 =
n∑

j=1

ωjCj

and:

ωj =
σ−2

j∑n
k=1 σ

−2
k

C? is the weighted mean of the carry values and the weights are inversely
proportional to the variance of the currency returns.
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Introduction to sustainable finance

Sustainable investing

Sustainable investing is an investment approach that considers
environmental, social and governance (ESG) factors in portfolio selection
and management

Socially responsible investing (SRI)

Socially responsible investing (SRI) is an investment strategy that is
considered socially responsible, because it invests in companies that have
ethical practices

Environmental, Social and Governance (ESG)

Environmental, Social, and Corporate Governance (ESG) refers to the
factors that measure the sustainability of an investment
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Introduction to sustainable finance

Sustainable Investing
≈

Socially Responsible Investing (SRI)
≈

Environmental, Social, and Governance (ESG)
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Introduction to sustainable finance

ESG Motivations

Values
and Ethics

Financial
Performance

Fiduciary Duty

Systemic &
Economic

Sustainability

Risk Man-
agement

Figure 81: The raison d’être of ESG investing
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Introduction to sustainable finance

ESG financial ecosystem

Asset owners (pension funds, sovereign wealth funds (SWF),
insurance and institutional investors, retail investors, etc.)

Asset managers

ESG rating agencies

ESG index sponsors

Banks

ESG associations (GSIA, UNPRI, etc.)

Regulators and international bodies (governments, financial and
industry regulators, central banks, etc.)

Issuers (equities, bonds, loans, etc.)

ESG investing ⇔ ESG financing
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ESG regulations

Figure 82: List of ESG regulations (MSCI, Who will regulate ESG?)
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ESG regulations

Visit the MSCI website

https://www.msci.com/who-will-regulate-esg

and obtain the detailed list of regulations

by year, country, regulator, regulated investors, etc.
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ESG regulators
The example of ESMA

ESMA strategy on sustainable finance

1 Completing the regulatory framework on transparency obligations via
the Disclosures Regulation (joint technical standards with EBA and
EIOPA)

2 TRV (trends, risks and vulnerabilities) reporting of sustainable finance

3 Analyse financial risks from climate change, including potentially
climate-related stress testing

4 Convergence of national supervisory practices on ESG factors

5 Participating in the EU taxonomy on sustainable finance

6 Ensuring ESG guidelines are implemented by regulated entities (e.g.
asset managers)
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ESG regulators
The example of central banks

Figure 83: Network of Central Banks and Supervisors for Greening the Financial
System (NGFS)

Go the NGFS website (https://www.ngfs.net) and download the NGFS
climate scenarios
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ESG associations

Figure 84: Global Sustainable Investment Alliance (GSIA)

http://www.gsi-alliance.org
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ESG associations

GSIA members

• The European Sustainable Investment Forum (Eurosif),
http://www.eurosif.org

• Responsible Investment Association Australasia (RIAA),
https://responsibleinvestment.org

• Responsible Investment Association Canada (RIA Canada),
https://www.riacanada.ca

• UK Sustainable Investment & Finance Association (UKSIF),
https://www.uksif.org

• The Forum for Sustainable & Responsible Investment (US SIF),
https://www.ussif.org

• Dutch Association of Investors for Sustainable Development (VBDO),
https://www.vbdo.nl/en/

• Japan Sustainable Investment Forum (JSIF),
https://japansif.com/english
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ESG associations

Figure 85: Principles for Responsible Investment (PRI)

https://www.unpri.org
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ESG associations

PRI (or UNPRI)

Early 2005: UN Secretary-General Kofi Annan invited a group of the
world’s largest institutional investors to join a process to develop the
Principles for Responsible Investment

April 2006: The Principles were launched at the New York Stock
Exchange

6 ESG principles
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ESG associations

Signatories’ commitment

“As institutional investors, we have a duty to act in the best long-term interests of our beneficiaries. In this fiduciary
role, we believe that environmental, social, and corporate governance (ESG) issues can affect the performance of
investment portfolios (to varying degrees across companies, sectors, regions, asset classes and through time).
We also recognise that applying these Principles may better align investors with broader objectives of society. There-
fore, where consistent with our fiduciary responsibilities, we commit to the following:

Principle 1: We will incorporate ESG issues into investment analysis and decision-making processes.

Principle 2: We will be active owners and incorporate ESG issues into our ownership policies and practices.

Principle 3: We will seek appropriate disclosure on ESG issues by the entities in which we invest.

Principle 4: We will promote acceptance and implementation of the Principles within the investment industry.

Principle 5: We will work together to enhance our effectiveness in implementing the Principles.

Principle 6: We will each report on our activities and progress towards implementing the Principles.

The Principles for Responsible Investment were developed by an international group of institutional investors reflecting
the increasing relevance of environmental, social and corporate governance issues to investment practices. The process
was convened by the United Nations Secretary-General.
In signing the Principles, we as investors publicly commit to adopt and implement them, where consistent with our
fiduciary responsibilities. We also commit to evaluate the effectiveness and improve the content of the Principles
over time. We believe this will improve our ability to meet commitments to beneficiaries as well as better align our
investment activities with the broader interests of society.
We encourage other investors to adopt the Principles.” Source: https://www.unpri.org
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ESG associations
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Figure 86: PRI Signatory growth
Source: https://www.unpri.org
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The issuer point of view of ESG

Corporate financial performance
(CFP)

Friedman (2007)

Shareholder theory

Corporations have no social
responsibility to the public or
society

Their only responsibility is to its
shareholders (profit
maximization)

Corporate social responsibility (CSR)

Freeman (2010)

Stakeholder theory

Corporations create negative
externalities

They must have social and
moral responsibilities

Impact on the cost-of-capital
and business risk
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ESG strategies

1. Exclusion Exclusion policy & negative (or worst-in-class) screening

2. Values Norms-based screening

3. Selection Positive (or best-in-class) screening

4. Thematic Sustainability themed investing (e.g. green bonds)

5. Integration ESG scoring is fully integrated in portfolio management

6. En-
gagement

Voting policy & shareholder activism

7. Impact Impact investing

Figure 87: Categorisation of ESG strategies (Eurosif, 2019)
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ESG strategies

Exclusion/Negative Screening

The exclusion from a fund or portfolio of certain sectors, companies or
practices based on specific ESG criteria (worst-in-class)

Values/Norms-based Screening (or Red Flags)

Screening of investments against minimum standards of business practice
based on international norms, such as those issued by the OECD, ILO, UN
and UNICEFa

aIn Europe, the top exclusion criteria are (1) controversial weapons (Ottawa and
Oslo treaties), (2), tobacco, (3) all weapons, (4) gambling, (5) pornography, (6)
nuclear energy, (7) alcohol, (8) GMO and (9) animal testing (Eurosif, 2019)

Source: Global Sustainable Investment Alliance (2018)
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ESG strategies

Selection/Positive Screening

Investment in sectors, companies or projects selected for positive ESG
performance relative to industry peers (best-in-class)

Thematic/Sustainability Themed Investing

Investment in themes or assets specifically related to sustainability (for
example clean energy, green technology or sustainable agriculture)

ESG Integration

The systematic and explicit inclusion by investment managers of
environmental, social and governance factors into financial analysis

Source: Global Sustainable Investment Alliance (2018)
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ESG strategies

Engagement/Shareholder Action

The use of shareholder power to influence corporate behavior, including
through direct corporate engagement (i.e., communicating with senior
management and/or boards of companies), filing or co-filing shareholder
proposals, and proxy voting that is guided by comprehensive ESG
guidelines.

Impact Investing

Targeted investments aimed at solving social or environmental problems,
and including community investing, where capital is specifically directed to
traditionally underserved individuals or communities, as well as financing
that is provided to businesses with a clear social or environmental purpose

Source: Global Sustainable Investment Alliance (2018)
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The market of ESG investing

38% 

5% 
53% 

2% 

2% 

$23 tn 
Global Responsible Investment 

market in 2016 

~ 1/4  
of global assets under 

management 

+25% 
Growth in 2 years 

JAPAN 
$480 bn 

(vs $7 bn in 2014)  

EUROPE 
$12.04 tn  

12% growth in 2 years 

AUSTRALIA / NZ 
$500 bn 

247% growth in 2 years 

USA 
$8.7 tn 

33% growth  in 2 years 

CANADA 
$1.1 tn 

49% growth in 2 years 

Figure 88: ESG at the start of 2016

Source: Global Sustainable Investment Alliance (2017)
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The market of ESG investing

39% 

6% 
46% 
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38% growth 
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(vs $ 474 bn in 2016)  

 

CANADA 
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7% 
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Figure 89: ESG at the start of 2018

Source: Global Sustainable Investment Alliance (2019)
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The market of ESG investing
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Exclusion
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Impact Investing

Figure 90: Asset values of ESG strategies between 2014 and 2018

Source: Global Sustainable Investment Alliance (2015, 2017, 2019)
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The market of ESG investing

Table 66: Annual growth of ESG strategies

2014-2016 2016-2018
Exclusion 11.7% 14.6%
ESG Integration 17.4% 30.2%
Engagement 18.9% 8.3%
Values 19.0% −13.1%
Selection 7.6% 50.1%
Thematics 55.1% 92.0%
Impact Investing 56.8% 33.7%

Source: Global Sustainable Investment Alliance (2015, 2017, 2019)
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The concept of ESG investing

Environmental, Social and Governance (ESG)

ESG analysis: extra-financial analysis 6= financial analysis

ESG scoring: quantitative measures of ESG dimensions

ESG ratings: provide a grade (e.g. AAA, AA, A, etc.) to an issuer
(≈ credit ratings)

ESG screening: process of scanning and filtering issuers based on
ESG analysis and scoring (≈ stock screening, bond screening, stock
picking)

ESG investment process: define how the investment process
integrates ESG

ESG reporting: provide ESG information and measures on the
investment portfolio (e.g. ESG risk of the portfolio vs ESG risk of the
benchmark, repartition of ESG ratings, top/bottom ESG issuers, etc.)
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ESG rating agencies

Major players

ISS ESG (Deutsche
Börse)

MSCI ESG

Sustainalytics
(Morningstar)

Thomson Reuters

Vigeo-Eiris
(Moody’s)

Other players

Beyond Ratings
(LSE)

Bloomberg ESG

RobecoSAM (S&P)

Refinitiv (LSE)

TrueValue Labs
(Factset)

Specialized climate data
providers

CDP

Trucost (S&P)
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ESG data

ESG requires a lot of data and alternative data

For example, Sustainalytics ESG Data includes 220 ESG indicators
and 450 fields, and covers over 12 000 companies

Where to find the data?

Public data

Standardized data (regulatory reporting)
Non-standardized data (self reporting)

Private data
Proprietary data
Questionnaire/survey
Analyst scores
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ESG data

Examples of data

• Corporate annual reports

• Corporate environmental and social reports

• Carbon Disclosure Project (CDP) responses

• US Bureau of Labor Statistics

• Thomson Financial

• World Bank (WB)
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ESG data

Examples of alternative data

• Energy Data Analytics Lab research (Duke university)
https://energy.duke.edu/research/energy-data/resources

• Food and Agriculture Organization (FAO)
http://www.fao.org

• UK Reporting of Injuries, Diseases and Dangerous Occurrences
Regulations (RIDDOR)

https://www.hse.gov.uk/riddor

• World Health Organization (WHO)
https://www.who.int

• World Bank Governance Indicators (WGI)
https://info.worldbank.org/governance/wgi

• World Resources Institute (WRI)
https://www.wri.org
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ESG (alternative) data

Figure 91: WRI Water Stress 2019
Source: World Resources Institute (WRI), www.wri.org
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ESG (alternative) data

Figure 92: Oil palm production in 2018
Source: Our World in Data, https://ourworldindata.org/grapher/palm-oil-production
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ESG (alternative) data

Figure 93: Electricity generation from low-carbon sources in 2019
Source: Our World in Data, https://ourworldindata.org/grapher/low-carbon-electricity
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ESG scoring system

Table 67: An example of ESG criteria (corporate issuers)

Environmental

Carbon emissions

Energy use

Pollution

Waste disposal

Water use

Renewable energy

Green cars?

Green financing?

Social

• Employment
conditions

• Community
involvement

• Gender equality

• Diversity

• Stakeholder
opposition

• Access to medicine

Governance

Board
independence

Corporate
behaviour

Audit and control

Executive
compensation

Shareholder’ rights

CSR strategy

(?)means a specific criterion related to one or several sectors

(Green cars ⇒ Automobiles, Green financing ⇒ Financials)
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Table 68: An example of ESG criteria (sovereign issuers)

Environmental

Carbon emissions

Energy transition
risk

Fossil fuel exposure

Emissions reduction
target

Physical risk
exposure

Green economy

Social

• Income inequality

• Living standards

• Non-discrimination

• Health & security

• Local communities
and human rights

• Social cohesion

• Access to education

Governance

Political stability

Institutional
strength

Levels of corruption

Rule of law

Government and
regulatory
effectiveness

Rights of
shareholders
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Sovereign ESG Data Framework

World Bank

Data may be download at the following webpage:
https://datatopics.worldbank.org/esg/framework.html

E : 27 variables

S : 22 variables

G : 18 variables
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Table 69: Sovereign ESG Data Framework (World Bank)

Environmental

Emissions &
pollution (5)

Natural capital
endowment and
management (6)

Energy use &
security (7)

Environment/
climate risk &
resilience (6)

Food security (3)

Social

• Education & skills
(3)

• Employment (3)

• Demography (3)

• Poverty &
inequality (4)

• Health & nutrition
(5)

• Access to services
(4)

Governance

Human rights (2)

Government
effectiveness (2)

Stability & rule of
law (4)

Economic
environment (3)

Gender (4)

Innovation (3)
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Most of ESG scoring systems are based on scoring trees

Raw data are normalized in order to obtain features X1, . . . ,Xm

Features X1, . . . ,Xm are aggregated to obtain sub-scores s1, . . . , sn:

si =
m∑

j=1

ω
(1)
i,j Xj

Sub-scores s1, . . . , sn are aggregated to obtain the final score s :

s =
n∑

i=1

ω
(2)
i si

The two-level tree structure can be extended to multi-level tree structures
For example, in the case of a three-level tree structure, we have:

Features ⇒ sub-sub-scores ⇒ sub-scores ⇒ final score
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s

s1

X1 X2 X3

s2

X4 X5

s3

X6

We assume that:
Level 1

1 ω
(1)
1,1 = 50%

ω
(1)
2,1 = 25%

ω
(1)
3,1 = 25%

2 ω
(1)
4,2 = 50%

ω
(1)
5,2 = 50%

3 ω
(1)
6,3 = 100%

Level 2: ω
(2)
1 = ω

(2)
2 =

ω
(2)
3 = 33.33%

Figure 94: A two-level tree structure
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ESG scoring system

Environmental
pillar

Environmental
opportunities

Climate change Natural capital Waste & recycling

Product
carbon

footprint

Insuring
climate risk

Carbon
emissions

Financing
environmental

impact

Energy
efficiency

Carbon
emissions

management

Carbon
emissions
exposure

Figure 95: An example of ESG scoring tree (MSCI methodology)

Source: MSCI (2020)
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ESG scoring system

Raw data and scores have to be normalized

Why? Because to facilitate the aggregation process

Several normalization approaches:

0− 1 normalization: Xj ∈ [0, 1]⇒ si ∈ [0, 1]

0− 100 normalization: Xj ∈ [0, 100]⇒ si ∈ [0, 100]

z-score normalisation:

zi,j =
Xi,j − µ̂ (Xj )

σ̂ (Xj )

Empirical normalization using the empirical probability distribution
(0− 1 normalization)
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Table 70: Computation of z-score

Observation X1 z1 X2 z2

1 70.4000 −0.0015 0.0340 0.6911
2 31.3000 −1.0089 0.1000 1.3918
3 66.0000 −0.1149 −0.1660 −1.4321
4 84.2000 0.3540 −0.0590 −0.2962
5 91.7000 0.5472 −0.0280 0.0329
6 53.4000 −0.4395 0.0420 0.7760
7 49.6000 −0.5375 −0.1670 −1.4427
8 133.4000 1.6216 0.0470 0.8291
9 5.1000 −1.6840 −0.1210 −0.9544

10 119.5000 1.2635 0.0070 0.4045
Mean 70.4600 0.0000 −0.0311 0.0000

Standard deviation 38.8127 1.0000 0.0942 1.0000

We have z1,8 = 133.4−70.46
38.8127 = 1.6216 and z2,1 = 0.0340−(0.0311)

0.0942 = 0.6911
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ESG scoring system

Sector neutrality

Most of ESG scoring systems are sector neutral

The normalization is done at the sector level, not at the universe level

ESG scores are then relative (with respect to a sector), not absolute

Best-in-class/worst-in-class issuers 6= best/worst issuers
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ESG rating system

We need a mapping function Mapping to transform the ESG score s into
an ESG rating R

MSCI methodology

Mapping : [0, 10] −→ {AAA,AA,A,BBB,BB,B,CCC}
s 7−→ R =Mapping (s)

• If s ∈
[
0, 10

7

]
, Mapping (s) = CCC

• If s ∈
[

10
7 ,

2×10
7

]
, Mapping (s) = B

• If s ∈
[

2×10
7 , 3×10

7

]
, Mapping (s) = BB

• If s ∈
[

3×10
7 , 4×10

7

]
, Mapping (s) = BBB

• If s ∈
[

4×10
7 , 5×10

7

]
, Mapping (s) = A

• If s ∈
[

5×10
7 , 6×10

7

]
, Mapping (s) = AA

• If s ∈
[

6×10
7 , 10

]
, Mapping (s) = AAA
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z = 2.51.50.5−0.5−1.5z = −2.5

AAAAAABBBBBBCCC

0.62%6.06%24.17%38.29%24.17%6.06%0.62%

Figure 96: From ESG scores to ESG ratings (Gaussian mapping? of the z-score)

?We have Φ (−2.5) = 0.62%, Φ (−1.5)−Φ (−2.5) = 6.06%, Φ (−0.5)−Φ (−1.5) = 24.17%, Φ (0.5)−Φ (−0.5) = 38.29%,
Φ (1.5)− Φ (0.5) = 24.17%, Φ (2.5)− Φ (1.5) = 6.06% and 1− Φ (2.5) = 0.62%
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ESG ratings versus credit ratings

Credit rating

What is the question?
Measuring the 1Y PD

Rating correlation ≥ 90%
Convergence in the 1990s

Absolute rating
⇒ Facilitates comparison

More stable

Accounting standards

ESG rating

What is the question?
???

Rating correlation ≤ 40%
European issuers > American
issuers > Japanese issuers (≈ 0)

Relative rating
⇒ Complicates comparison

Less stable

ESG standardization and the
issue of self-reporting

What can we anticipate? ⇒ Strong convergence for subcomponents,
(more or less) convergence for E, S, and G ratings, but not for ESG ratings

The example of Tesla!
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What is the performance of ESG investing?

Impact on stock returns

Stock financial performance 6= corporate financial performance

Heterogenous results

Return-oriented or risk-oriented investment style?

Mixed results
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What is the performance of ESG investing?
Academic findings

Relationship between shareholder rights and “higher firm value, higher
profits, higher sales growth, lower capital expenditures, and [...] fewer
corporate acquisitions” (Gompers et al., 2003)

Positive relation between high corporate social responsibility and low
cost of equity capital (El Ghoul et al., 2011): “Employee Relations,
Environmental Policies, Product Strategies lower the firms’ cost of
equity”

Corporate financial performance is a U-shape function of corporate
social performance (Barnett and Salomon, 2012)

Cultural differences explain the diversity and differences in intentions
(‘Value’ or ‘Values’ oriented) of the currently available ESG data
(Eccles and Stroehle, 2018)

Negative/neutral impact: Schröder (2007), Hong and Kacperczyk
(2009)

Mixed results
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What is the performance of ESG investing?

We consider the two studies conducted by Amundi Quantitative Research:

2010-2017
Bennani, L., Le Guenedal, T., Lepetit, F., Ly, L., Mortier, V.,
Roncalli, T., and Sekine T. (2018), How ESG Investing Has Impacted
the Asset Pricing in the Equity Market, Amundi Discussion Paper,
DP-39-2018, https://research-center.amundi.com

2018-2019
Drei, A., Le Guenedal, T., Lepetit, F., Mortier, V., Roncalli, T., and
Sekine T. (2020), ESG Investing in Recent Years: New Insights from
Old Challenges, Amundi Discussion Paper, DP-42-2019,
https://research-center.amundi.com
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2010 – 2017: From hell to heaven

ESG investing tended to penalize both passive and active ESG
investors between 2010 and 2013

Contrastingly, ESG investing was a source of outperformance from
2014 to 2017 in Europe and North America

Two success stories between 2014 and 2017: E nvironmental in

North America and G overnance in the Eurozone

ESG was a risk factor (or a beta strategy) in the Eurozone, whereas it
was an alpha strategy in North America
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Active management
Sorted portfolio methodology

Sorted-portfolio approach

Sorted-based approach of Fama-French (1992)

At each rebalancing date t, we rank the stocks according to their
Amundi ESG z-score si,t

We form the five quintile portfolios Qi for i = 1, . . . , 5

The portfolio Qi is invested during the period ]t, t + 1]:

Q1 corresponds to the best-in-class portfolio (best scores)
Q5 corresponds to the worst-in-class portfolio (worst scores)

Quarterly rebalancing

Universe: MSCI World Index

Equally-weighted and sector-neutral portfolio (and region-neutral for
the world universe)
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Performance of ESG active management (2010 – 2017)
North America

Figure 97: Annualized return of ESG sorted portfolios (North America)

Source: Amundi Quantitative Research (2018)
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Performance of ESG active management (2010 – 2017)
Eurozone

Figure 98: Annualized return of ESG sorted portfolios (Eurozone)

Source: Amundi Quantitative Research (2018)
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Performance of ESG active management (2010 – 2017)
North America
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Performance of ESG active management (2010 – 2017)
Eurozone
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Performance of ESG active management (2010 – 2017)
The 2014 break

Table 71: Summary of the results

Before 2014

Factor
North

Eurozone
Europe

Japan
World

America ex-EMU DM
ESG −−−−−− −−− 000 +++ 000

E −−− 000 +++ −−− 000
S −−− −−− 000 −−− −−−
G −−− 000 +++ 000 +++

Since 2014

Factor
North

Eurozone
Europe

Japan
World

America ex-EMU DM
ESG ++++++ ++++++ 000 −−− +++

E ++++++ ++++++ −−− +++ ++++++
S +++ +++ 000 000 +++
G +++ ++++++ 000 +++ ++++++

Source: Amundi Quantitative Research (2018)
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The 2014 break

How to explain the 2014 break?

1 The intrinsic value of ESG screening or the materiality of ESG

“Since we observe a feedback loop between extra-financial risks
and asset pricing, we may also wonder whether the term ‘extra’
is relevant, because ultimately, we can anticipate that these risks
may no longer be extra-financial, but simply financial”(Bennani et
al., 2018).

ESG risks ⇒ Asset pricing

2 The extrinsic value of ESG investing or the supply/demand
imbalance

Investment flows matter!
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The steamroller of ESG for institutional investors

2010 

2015 

2017 

2018 

40% 

20% 

Figure 99: Frequency of institutional RFPs that
require ESG filters

Source: Based on RFPs received at Amundi.

In some countries, 100%
of RFPs require ESG
filters

For some institutional
investors, 100% of RFPs
require ESG filters
(public, para-public and
insurance investors)

For some strategies,
100% of RFPs require
ESG filters (index
tracking)
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Passive management (optimized portfolios)
Portfolio optimization with a benchmark

We consider the following optimization problem17:

x? (γ) = arg min
1

2
σ2 (x | b)− γs (x | b)

where σ (x | b) is the ex-ante tracking error (TE) of Portfolio x with
respect to the benchmark b:

σ (x | b) =

√
(x − b)>Σ (x − b)

and s (x | b) is the excess score (ES) of Portfolio x wrt the benchmark b:

s (x | b) = (x − b)> s
= s (x)− s (b)

17We note b the benchmark, s the vector of scores and Σ the covariance matrix.
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Passive management (optimized portfolios)
Portfolio optimization with a benchmark

The objective is to find the optimal portfolio with the minimum TE for a
given ESG excess score

This is a standard γ-problem where the expected returns are replaced by
the ESG scores (see Lecture 1)
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Performance of ESG passive management (2010-2017)
Arbitrage between ESG and TE

Figure 100: Efficient frontier of ESG optimized portfolios (World DM)

Source: Amundi Quantitative Research (2018)

No free lunch: ESG investing implies to take a tracking-error risk!
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Performance of ESG passive management (2010-2017)
Performance of optimized portfolios

Figure 101: Annualized excess return of ESG optimized portfolios (World DM)

Source: Amundi Quantitative Research (2018)

ESG investing & diversification: Mind the gap
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Performance of ESG active management (2018-2019)
On the road again

Main result

The 2018 – 2019 period seems to be a continuity of the 2014 – 2017
period rather than another distinctive phase

North America Eurozone
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Source: Amundi Quantitative Research (2020)

Thierry Roncalli Asset Management (Lecture 4) 957 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to sustainable finance
ESG scoring
Performance in the stock market
Performance in the corporate bond market

Performance of ESG active management (2018-2019)
New findings in the stock market

1 The transatlantic divide

Eurozone � North America

2 Social: from laggard to leader18

S � E , G

3 ESG investing: growing in complexity
Beyond worst-in-class exclusion and best-in-class selection strategies

18In the Eurozone: 2010 – 2013: E, then 2014 – 2017: G, then 2018 – 2019: S
In North America: 2010 – 2013: G, then 2014 – 2017: E, then 2018 – 2019: S
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Performance of ESG active management (2018-2019)
The transatlantic divide: the case of the Eurozone
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−2

0

2

4

6

8

R
e
t
u
r
n

(
in

%
)

2010 - 2013

2014 - 2017

2018 - 2019

Figure 102: Annualized return of long/short Q1 − Q5 sorted portfolios

Source: Amundi Quantitative Research (2020)

⇒ Performance remains highly positive, and is improved for E and S
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Performance of ESG active management (2018-2019)
The transatlantic divide: the case of North America
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Figure 103: Annualized return of long/short Q1 − Q5 sorted portfolios

Source: Amundi Quantitative Research (2020)

⇒ Performance is positive, but reduced for S and G, whereas E is negative
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Performance of ESG active management (2018-2019)
How to explain the American setback?

The regulatory value of ESG investing (or the intrinsic value revisited)

Trump election effect

Regulatory environment

1990 1995 2000 2005 2010 2015 2020
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Figure 104: Number of ESG regulations

ESG regulations are increasing,
with a strong momentum in
Europe but a weaker one in
North America

US withdrawal from Paris
Climate Agreement

Source: PRI, responsible investment regulation database, 2019.
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Performance of ESG active management (2018-2019)
How to explain the American setback?

The extrinsic value of ESG investing

The 2014 break

November 2013: Responsible Investment and the Norwegian
Government Pension Fund Global (2013 Strategy Council)
Strong mobilization of the largest institutional European investors:
NBIM, APG, PGGM, ERAFP, FRR, etc.
They are massively invested in European stocks and America stocks:

NBIM � CalPERS + CalSTRS + NYSCRF for U.S. stocks

The 2018-2019 period

Implication of U.S. investors continues to be weak
Strong mobilization of medium (or tier two) institutional European
investors, that have a low exposure on American stocks
Mobilization of European investors is not sufficient

⇒ The extrinsic value of ESG investing is temporary, and a new
equilibrium will be found on the long run
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Performance of ESG active management (2018-2019)
Social is strong in Eurozone

Q1 Q2 Q3 Q4 Q5

Sorted portfolio

-6

-4

-2

0

2

4

6

R
e
tu

rn
(i

n
%

) 1.6

4.6

1.6

-6.7

-1.3

2018 - 2019

Figure 105: Sorted portfolios
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Figure 106: Optimized portfolios

Source: Amundi Quantitative Research (2020)
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Performance of ESG active management (2018-2019)
ESG investing: growing in complexity

North America, ESG-Sorted portfolios, 2010 – 2019
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Eurozone, ESG-Sorted portfolios, 2010 – 2019
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Performance of ESG active management (2018-2019)
The dynamic view of ESG investing

Figure 107: How to play ESG momentum?
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Q2 vs Q1: not interesting

Q4 vs Q5: very interesting
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ESG and factor investing
Single-factor model

Regression model

We have:
Ri,t = αi + βj

iFj,t + εi,t

where Fj,t can be: market, size, value, momentum, low-volatility, quality
or ESG.
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ESG and factor investing
Single-factor model

Table 72: Results of cross-section regressions with long-only risk factors (average
R2)

Factor
North America Eurozone

2010 – 2013 2014 – 2019 2010 – 2013 2014 – 2019
Market 40.8% 28.6% 42.8% 36.3%

Size 39.3% 26.1% 37.1% 23.3%
Value 38.9% 26.7% 41.6% 33.6%

Momentum 39.6% 26.3% 40.8% 34.1%
Low-volatility 35.8% 25.1% 38.7% 33.4%

Quality 39.1% 26.6% 42.4% 34.6%
ESG 40.1% 27.4% 42.6% 35.3%

Source: Amundi Quantitative Research (2020)

Specific risk has increased during the period 2014 – 2019
Since 2014, we find that:

ESG � Value � Quality � Momentum � . . . (North America)
ESG � Quality � Momentum � Value � . . . (Eurozone)
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ESG and factor investing
Multi-factor model

Regression model

We have:

Ri,t = αi +

nF∑
j

βj
iFj,t + εi,t

1F = market

5F = size + value + momentum + low-volatility + quality

6F = 5F + ESG
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ESG and factor investing
Multi-factor model

Table 73: Results of cross-section regressions with long-only risk factors (average
R2)

Factor
North America Eurozone

2010 – 2013 2014 – 2019 2010 – 2013 2014 – 2019
Market 40.8% 28.6% 42.8% 36.3%

5F model 46.1% 38.4% 49.5% 45.0%
6F model (5F + ESG) 46.7% 39.7% 50.1% 45.8%

Source: Amundi Quantitative Research (2020)

∗∗∗p-value statistic for the MSCI Index (time-series, 2014 – 2019):

6F = Size, Value, Momentum, Low-volatility, Quality, ESG (North
America)

6F = Size, Value, Momentum, Low-volatility, Quality, ESG
(Eurozone)
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ESG and factor investing
Factor selection

Least absolute shrinkage and selection operator (lasso)

The lasso regression is defined by:

yi − ȳ

σy
=

K∑
k=1

βk

(
xi,k − x̄k

σxk

)
+ εi

s.t.
K∑

k=1

|βk | ≤ τ

We note β̂lasso (τ) the lasso estimator. We have β̂lasso (∞) = β̂ols and
β̂lasso (0) = 0K .
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ESG and factor investing
Factor selection

In the two-asset case, we have:

RSS (β1, β2) =
n∑

i=1

(ỹi − β1x̃i,1 − β2x̃2,1)2

If we consider the equation RSS (β1, β2) = c , we obtain the following
cases:

c < RSS
(
β̂ols

1 , β̂ols
2

)
c = RSS

(
β̂ols

1 , β̂ols
2

)
c > RSS

(
β̂ols

1 , β̂ols
2

)
No solution One solution

(
β̂ols

1 , β̂ols
2

)
An ellipsoid

What does this result become when imposing
the lasso constraint |β1|+ |β2| ≤ τ?

Sparsity property

∃ η > 0 : ∀τ < η, min
(∣∣∣β̂lasso

1

∣∣∣ , ∣∣∣β̂lasso
2

∣∣∣) = 0
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ESG and factor investing
Factor selection

β̂ols

β̂lasso (τ1)

β1

β2 RSS (β1, β2) = constant

lasso path

|β1|+ |β2| ≤ τ1

|β1|+ |β2| ≤ η

Figure 108: Interpretation of the lasso regression
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Factor selection

Figure 109: Variable selection with the lasso method (variable ordering:
x3 � x1 � x2 � x4 � x5)
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ESG and factor investing
ESG as an alpha strategy

Figure 110: Factor selection (North America)

Source: Amundi Quantitative Research (2020)
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ESG and factor investing
ESG as a beta strategy

Figure 111: Factor selection (Eurozone)

Source: Amundi Quantitative Research (2020)
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ESG and factor investing
What is the difference between alpha and beta?

α or β?
“[...] When an alpha strategy is massively invested, it has an
enough impact on the structure of asset prices to become a risk
factor.
[...] Indeed, an alpha strategy becomes a common market risk
factor once it represents a significant part of investment portfolios
and explains the cross-section dispersion of asset returns” (Ron-
calli, 2020)

ESG remains an alpha strategy in North America

ESG becomes a beta strategy (or a risk factor) in Europe
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Why ESG investing in bond markets is different than ESG
investing in stock markets

Stocks

ESG scoring is incorporated in
portfolio management

ESG = long-term business risk
⇒ strongly impacts the equity

Portfolio integration

Managing the business risk

Bonds

ESG integration is generally
limited to exclusions

ESG lowly impacts the debt

Portfolio completion

Fixed income = impact investing

Development of pure play ESG
securities (green and social
bonds)

⇒ Stock holders are more ESG sensitive than bond holders because of the
capital structure
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Why ESG investing in bond markets is different than ESG
investing in stock markets

ESG investment flows affect asset
pricing differently

• Impact on carry (coupon
effect)?

• Impact on price dynamics (credit
spread/mark-to-market effect)?

• Buy-and-hold portfolios 6=
managed portfolios

The distinction between IG and HY
bonds

• ESG and credit ratings are
correlated

• There are more worst-in-class
issuers in the HY universe, and
best-in-class issuers in the IG
universe

• Non-neutrality of the bond
universe (bonds 6= stocks)
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What is the performance of ESG investing?
Academic findings

?
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What is the performance of ESG investing?

We consider the two studies conducted by Amundi Quantitative Research:

Ben Slimane, M., Le Guenedal, T., Roncalli, T., and Sekine T. (2020),
ESG Investing in Corporate Bonds: Mind the Gap, Amundi Working
Paper, WP-94-2019, https://research-center.amundi.com

Ben Slimane, M., Brard, E., Le Guenedal, T., Roncalli, T., and Sekine
T. (2020), ESG Investing in Fixed Income: It’s Time To Cross the
Rubicon, Amundi Discussion Paper, DP-45-2019,
https://research-center.amundi.com
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Sorted portfolio methodology

Sorted-portfolio approach

Sorted-based approach of Fama-French (1992)

At each rebalancing date t, we rank the bonds according to their
Amundi ESG z-score

We form the five quintile portfolios Qi for i = 1, . . . , 5

The portfolio Qi is invested during the period ]t, t + 1]:

Q1 corresponds to the best-in-class portfolio (best scores)
Q5 corresponds to the worst-in-class portfolio (worst scores)

Monthly rebalancing

Universe: ICE (BofAML) Large Cap IG EUR Corporate Bond

Sector-weighted and sector-neutral portfolio

Within a sector, bonds are equally-weighted
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What is the performance of ESG investing?
Sorted portfolios

Figure 112: Annualized credit return in bps of
ESG sorted portfolios (EUR IG, 2010 – 2019)
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Source: Amundi Quantitative Research (2020)

Table 74: Carry statistics (in
bps)

Period Q1 Q5

2010-2013 175 192
2014-2019 113 128

Negative carry (coupon
level)

Positive mark-to-market
(dynamics of credit
spreads and bond prices)
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Bond portfolio optimization

We consider the following optimization problem:

x? (γ) = arg minR (x | b)− γ · S (x | b)

where:

R (x | b) =
1

2
RMD (x | b) +

1

2
RDTS (x | b)

and:

RMD (x | b) and RDTS (x | b) are the interest rate and credit active
risk measures wrt the benchmark b

S (x | b) is the ESG excess score of Portfolio x wrt the benchmark b

The objective is to find the optimal portfolio minimizing interest
rate and credit active risk for a given ESG excess score
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What is the performance of ESG investing?
Optimized portfolios
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Figure 113: Excess credit return in bps of optimized portfolios (EUR IG)

Source: Amundi Quantitative Research (2020)
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What is the performance of ESG investing?
Optimized portfolios
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Figure 114: Excess credit return in bps of optimized portfolios (USD IG)

Source: Amundi Quantitative Research (2020)
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The impact of ESG on the funding cost
An integrated Credit-ESG model
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Figure 115: Average ESG score with respect to the credit rating (2010 – 2019)

Source: Amundi Quantitative Research (2020)
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The impact of ESG on the funding cost
An integrated Credit-ESG model

We consider the following regression model:

lnOASi,t = αt + βesg · Si,t + βmd ·MDi,t +

NSector∑
j=1

βSector (j) · Sectori,t (j) +

βsub · SUBi,t +

NRating∑
k=1

βRating (k) · Ratingi,t (k) + εi,t

where:

Si,t is the ESG z-score of Bond i at time t

SUBi,t is a dummy variable accounting for subordination of the bond

MDi,t is the modified duration

Sectori,t (j) is a dummy variable for the jth sector

Ratingi,t (k) is a dummy variable for the kth rating
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The impact of ESG on the funding cost
An integrated Credit-ESG model

Table 75: Results of the panel data regression model (EUR IG, 2010 – 2019)

2010–2013 2014–2019
ESG E S G ESG E S G

R2 60.0% 59.4% 59.5% 60.3% 66.3% 65.0% 65.2% 64.6%
Excess R2

0.6% 0.0% 0.2% 1.0% 4.0% 2.6% 2.9% 2.3%
of ESG

β̂esg -0.05 -0.01 -0.02 -0.07 -0.09 -0.08 -0.08 -0.08
t-statistic -32 -7 -16 -39 -124 -98 -104 -92

Source: Amundi Quantitative Research (2020)

The assumption H0 : βesg < 0 is not rejected
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The impact of ESG on the funding cost
ESG cost of capital with min/max score bounds

We calculate the difference between:

(1) the funding cost of the worst-in-class issuer and

(2) the funding cost of the best-in-class issuer

by assuming that:

the two issuers have the same credit rating;

the two issuers belong to the same sector;

the two issuers have the same capital structure;

the two issuers have the same debt maturity.

⇒ Two approaches:

1 Theoretical approach: ESG scores are set to −3 and +3 (not realistic)

2 Empirical approach: ESG scores are set to observed min/max score
bounds (e.g. min/max = −2.0/+1.9 for Consumer Cyclical A-rated
EUR, −2.1/+3.2 for Banking A-rated EUR, etc.)

Thierry Roncalli Asset Management (Lecture 4) 989 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to sustainable finance
ESG scoring
Performance in the stock market
Performance in the corporate bond market

The impact of ESG on the funding cost
ESG cost of capital with min/max score bounds

Table 76: ESG cost of capital (IG, 2014 – 2019)

EUR USD
AA A BBB Average AA A BBB Average

Banking 23 45 67 45 11 19 33 21
Basic 9 25 44 26 5 15 34 18
Capital Goods 8 32 42 27 6 15 26 16
Communication 26 48 37 5 11 23 13
Consumer Cyclical 3 26 43 28 2 8 17 10
Consumer Non-Cyclical 15 29 31 25 6 12 19 12
Utility & Energy 12 32 56 33 9 14 31 18
Average 12 31 48 31 7 13 26 15

Source: Amundi Quantitative Research (2020)
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ESG investing versus ESG financing

Markowitz, H. (1952), Portfolio Selection, Journal of Finance, 7(1),
pp. 77-91.

Modigliani, F., and Miller, M.H. (1958), The Cost of Capital,
Corporation Finance and the Theory of Investment, American
Economic Review, 48(3), pp. 261-297.

⇒ Two misunderstandings:

1 Capital allocation & asset allocation

2 Cost of capital & asset (stock/bond) return
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Prologue

“There is no Plan B, because there is no Planet B“

Ban Ki-moon, UN Secretary-General, September 2014

Is it a question of climate-related issues?

In fact, it is more an economic growth issue

“The Golden Rule of Accumulation: A Fable for Growthmen“

Edmund Phelps, American Economic Review, 1961
Nobel Prize in Economics, 2006
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Climate risks and financial losses

Climate risks transmission channels to financial stability

The physical risks that arise from the increased frequency and
severity of climate and weather related events that damage property
and disrupt trade

The liability risks stemming from parties who have suffered loss from
the effects of climate change seeking compensation from those they
hold responsible

The transition risks that can arise through a sudden and disorderly
adjustment to a low carbon economy

Speech by Mark Carney at the International Climate Risk Conference for

Supervisors, Amsterdam, April 6, 2018
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Climate risks and financial risks

Risks are traversal to financial risks

Carbon risk (reputational and regulation risks) ⇒ economic, market
and credit risks

Climate risk (extreme weather events, natural disasters) ⇒
economic, operational, credit and market risks
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Some definitions

Climate risk

Climate Risks include transition risk and physical risks:

Transition risk is defined as the financial risk associated with the
transition to a low-carbon economy. It include policy changes,
reputational impacts, and shifts in market preferences, norms and
technology

Physical risk is defined as the financial losses due to extreme weather
events and climate disasters like flooding, sea level rise, wildfires,
droughts and storms
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Some definitions

Global warming (≈ climate change)

Global warming is the long-term heating of Earth’s climate system
observed since the pre-industrial period (between 1850 and 1900) due to
human activities, primarily fossil fuel burning

NASA Global Climate Change — https://climate.nasa.gov
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Some definitions

Figure 116: Global temperature anomaly

Source: Berkeley Earth (2018), http://berkeleyearth.org
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Some definitions

Carbon risk

Carbon risks correspond to the potential financial losses due to greenhouse
gas (or GHG) emissions, mainly CO2 emissions (in a strengthening
regulatory context)
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Some definitions

GHG

Greenhouse gases absorb and emit radiation energy, causing the
greenhouse effecta:

1 water vapour (H2O)

2 Carbon dioxide (CO2)

3 Methane (CH4)

4 Nitrous oxide (N2O)

5 Ozone (O3)

aWithout greenhouse effect, the average temperature of Earth’s surface would be
about −18◦C. With greenhouse effect, the current temperature of Earth’s surface is
about +15◦C.
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Some definitions

Carbon equivalent

Carbon dioxide equivalent (or CO2e) is a term for describing different GHG
in a common unit

• A quantity of GHG can be expressed as CO2e by multiplying the
amount of the GHG by its global warming potential (GWP)

• 1 kg of methane corresponds to 25 kg of CO2

• 1 kg of Nitrous oxide corresponds to 310 kg of CO2
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CO2 emissions
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Figure 117: Cumulative CO2 emissions (in BT)

Source: Data on CO2 and GHG Emissions by Our World in Data (https://github.com/owid/co2-data)
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Figure 118: Annual CO2 emissions (in BT)

Source: Data on CO2 and GHG Emissions by Our World in Data (https://github.com/owid/co2-data)
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Figure 119: CO2 emissions per capita (in MT)

Source: Data on CO2 and GHG Emissions by Our World in Data (https://github.com/owid/co2-data)
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Figure 120: Share of CO2 emissions (in %)

Source: Data on CO2 and GHG Emissions by Our World in Data (https://github.com/owid/co2-data)
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CO2 emissions
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IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the United
Nations body for assessing the science related to climate change

The IPCC was created to provide policymakers with regular scientific
assessments on climate change, its implications and potential future
risks, as well as to put forward adaptation and mitigation options

Website: https://www.ipcc.ch

Remark

IPCC is known as “Groupe d’experts intergouvernemental sur l’évolution
du climat” (GIEC)
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IPCC

IPCC working groups

The IPCC Working Group I (WGI) examines the physical science
underpinning past, present, and future climate change

The IPCC Working Group II (WGII) assesses the impacts, adaptation
and vulnerabilities related to climate change

The IPCC Working Group II (WGIII) focuses on climate change
mitigation, assessing methods for reducing greenhouse gas emissions,
and removing greenhouse gases from the atmosphere
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IPCC

Some famous reports

IPCC Fifth Assessment Report (AR5): Climate Change 2014 —
www.ipcc.ch/report/ar5

Global Warming of 1.5◦C — www.ipcc.ch/sr15

IPCC Sixth Assessment Report (AR6): Climate Change 2022 —
www.ipcc.ch/report/sixth-assessment-report-cycle
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IPCC scenarios

Website: https://www.ipcc.ch/data

The IPCC AR5 scenarios database comprises 31 models and in total
1 184 scenarios

4 reference scenarios: representative concentration pathways
(RCP)

Each RCP represents one possible evolution profile of GHG
concentrations

RCP 2.6: CO2 emissions start declining by 2020 and go to zero by
2100
RCP 4.5: CO2 emissions peak around 2040, then decline
RCP 6.0: CO2 emissions peak around 2080, then decline
RCP 8.5: CO2 emissions continue to rise throughout the 21st century

For each RCP, socio-economic development scenarios and various
adaptation and mitigation strategies are associated

They are called the shared socioeconomic pathways (SSP)
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IPCC scenarios

RCP Model Contact
RCP 2.6 IMAGE Detlef van Vuuren (detlef.vanvuuren@pbl.nl)
RCP 4.5 MiniCAM Katherine Calvin (katherine.calvin@pnnl.gov)
RCP 6.0 AIM Toshihiko Masui (masui@nies.go.jp)
RCP 8.5 MESSAGE Keywan Riahi (riahi@iiasa.ac.at)

Table 77: Associated model for each RCP

Thierry Roncalli Asset Management (Lecture 4) 1010 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

IPCC scenarios

Figure 121: IPCC RCP scenarios: CO2 emissions from fossil fuels and industry
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Carbon neutrality

Carbon neutrality (or net zero) means that any CO2 released into the
atmosphere from human activity is balanced by an equivalent amount
being removed

Apple Commits to Become Carbon Neutral to by 2030
(https://www.bbc.com/news/technology-53485560)
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Carbon dioxide removal

Carbon dioxide removal (CDR)

1 Nature-based solutions

• Afforestation
• Reforestation
• Restoration of peat bogs
• Restoration of coastal and marine habitats

2 Enhanced natural processes

• Land management and no-till agriculture, which avoids carbon release
through soil disturbance

• Better wildfire management
• Ocean fertilisation to increase its capacity to absorb CO2

3 Technology solutions

• Bioenergy with carbon capture and storage (BECCS)
• Direct air capture (DAC)
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The shared socioeconomic pathways

SSP1
Low challenges for both mitigation and adaptation, rapid

development: Sustainability (Taking the Green Road)

SSP2 Moderate challenges for mitigation and adaptation: Middle of the Road

SSP3

High challenges for both mitigation and adaptation — Concern
about competitiveness, security and regional conflict pushing coun-
tries to focus on regional issues: Regional Rivalry (a Roacky Road)

SSP4

Low challenges for mitigation hight for adaptation — Un-
equal investment in human capital, concentration of power

in a small business elite: Inequality (A Divided Road)

SSP5
High challenge for mitigation low for adaptation:

Fossil-fueled Development (Taking the Highway)

Figure 122: The shared socioeconomic pathways

Source: O’Neill et al. (2016)
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The shared socioeconomic pathways

Figure 123: Projections of CO2 emissions and temperatures across SSP

Source: https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
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The shared socioeconomic pathways

Figure 124: Projections of population and economic growth across SSP

Source: https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
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Climate risk and missing factors

The example of permafrost

The permafrost contains 1.700 billion tons of carbon, almost double
the amount of carbon that is currently in the atmosphere.

Arctic permafrost holds roughly 15 million gallons of mercury – at
least twice the amount contained in the oceans, atmosphere and all
other land combined.

A global temperature rise of 1.5◦C above current levels would be
enough to start the thawing of permafrost in Siberia.

The global warming will become out-of-control after this tipping
point.

The thawing of the permafrost also threatens to unlock
disease-causing viruses long trapped in the ice.

⇒ The survival of Humanity becomes uncertain if the tipping point is
reached
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Climate risk modeling

Remark

In what follows, we use the survey and the simulations of Le Guenedal
(2019)
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Climate risk modeling
The Solow growth model

The model

Production function:

Y (t) = F (K (t) ,A (t) L (t))

where K (t) is the capital, L (t) is the labor and A (t) is the
knowledge factor

Law of motion for the capital per unit of effective labor
k (t) = K (t) / (A (t) L (t)):

dk (t)

dt
= s f (k (t))− (gL + gA + δK ) k (t)

where s is the saving rate, δK is the depreciation rate of capital and
gA and gL are the productivity and labor growth rates
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Climate risk modeling
The golden rule

Golden rule with the Cobb-Douglas production and Hicks neutrality

The equilibrium to respect the ‘fairness’ between generations is:

k? =

(
s

gL + gA + δK

) 1

1− α

“Each generation in a boundless golden age of natural growth will prefer
the same investment ratio, which is to say the same natural growth path”
(Phelps, 1961, page 640).

“By a golden age I shall mean a dynamic equilibrium in which output and
capital grow exponentially at the same rate so that the capital-output ratio
is stationary over time” (Phelps, 1961, page 639).
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Climate risk modeling
Golden rule and climate risk

What is economic growth and what is the balanced growth path?

• There is a saving rate that maximizes consumption over time and
between generations (“the fair rate to preserve future
generations”)

• Economic growth corresponds to the exponential growth of capital
and output to answer the needs of the growing population

• Introducing human and natural capitals add constraints and therefore
reduce growth!

�
�

�
Economic growth ⇒

{
productivity ↗ and labor ↗
maximization of consumption-based utility function

Thierry Roncalli Asset Management (Lecture 4) 1021 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

Climate risk modeling
Extension to natural capital

What are the effects of environmental constraints on growth?

Introducing a decreasing natural capital (Romer, 2006)

The balanced growth path g?Y is equal to:

g?Y = gL + gA −
gL + gA + δNc

1− α
ϑ

where δNc is the depreciation rate of natural capital and ϑ is the elasticity
of output with respect to (normalized) natural capital Nc (t)

“The static-equilibrium type of economic theory which is now so well
developed is plainly inadequate for an industry in which the indefinite
maintenance of a steady rate of production is a physical impossibility, and
which is therefore bound to decline” (Hotteling, 1931, page 138-139)

Accounting for environment... changes the definition of economic growth
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Climate risk modeling
Inter-temporal utility functions

Preferences modeling (Ramsey model)

ρ is the discount rate (time preference)

c (t) is the consumption per capita and u is the CRRA utility function:

u (c (t)) =

{ 1

1− θ
c (t)1−θ if θ > 0, θ 6= 1

ln c (t) if θ = 1

where θ is the risk aversion parameter

Maximization of the welfare function:∫ ∞
t

e−ρtu (c (t)) dt
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Climate risk modeling
The discounting issue

Does the golden rule of saving rates hold in a Keynesian approach with
discounted maximization of consumption?
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Figure 125: Discounted value of $100
loss

“There is still time to avoid the
worst impacts of climate
change, if we take strong action
now” (Stern, 2007)

“I got it wrong on climate
change – it’s far, far worse”
(Stern, 2013)

The value of a loss in 100 years almost disappears... while it is only the
next generation!
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Climate risk modeling
Does consumption maximization make sense?

How many planets do we need?

To achieve the current levels of consumption for the world population, we
need:

US: 5 planets

France: 3 planets

India: 0.6 planet

Source: Global Footprint Network, http://www.footprintcalculator.org
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Climate risk modeling
Fairness between generations

Keynes

“In the long run, we are all dead“

John Maynard Keynesa, A Tract on Monetary Reform, 1923.

a“Men will not always die quietly“, The Economic Consequences of the Peace,
1919.

Carney

“The Tragedy of the Horizon“

Mark Carney, Chairman of the Financial Stability Board, 2015

⇒ Back to the Golden Rule and the Fable for Growthmen...
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Integrated assessment model (IAM)
Definition

Main categories

Optimization models
The inputs of these models are parameters and assumptions about the
structure of the relationships between variables. The outputs provided
by optimization process are scenarios depending on a set of constraints

Evaluation models
Based on exogenous scenarios, the outputs provide results from
partial equilibriums between variables

Three main components of IAMs

1 Economic growth relationships

2 Dynamics of climate emissions

3 Objective function

Thierry Roncalli Asset Management (Lecture 4) 1027 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

Integrated assessment model (IAM)
Modeling framework

Figure 126: Economic models of climate risk

Production
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Climate change
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Integrated assessment model (IAM)
Modeling framework

1 Economic module

1 Production function =⇒ GDP
2 Impact of the climate risk on GDP (damage losses, mitigation and

adaptation costs)
3 The climate loss function depends on the temperature

2 Climate module

1 Dynamics of GHG emissions
2 Modeling of Atmospheric and lower ocean temperatures

3 Optimal control problem

1 Maximization of the utility function
2 We can test many variants
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Integrated assessment model (IAM)
Modeling framework

The most famous IAM is the Dynamic Integrated model of Climate
and the Economy (or DICE) developed by Nordhaus19 (1993)

The RICE model (Regional Integrated Climate-Economy model) is a
variant of the DICE model

192018 Nobel Laureate
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Integrated assessment model (IAM)
Production and output

The gross output is equal to:

Y (t) = ATFP (t)K (t)α L (t)1−α

where:  ATFP (t) = (1 + gA (t))ATFP (t − 1)
K (t) = (1− δK )K (t − 1) + I (t)
L (t) = (1 + gL (t)) L (t − 1)

Climate change impacts the net output:

Q (t) = ΩClimate (t)Y (t)

We also have Q (t) = C (t) + I (t) and C (t) = (1− s (t))Q (t)
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Integrated assessment model (IAM)
The loss (or damage) function

The loss function is given by:

ΩClimate (t) = ΩD · ΩΛ =
1

1 + D (t)
· (1− Λ (t))

where D (t) and Λ (t) measure climate damages20 and abatement
costs21

Climate damages are assumed to be quadratic:

D (t) = a1TAT (t) + a2TAT (t)2

where TAT (t) is the atmospheric temperature, while abatement costs
depend on the control rate µ (t):

Λ (t) = b1µ (t)b2

20The climate damage coefficient ΩD (t) = (1 + D (t))−1 represents the fraction of
GDP lost because of the temperature increase

21It includes costs of reduction of greenhouse gases emission, abatement and
mitigation costs
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Integrated assessment model (IAM)
GHG emissions, concentrations and radiative forcing

The total emission of green house gases E (t) is given by:

E (t) = (1− µ (t))σ (t)Y (t) + ELand (t)

where mitigation policies are translated by the control rate µ (t),
ELand (t) represents exogenous land-use emissions and σ (t) is the
uncontrolled ratio of green house gases emissions to output

The evolution of the GHG concentration C = (CAT, CUP, CLO) is given
by:

C (t) = ΦC,∆C (t − 1) + BC,∆E (t)

The increase of radiative forcing FRAD (t) depends on the GHG
concentration in the atmosphere:

FRAD (t) = η ln2

(
CAT(t)

CAT(1750)

)
+ FEX (t)
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Integrated assessment model (IAM)
Temperatures

Atmospheric and lower ocean temperatures are given by:

CAT
dTAT (t)

dt
= FRAD (t)− λTAT (t)− γ(TLO (t)− TAT (t))

CLO
dTLO (t)

dt
= γ(TLO (t)− TAT (t))

where γ is the heat exchange coefficient and λ is the climate feedback
parameter.
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Integrated assessment model (IAM)
The optimal control problem

Simplified version of the DICE model (Nordhaus, 1993)

{µ? (t) , s? (t)} = argmax

T∑
t=0

u (c (t) , L (t))

(1 + ρ)t

s.t.



Y (t) = ATFP (t)K (t)α L (t)1−α

ATFP (t) = (1 + gA (t))ATFP (t − 1)
K (t) = (1− δK )K (t − 1) + I (t)
L (t) = (1 + gL (t)) L (t − 1)
Q (t) = ΩC lim ate (t)Y (t)
C (t) = (1− s (t))Q (t)
E (t) = (1− µ (t))σ (t)Y (t) + ELand (t)
C (t) = ΦC ,∆C (t − 1) + BC ,∆E (t)

FRAD (t) = η log2

(
CAT(t)
CAT(1750)

)
+ FEX (t)

T (t) = ΦT ,∆T (t − 1) + BT ,∆FRAD (t)
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Integrated assessment model (IAM)
Scenario analysis

The process of building scenarios is the same in every model
1 Choice of the structure

Optimization or evaluation?
Optimization function?
Complexity or simplicity?

2 Calibration

Choice for the discount rate (Nordhaus vs Stern)
Calibration of energy prices and substitution (etc.)

3 Applications

Compare baseline scenario of the different models
Compute the 2◦C scenario, the optimal welfare scenario, etc.
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Integrated assessment model (IAM)
Important variables

TAT (t) — Atmospheric temperature

µ (t) — Control rate (mitigation policies)

E (t) — Total emissions of GHG

SCC (t) — Social cost of carbon
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Integrated assessment model (IAM)
2013 DICE optimal welfare scenario
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Integrated assessment model (IAM)
2013 DICE 2◦C scenario
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Integrated assessment model (IAM)
2016 DICE optimal welfare scenario
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Integrated assessment model (IAM)
2016 DICE 2◦C scenario

2025 2050 2075 2100

0.5

1

1.5

2

2.5

2025 2050 2075 2100

0

0.25

0.5

0.75

1

2025 2050 2075 2100

0

50

100

150

200

2025 2050 2075 2100

500

1000

1500

2000

Source: Le Guenedal (2019)

Thierry Roncalli Asset Management (Lecture 4) 1041 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

Integrated assessment model (IAM)
The tragedy of the horizon

Achieving the 2◦C scenario

In 2013, the DICE model suggested to reduce drastically CO2

emissions...

Since 2016, the 2◦C trajectory is no longer feasible! (minimum ≈
2.6◦C)

For many models, we now have:

P (∆T > 2◦C ) > 95%
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Integrated assessment model (IAM)
Malthusianism and climate risk
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Figure 127: Optimal control on population growth rate (2◦C scenario)
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Integrated assessment model (IAM)
Social cost of carbon (SCC)

“This concept represents the economic cost caused by an addi-
tional ton of carbon dioxide emissions (or more succinctly carbon)
or its equivalent. [...] In the language of mathematical program-
ming, the SCC is the shadow price of carbon emissions along a
reference path of output, emissions, and climate change” (Nord-
haus, 2011).

Mathematical definition

We have:

SCC (t) =
∂W ?/∂ E (t)

∂W ?/∂ C (t)
=
∂ C (t)

∂ E (t)
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Integrated assessment model (IAM)
Debate around the social cost of carbon

We have:

$266/tCO2 for Stern (2007)

$57/tCO2 for Golosov et al. (2014)

$31.2/tCO2 for Nordhaus (2018) in the case of optimal welfare

$229/tCO2 for Nordhaus (2018) in the case of the 2.5◦C scenario

$125/tCO2 for Daniel et al. (2018)
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Integrated assessment model (IAM)
Limits of IAMs

Temperature increase in ◦C

End of the world?

Nordhaus

Hanemann

Nordhaus – Weitzman

Weiztman γ = 2.7 · 10−4
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Figure 128: Damage functions

⇒ There is high uncertainty above 2◦C and financial models cannot be
based on damage functions
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Integrated assessment model (IAM)
Limits of IAMs

Financial models do not account for portfolio contribution to the
technical change (adaptation/mitigation)

The direct exposure to an optimal tax (regulation risk) may be
approached by using optimization models of policy makers. However,
each model leads to a different carbon price...

Interconnectedness and systemic risks

First round losses 6= second round losses

Stranded assets
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Integrated assessment model (IAM)
Limits of IAMs
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Regulation of climate risk

UN, international bodies & coalitions

Countries

Cities

Industry self-regulation

Non-governmental organizations (NGO)

Financial regulators

Hard regulation 6= soft regulation
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Regulation of climate risk
UN

United Nations Climate Change Conference

• Conference of the Parties (COP)

• Dealing with climate change

• COP 1: Berlin (1995)

• COP 3: Kyoto (1997) ⇒ Kyoto Protocol (CMP)

• COP 21: Paris (2015) ⇒ Paris Agreement (CMA)

• COP 26: Glasgow (2022)
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Regulation of climate risk
UN

The Kyoto Protocol is an international treaty that commits state parties
to reduce GHG emissions, based on the scientific consensus that:

1 Global warming is occurring

2 It is likely that human-made CO2 emissions have caused it
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Regulation of climate risk
UN

The Paris Agreement is an international treaty with the following goals:

1 Keep a global temperature rise this century well below 2◦C above the
pre-industrial levels

2 Pursue efforts to limit the temperature increase to 1.5◦C

3 Increase the ability of countries to deal with the impacts of climate
change

4 Make finance flows consistent with low GHG emissions and
climate-resilient pathways

⇒ Nationally determined contributions (NDC)
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Regulation of climate risk
UN

Table 78: CO2 emissions by country

Rank Country
CO2 emissions

Share
CO2 emissions

Total (in GT) Per capita (in MT)
1 China 10.06 28% 7.2
2 USA 5.41 15% 15.5
3 India 2.65 7% 1.8
4 Russia 1.71 5% 12.0
5 Japan 1.16 3% 8.9
6 Germany 0.75 2% 8.8
7 Iran 0.72 2% 8.3
8 South Korea 0.72 2% 12.1
9 Saudi Arabia 0.72 2% 17.4

10 Indonesia 0.72 2% 2.2
11 Canada 0.56 2% 15.1
15 Turkey 0.42 1% 4.7
17 United Kingdom 0.37 1% 5.8
19 France 0.33 1% 4.6
17 Italy 0.33 1% 5.3

Source: Earth System Science Data, https://earth-system-science-data.net

World Bank Open Data, https://data.worldbank.org/topic/climate-change
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Regulation of climate risk
UN

Paris Agreement: where we are?

194 states have signed the Agreement

They represent about 80% of GHG emissions

USA, Iran and Turkey have not signed the Agreement
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Regulation of climate risk
UN

Figure 129: Paris Agreement assessments of aviation and shipping

Source: Climate Action Tracker (CAT), https://climateactiontracker.org
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Regulation of climate risk
Coalitions

The Coalition of Finance Ministers for Climate Action

www.financeministersforclimate.org

Commitment to implement fully the Paris Agreement
Santiago Action Plan
Helsinki principles (1. align, 2. share, 3. promote, 4. mainstream, 5.
mobilize, 6. engage)
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Regulation of climate risk
Coalitions

One Planet Summit

www.oneplanetsummit.fr

One Planet Sovereign Wealth Funds (OPSWF)
Funding members: Abu Dhabi Investment Authority (ADIA), Kuwait
Investment Authority (KIA), NZ Superannuation Fund (NZSF), Public
Invesment Fund (PIF), Qatar Investment Authority (QIA)
New members: Bpifrance, CDP Equity, COFIDES, FONSIS, ISIF, KIC,
Mubadala IC, NIIF, NIC NBK

One Planet Asset Managers
Funding members: Amundi AM, BlackRock, BNP PAM, GSAM,
HSBC Global AM, Natixis IM, Northern Trust AM, SSGA
New members: AXA IM, Invesco, Legal & General IM, Morgan
Stanley IM, PIMCO UBS AM

One Planet Private Equity Funds
Members: Ardian, Carlyle Group, Global Infrastructure Partners,
Macquarie Infrastructure and Real Assets (MIRA), SoftBank IA
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Regulation of climate risk
Countries

The example of France

August 2015: French Energy Transition for Green Growth Law (or
Energy Transition Law)

Roadmap to mitigate climate change and diversify the energy mix
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Regulation of climate risk
Countries

Article 173 of the French Energy Transition Law

The annual report of listed companies must include:

Financial risks related to the effects of climate change
The measures adopted by the company to reduce them
The consequences of climate change on the company’s activities

New requirements for investors:

Disclosure of climate (and ESG) criteria into investment decision
making process
Disclosure of the contribution to the energy transition and the global
warming limitation international objective
Reporting on climate change-related risks (including both physical
risks and transition risks), and GHG emissions of assets

Banks and credit providers shall conduct climate stress testing
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Regulation of climate risk
Carbon pricing

Polluter pays principle

A carbon price is a cost applied to carbon pollution to encourage
polluters to reduce the amount of GHG they emit into the atmosphere
Negative externality

Two instruments of carbon pricing

1 Carbon tax
2 Cap-and-trade (CAT) or emissions trading scheme (ETS)

Some examples

1 EU emissions trading system (2005) —
https://ec.europa.eu/clima/policies/ets_en

2 New Zealand ETS (2008)
3 Chinese national carbon trading scheme (2017)
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Regulation of climate risk
Carbon pricing
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Figure 130: EU ETS carbon price? (in e/tCO2)

(?)The carbon price reaches 34.43 euros a tonne on Monday 11, 2021
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Regulation of climate risk
Carbon pricing

Table 79: Carbon tax (in $/tCO2)

Country 2018 2019 2020 Country 2018 2019 2020
Sweden 139.11 126.78 133.26 Latvia 5.58 5.06 10.49
Liechtenstein 100.90 96.46 105.69 South Africa 7.38
Switzerland 100.90 96.46 104.65 France 55.30 50.11 6.98
Finland 76.87 69.66 72.24 Argentina 6.24 5.94
Norway 64.29 59.22 57.14 Chile 5.00 5.00 5.00
Ireland 24.80 22.47 30.30 Colombia 5.67 5.17 4.45
Iceland 35.71 31.34 30.01 Singapore 3.69 3.66
Denmark 28.82 26.39 27.70 Mexico 3.01 2.99 2.79
Portugal 8.49 14.31 27.52 Japan 2.74 2.60 2.76
United Kingdom 25.46 23.59 23.23 Estonia 2.48 2.25 2.33
Slovenia 21.45 19.44 20.16 Ukraine 0.02 0.37 0.35
Spain 24.80 16.85 17.48 Poland 0.09 0.08 0.08

Source: World Bank Carbon Pricing Dashboard, https://carbonpricingdashboard.worldbank.org
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Regulation of climate risk
Stranded assets

Stranded Assets are assets that have suffered from unanticipated or
premature write-downs, devaluations or conversion to liabilities

For example, a 2◦C alignment implies to keep a large proportion of
existing fossil fuel reserves in the ground (30% of oil reserves, 50% of
gas reserves and 80% of coal)

Risk factors: Regulations, carbon prices, change in demand, social
pressure, etc.

Example of the covid-19 crisis ⇒ air travel
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Regulation of climate risk
Financial regulation

Financial Stability Board (FSB)

European Central Bank (ECB)

The French Prudential Supervision and Resolution Authority (ACPR)

The Prudential Regulation Authority (PRA)

Network for Greening the Financial System (NGFS)

Etc.
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Regulation of climate risk
Financial regulation

Bolton, P., Despres, M., Pereira Da Silva, L.A., Samama, F. and
Svartzman, R. (2020), The Green Swan — Central Banking and Financial
Stability in the Age of Climate Change, BIS Publication,
https://www.bis.org/publ/othp31.htm
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Regulation of climate risk
Financial regulation

Task Force on Climate-related Financial Disclosures (TCFD)

• Established by the FSB in 2015 to develop a set of voluntary,
consistent disclosure recommendations for use by companies in
providing information to investors, lenders and insurance underwriters
about their climate-related financial risks

• Website: www.fsb-tcfd.org

• Chairman: Michael R. Bloomberg (founder of Bloomberg L.P.)

• 31 members

• June 2017: Publication of the “Recommendations of the Task Force
on Climate-related Financial Disclosures”

• October 2020: Publication of the 2020 “Status Report: Task Force
on Climate-related Financial Disclosures”
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Regulation of climate risk
Financial regulation

Recommendation ID Recommended Disclosure

Governance
1 Board oversight
2 Management’s role

Strategy
3 Risks and opportunities
4 Impact on organization
5 Resilience of strategy

Risk management
6 Risk ID and assessment processes
7 Risk management processes
8 Integration into overall risk management

Metrics and targets
9 Climate-related metrics

10 Scope 1, 2, 3 GHG emissions
11 Climate-related targets

Table 80: The 11 recommended disclosures (TCFD, 2017)
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Regulation of climate risk
Financial regulation

Some key findings of the 2020 Status Report (TCFD, 2020):

Disclosure of climate-related financial information has increased since
2017, but continuing progress is needed

Average level of disclosure across the Task Force’s 11 recommended
disclosures was 40% for energy companies and 30% for materials and
buildings companies

Asset manager and asset owner reporting to their clients and
beneficiaries, respectively, is likely insufficient
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Climate stress testing

ACPR (2020): Climate Risk Analysis and Supervision22

Bank of England (2021): Climate Biennial Exploratory Scenario (June
2021)

Top-down approach 6= bottom-up approach

Stress of risk-weighted asset: Bouchet and Le Guenedal (2020).

22https://acpr.banque-france.fr/en/

scenarios-and-main-assumptions-acpr-pilot-climate-exercise
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Climate capital requirements

Green supporting factor

Risk weights may depend on the green/brown nature of the credit

Green loans

Green supporting factor 6= Brown penalising factor

Similar idea: Green Quantitative Easing (GQE)
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Climate risk measurement

Climate risk = risk factor for long-term investors, because of its
impacts on asset prices

Managing climate risk in a portfolio first requires to measure it

Physical risk

• More an operational risk than a
business risk

• Measuring physical risk is a
difficult task

• Strong impact on real estate &
insurance sectors

• Low impact on stock prices?

Transition risk

• A business risk

• Measuring transition risk is a
difficult task

• Impact on many sectors (energy,
materials, industrials, utilities,
etc.)

• High impact on stock prices?
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Climate risk measurement
Physical risk and tropical cyclone damage modeling

Figure 131: Sample of storms (ERA-5 climate data)
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Climate risk measurement
Physical risk and tropical cyclone damage modeling

1.353353e-01

1.484132e+02

1.627548e+05

1.784823e+08

Exposure

Figure 132: GDP decomposition of North America (or physical asset values)
(Litpop database)
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Climate risk measurement
Transition risk

Transition
risk
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Carbon risk measurement

Main assumption

Transition risk can be measured (or approximated) by carbon risk

Carbon risk can be measured by current carbon emissions
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Carbon risk measurement

The GHG Protocol corporate standard classifies a company’s greenhouse
gas emissions in three scopes:

Scope 1: direct GHG emissions from all direct GHG emissions by the
company

Scope 2: indirect GHG emissions from the consumption of purchased
energy (electricity, heat, steam, etc.)

Scope 3: other indirect GHG emissions (not included in Scope 2)
that occur in the value chain of the reporting company, including
both upstream and downstream emissions (extraction and production
of purchased materials and fuels, transport-related activities in
vehicles not owned or controlled by the reporting entity,
electricity-related activities not covered in Scope 2, outsourced
activities, waste disposal, etc.)
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Carbon risk measurement

Remark

Scopes 1 and 2 are mandatory to report, whereas scope 3 is voluntary (and
harder to measure and monitor)
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Carbon risk measurement

Carbon intensity is the amount of GHG emissions per unit of
another variable such as gross domestic product (sovereign) or
revenue (corporate):

Carbon intensity =
Carbon scope

Revenue

Carbon scopes are measured in tCO2e

Carbon intensities are measured in tCO2e/$ (or tCO2e/$ mn)

Carbon footprint ≈ Carbon scope

Carbon footprint ≈ Carbon intensity
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Carbon risk measurement

How to find data of carbon emission and intensity?

Carbon Disclosure Project (CDP) is a not-for-profit charity that
runs the global disclosure system for investors, companies, cities,
states and regions to manage their environmental impacts

https://www.cdp.net

Trucost was established to provide the data, tools and insights
needed by companies, investors and policy makers to deliver the
transition to a low carbon, resource efficient economy23

https://www.trucost.com

ESG rating agencies: ISS ESG, MSCI, Sustainalytics, Thomson
Reuters, etc.

23Trucost is now part of S&P Global
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Carbon risk measurement

Table 81: Some carbon variables of the Trucost database

Company Carbon-Direct1

Financial Year Carbon-First Tier Indirect1

Trucost Sector Name Carbon-Direct + First Tier Indirect1

Trucost Sector Carbon Intensity-Direct2

Country Carbon Intensity-First Tier Indirect2

Carbon-Scope 11 Carbon Intensity-Direct + First Tier Indirect2

Carbon-Scope 21 GHG-Direct ($ mn)
Carbon-Scope 31 GHG-Indirect ($ mn)
Carbon Intensity-Scope 12 GHG-Total ($ mn)
Carbon Intensity-Scope 22 GHG-Direct Impact Ratio (%)
Carbon Intensity-Scope 32 GHG-Indirect Impact Ratio (%)
Carbon Disclosure GHG-Total Impact Ratio (%)
Carbon-Weighted Disclosure (%) Revenue ($ mn)

Source: Trucost Database (2021).

(1)in t CO2e
(1)in t CO2e/$ mn
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Carbon risk measurement

Table 82: Examples of carbon data (2019)

Company
Carbon emissions (tCO2e) Carbon Intensity (tCO2e/$ mn) Carbon

Scope 1 Scope 2 Scope 3 Scope 1 Scope 2 Scope 3 Disclosure
Apple Inc. 50 463 862 127 27 618 943 0.194 3.314 106.156 CDP
Microsoft Corporation 113 414 3 556 553 5 977 488 0.901 28.262 47.500 CDP
Danone SA 722 122 944 877 28 969 780 25.509 33.378 1 023.365 CDP
Nestle SA 3 291 303 3 206 495 61 262 078 35.332 34.422 657.647 CDP
Sanofi 559 422 417 689 3 470 724 13.833 10.328 85.819 CDP
Pfizer Inc. 715 631 762 286 4 669 554 13.829 14.730 90.233 CDP
LVMH-Moet Vuitton 67 613 262 609 11 853 749 1.125 4.371 197.291 CDP
L’Oreal 49 511 160 393 5 556 670 1.480 4.796 166.154 CDP
BP p.l.c. 49 199 999 5 200 000 103 840 194 177.714 18.783 375.077 Env./CSR
TOTAL SE 40 909 129 3 596 127 49 893 263 204.097 17.941 248.920 CDP
Tesla Inc. 327 159 273 116 6 471 521 13.311 11.112 263.305 Estimated
Volkswagen AG 4 494 066 5 973 894 65 335 372 15.890 21.123 231.016 CDP

Source: Trucost Database (2021).

In 2019, there are 12 989 companies in the Trucost data.
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Carbon risk measurement

Figure 133: Histogram of carbon emissions (Scope 1, tCO2e)

Source: Trucost Database (2021) & author’s calculations.
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Carbon risk measurement

Figure 134: Histogram of carbon emissions (Scope 2, tCO2e)

Source: Trucost Database (2021) & author’s calculations.
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Carbon risk measurement

Figure 135: Histogram of carbon emissions (Scope 3, tCO2e)

Source: Trucost Database (2021) & author’s calculations.
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Carbon risk measurement

Figure 136: Histogram of carbon intensity (Scope 1, tCO2e/$ mn)

Source: Trucost Database (2021) & author’s calculations.
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Carbon risk measurement

Figure 137: Histogram of carbon intensity (Scope 2, tCO2e/$ mn)

Source: Trucost Database (2021) & author’s calculations.
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Carbon risk measurement

Figure 138: Histogram of carbon intensity (Scope 3, tCO2e/$ mn)

Source: Trucost Database (2021) & author’s calculations.
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Portfolio optimization with a benchmark

The γ-optimization problem is:

x? = arg min
1

2
σ2 (x | b)− γx>µ (x | b)

u.c.

 1>n x = 1
0n ≤ x ≤ 1n (no short selling)
x ∈ Ω

where x = (x1, . . . , xn) is the portfolio, b = (b1, . . . , bn) is the benchmark,

σ (x | b) =

√
(x − b)>Σ (x − b) is the volatility of the tracking error,

µ (x | b) = (x − b)> µ is the expected excess return and x ∈ Ω
corresponds to additional constraints

Remark

We remind that the objective function can be cast into a QP problem:

x? = arg min
1

2
x>Σx − x> (γµ+ Σb)
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Quadratic programming problem

Reminder (Lecture 1)

The formulation of a standard QP problem is:

x? = arg min
1

2
x>Qx − x>R

u.c.

 Ax = B
Cx ≤ D
x− ≤ x ≤ x+
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Portfolio decarbonization

We note CI i the carbon intensity24 associated to asset i

The carbon intensity of the benchmark is equal to:

CI (b) =
n∑

i=1

bi · CI i = b>CI

where CI = (CI1, . . . , CIn) is the vector of carbon intensities

The carbon intensity of the portfolio is equal to:

CI (x) = x>CI

CI (x) is also called the weighted average carbon intensity (WACI)

The objective is to reduce the carbon intensity of the benchmark by a
factor πCI :

CI (x) ≤ CI? = πCI · CI (b)

24It corresponds to the carbon intensity of the company i
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Portfolio decarbonization

We deduce that the optimization problem is:

x? =
1

2
σ2 (x | b)

u.c.

 1>n x = 1
0n ≤ x ≤ 1n

CI (x) ≤ πCI · CI (b)

The underlying idea is to obtain a decarbonized portfolio x? such that
the tracking error with respect to the benchmark b is the lowest

The benchmark b can be a current portfolio (active management) or
an index portfolio (passive management)
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Portfolio decarbonization

Since the constraint on the carbon intensity is equivalent to:

CI>x ≤ πCI ·
(
b>CI

)
We obtain the following QP problem:

x? =
1

2
x>Σx − x>Σb

u.c.


1>n x = 1

CI>x ≤ πCI ·
(
b>CI

)
0n ≤ x ≤ 1n
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Portfolio decarbonization

We have the following QP correspondences:

Q = Σ

R = Σb

A = 1>n
B = 1

C = CI>

D = CI? = πCI ·
(
b>CI

)
x− = 0n

x+ = 1n
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Portfolio decarbonization

Example 1

We consider a capitalization-weighted equity index, which is composed of
8 stocks. The weights are equal to 23%, 19%, 17%, 13%, 9%, 8%, 6%
and 5%. We assume that their volatilities are equal to 22%, 20%, 25%,
18%, 35%, 23%, 13% and 29%. The correlation matrix is given by:

ρ =



100%
80% 100%
70% 75% 100%
60% 65% 80% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 80% 100%


The carbon intensities (expressed in tCO2e/$ mn) are respectively equal
to: 100.5, 57.2, 250.4, 352.3, 27.1, 54.2, 78.6 and 426.7.
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Portfolio decarbonization

Table 83: Optimal decarbonization portfolios (max-threshold approach)

πCI 1.00 0.90 0.80 0.70 0.60 0.50
x?1 23.00 20.98 18.97 16.95 14.91 11.96
x?2 19.00 21.15 23.30 25.46 28.25 33.40
x?3 17.00 16.79 16.59 16.38 14.79 9.05
x?4 13.00 9.12 5.24 1.36 0.00 0.00
x?5 9.00 10.33 11.67 13.00 14.51 16.92
x?6 8.00 9.18 10.37 11.55 12.63 13.59
x?7 6.00 8.20 10.40 12.59 14.21 15.06
x?8 5.00 4.23 3.47 2.70 0.70 0.00

σ (x?) (in bps) 0.00 19.32 38.64 57.96 84.74 141.97
CI (x) 155.18 139.66 124.14 108.62 93.11 77.59

The carbon intensity of the index is equal to 155.18 tCO2/$ mn

The tracking error of the portfolio is equal to 141.97 bps if we target
a 50% reduction of the carbon intensity
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Portfolio decarbonization
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Figure 139: The efficient frontier of optimal decarbonization portfolios
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Portfolio decarbonization

Andersson et al. (2016) propose a second approach of portfolio
decarbonization by eliminating the m worst performer assets in terms of
carbon intensity

We note CI i :n the order statistics of CI = (CI1, . . . , CIn):

min CI i = CI1:n ≤ CI2:n ≤ · · · ≤ CI i :n ≤ · · · ≤ CIn−1:n ≤ CIn:n = max CI i

The carbon intensity threshold CI(m,n) is defined as:

CI(m,n) = CIn−m+1:n

where CIn−m+1:n is the (n −m + 1)-th order statistic of CI
Eliminating the m worst performer assets is equivalent to:

CI i ≥ CI(m,n) ⇒ xi = 0
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Portfolio decarbonization

The optimization problem becomes:

x? =
1

2
x>Σx − x>Σb

u.c.


1>n x = 1

xi ∈
{

[0, 1] if CI i < CI(m,n)

{0} if CI i ≥ CI(m,n)

The last constraint can be written as:

0n ≤ x ≤ x+

where:
x+

i = 1
{
CI i < CI(m,n)

}

We obtain again a QP problem
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Portfolio decarbonization

Table 84: Optimal decarbonization portfolios (order-statistic approach)

m 0 1 2 3 4 5 6 7 CI
x?1 23.00 18.68 15.94 14.00 0.00 0.00 0.00 0.00 100.5
x?2 19.00 23.54 26.26 35.84 45.65 56.44 0.00 0.00 57.2
x?3 17.00 17.46 17.50 0.00 0.00 0.00 0.00 0.00 250.4
x?4 13.00 6.50 0.00 0.00 0.00 0.00 0.00 0.00 352.3
x?5 9.00 11.88 13.63 17.98 21.18 26.14 34.73 100.00 27.1
x?6 8.00 10.85 12.44 15.84 13.20 17.42 65.27 0.00 54.2
x?7 6.00 11.11 14.23 16.34 19.98 0.00 0.00 0.00 78.6
x?8 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 426.7

σ (x?) (in bps) 0.00 77.78 84.51 240.71 278.40 400.71 11.4% 21.6%
CI (x) 155.18 116.66 96.48 60.87 54.70 48.81 44.79 27.10

The reduction of carbon intensity is equal to 24.82% if we eliminate
the worst performer

In this case, we obtain a tracking error of 77.78 bps
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Portfolio decarbonization
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Figure 140: The efficient frontier of optimal decarbonization portfolios
(S&P 500 Index, January 2021, Scope 1)
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Carbon intensity and the size bias
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Figure 141: Scatterplot between the index weights bi and the carbon intensity
CI i

(S&P 500 Index, January 2021, Scope 1)
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Carbon intensity and the size bias
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Figure 142: Lorenz curve of the carbon intensity contributions
(S&P 500 Index, January 2021, Scope 1)

In January 2021, the Carbon intensity of the S&P 500 Index is equal to 111.89 tCO2e/$ mn.
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Climate changes indexes

MSCI Climate Change Indexes —
www.msci.com/climate-change-indexes

MSCI Climate Paris Aligned Indexes —
www.msci.com/esg/climate-paris-aligned-indexes

FTSE Global Climate Index Series —
www.ftserussell.com/products/indices/global-climate

FTSE TPI Climate Transition Index Series — www.ftserussell.

com/products/indices/tpi-climate-transition

FTSE Climate Risk-Adjusted Government Bond Index Series —
www.ftserussell.com/products/indices/climate-wgbi

S&P Climate Indices — www.spglobal.com/spdji/en/

index-family/equity/esg/climate

STOXX Climate Transition Benchmark (CTB) and STOXX
Paris-Aligned Benchmark (PAB) Indices —
qontigo.com/solutions/climate-indices
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Climate changes indexes

Most of the climate change indices use the following weighting
scheme:

xi =
si × bi∑n

j=1 sj × bj

where si is the climate change score of the company and bi is the
weight of the company in the parent index (or benchmark)

The climate change score is generally a combined score based on:

1 Carbon emission score
2 Asset stranding score
3 Climate management score
4 Green revenue score
5 Etc.
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Financial risk of climate change

The previous approach assumes that
the climate-related market risk of a company
is measured by its current carbon intensity

...But the market perception
of the climate change may be different
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Financial risk of climate change

The following analysis is based on the following papers:

Görgen, M., Jacob, A., Nerlinger, M., Riordan, R.,
Rohleder, M., and Wilkens, M. (2019), Carbon Risk, SSRN,
https://www.ssrn.com/abstract=2930897.

Roncalli, T., Le Guenedal, T., Lepetit, F., Roncalli, T.,
and Sekine, T. (2020), Measuring and Managing Carbon Risk in
Investment Portfolios, Amundi Working Paper, WP-99-2020,
www.research-center.amundi.com.
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Financial risk of climate change

Goal

The main objective is to define a market measure of carbon risk

Three-step approach

Defining a brown green score (BGS) for each stock (scoring model)

Building a brown minus green factor (Fama-French approach)

Estimating the carbon beta of a stock with respect to the BMG factor
(Multi-factor regression analysis)

Carbon beta = market measure of carbon risk
6=

Carbon intensity = fundamental measure of carbon risk
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Financial risk of climate change
The example of carbon intensity
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Figure 143: Market-based vs fundamental-based measures of carbon risk

⇒ The market perception of a carbon risk measure depends on several
dimensions: sector, country, etc.
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Which carbon risk?

Systematic carbon risk

Common risk

Carbon beta

Market measure (≈ general carbon
risk exposure, e.g. market repricing
risk)

Idiosyncratic carbon risk

Specific risk

Carbon intensity

Fundamental measure (≈ specific
carbon risk exposure, e.g.
reputational risk)
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Construction of the BMG factor
Risk factor approach (Fama-French)

Green Neutral Brown
Small SG SN SB
Big BG BN BB

The BMG factor return Rbmg (t) is derived from the Fama-French method:

Rbmg (t) =
1

2
(RSB (t) + RBB (t))− 1

2
(RSG (t) + RBG (t))

where the returns of each portfolio Rj (t) (small green SG, big green BG,
small brown SB, big brown BB) is value-weighted by the market
capitalisation

⇒ The BMG factor is a Fama-French risk factor based on a scoring
system (brown green score or BGS)
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Construction of the BGS

The CARIMA approach

Carbon Risk Management (CARIMA)

Project sponsored by the German Federal Ministry of Education and
Research

They publish the carbon risk factor Brown-Minus-Green (BMG)

They also provide an excel tool

Contact: Martin Nerlinger (martin.nerlinger@wiwi.uni-augsburg.de)

https://carima-project.de/en/downloads
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Construction of the BGS – The CARIMA approach

Görgen et al. (2019) use 55 proxy variables to define the brown green
score:

Value chain (impact of a climate policy or a cap-and-trade system on
the different activities of a firm) — VC

Public perception (external environmental image of a firm) — PP

Adaptability (capacity of the firm to shift towards a low carbon
strategy without strong efforts and losses) — PP

A brown green score (BGS) is created for each stock:

BGSi (t) =
2

3
(0.7 ·VCi (t) + 0.3 · PPi (t)) +

NAi (t)

3
(0.7 ·VCi (t) + 0.3 · PPi (t))

where VCi is the value chain score of stock i , PPi is the public perception
score of stock i and NAi is the non-adaptability score of stock i
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Cumulative performance of the BMG factor
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Figure 144: Cumulative performance of the BMG factor

Source: Görgen et al. (2019)
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Correlation between BMG and other risk factors

Table 85: Correlation matrix of factor returns (in %)

Factor MKT SMB HML WML BMG
MKT 100.00∗∗∗

SMB 1.41 100.00∗∗∗

HML 11.51 − 8.93 100.00∗∗∗

WML −14.59 3.87 −41.43∗∗∗ 100.00∗∗∗

BMG 5.33 20.33∗∗ 27.41∗∗∗ −21.28∗∗ 100.00∗∗∗

Source: Roncalli et al. (2020)

No significant correlation between market and carbon factors

Size, value and momentum-specific effects in the BMG factor
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Multi-factor analysis

CAPM
Ri (t) = αi + βmkt,iRmkt (t) + εi (t)

Fama-French 3F model (FF)

Ri (t) = αi + βmkt,iRmkt (t) + βsmb,iRsmb (t) + βhml,iRhml (t) + εi (t)

MKT+BMG model

Ri (t) = αi + βmkt,iRmkt (t) + βbmg,iRbmg (t) + εi (t)

Extended Fama-French model (FF+BMG)

Ri (t) = αi + βmkt,iRmkt (t) + βsmb,iRsmb (t) + βhml,iRhml (t) +

βbmg,iRbmg (t) + εi (t)
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Multi-factor analysis

Carhart model (4F)

Ri (t) = αi + βmkt,iRmkt (t) + βsmb,iRsmb (t) + βhml,iRhml (t) +

βwml,iRwml (t) + εi (t)

Extended Carhart model (4F+BMG)

Ri (t) = αi + βmkt,iRmkt (t) + βsmb,iRsmb (t) + βhml,iRhml (t) +

βwml,iRwml (t) + βbmg,iRbmg (t) + εi (t)

⇒ These models are estimated using OLS and stocks that compose the
MSCI World Index from January 2010 to December 2018

Thierry Roncalli Asset Management (Lecture 4) 1116 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

Relevance of the BMG factor

Table 86: Comparison of cross-section regressions (in %)

Adjusted R2 F -test
difference 10% 5% 1%

CAPM vs FF 1.74 34.6 25.5 13.5
CAPM vs MKT+BMG 1.74 21.2 15.6 9.2
FF vs FF+BMG 1.73 22.5 17.5 9.7
FF vs FF+WML 0.22 6.6 3.0 0.8
4F vs 4F+BMG 1.76 23.6 18.6 10.0

Source: Roncalli et al. (2020)

⇒ The effect on the explanatory power is at the same level for the SMB
and HML factors together and the BMG factor alone

Thierry Roncalli Asset Management (Lecture 4) 1117 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

Sectorial analysis
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Figure 145: Box plots of the carbon sensitivities25

Source: Roncalli et al. (2020)

25The box plots provide the median, the quartiles and the 5% and 95% quantiles
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Absolute versus relative carbon risk

Relative carbon risk

The right measure is βbmg

Sign matters

Negative exposure is preferred

Absolute carbon risk

The right measure is |βbmg|
Sign doesn’t matter

Zero exposure is preferred

Two examples

1 We consider three portfolios with a carbon beta of −0.30, −0.05 and
+0.30 respectively

2 We consider two portfolios with the following characteristics:

The value of the carbon beta is +0.10 and the stock dispersion of
carbon beta is 0.20
The value of the carbon beta is −0.30 and the stock dispersion of
carbon beta is 1.50

⇒ Impact of portfolio management and theory
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Dynamic estimation of βbmg

We use the following dynamic common factor model:

Ri (t) = R (t)> βi (t) + εi (t)

where R (t) = (1,Rmkt (t) ,Rbmg (t)) is the vector of factor returns,
βi (t) = (αi (t) , βmkt,i (t) , βbmg,i (t)) is the vector of factor betas and
εi (t) is a white noise.

Assumption

The state vector βi (t) follows a random walk process:

βi (t) = βi (t − 1) + ηi (t)

where ηi (t) ∼ N (03,Σβ,i ) is the white noise vector and Σβ,i is the
diagonal covariance matrix of the white noise.

⇒ The model is estimated with the Kalman filter
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Dynamic estimation of βbmg

State space model (SSM)

The measurement equation defines the relationship between an
observable system yt and state variables αt :

yt = Ztαt + dt + εt

where yt is a n-dimensional time series, Zt is a n ×m matrix, dt is a
n × 1 vector

The state vector αt is generated by a Markov linear process:

αt = Ttαt−1 + ct + Rtηt

where αt is a m × 1 vector, Tt is a m ×m matrix, ct is a m × 1
vector and Rt is a m × p matrix

ηt ∼ N (0p,Qt) and εt ∼ N (0n,Ht) are independent white noise
processes of dimension p and n with covariance matrices Qt and Ht
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Dynamic estimation of βbmg

α0 ∼ N (α̂0,P0) is the initial position of the state vector

We note α̂t|t (or α̂t) and α̂t|t−1 the optimal estimators of αt given
the available information until time t and t − 1:

α̂t|t = E [αt | Ft ]

α̂t|t−1 = E [αt | Ft−1]

Pt|t (or Pt) and Pt|t−1 are the covariance matrices associated to α̂t|t
and α̂t|t−1:

Pt|t = E
[(
α̂t|t − αt

) (
α̂t|t − αt

)>]
Pt|t−1 = E

[(
α̂t|t−1 − αt

) (
α̂t|t−1 − αt

)>]
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Dynamic estimation of βbmg

Kalman filter

These different quantities are calculated thanks to the Kalman filter,
which consists in the following recursive algorithm:

α̂t|t−1 = Tt α̂t−1|t−1 + ct

Pt|t−1 = TtPt−1|t−1T
>
t + RtQtR

>
t

ŷt|t−1 = Zt α̂t|t−1 + dt

vt = yt − ŷt|t−1

Ft = ZtPt|t−1Z
>
t + Ht

α̂t|t = α̂t|t−1 + Pt|t−1Z
>
t F−1

t vt

Pt|t =
(
Im − Pt|t−1Z

>
t F−1

t Zt

)
Pt|t−1

where:

ŷt|t−1 = E [yt | Ft−1] is the best estimator of yt given the available
information until time t − 1
vt ∼ N (0n,Ft) is the innovation process
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Dynamic estimation of βbmg

The time-varying risk factor model can be written as a state space
model: {

y (t) = x (t)> β (t) + ε (t)
β (t) = β (t − 1) + η (t)

where ε (t) ∼ N
(
0, σ2

ε

)
, η (t) ∼ N (0K+1,Σβ) and K is the number

of risk factors

In the case of the MKT+BMG model, y (t) corresponds to the asset
return Ri (t), x (t) is a 3× 1 vector, whose elements are 1, Rmkt (t)
and Rbmg (t) and:

β (t) =

 αi (t)
βmkt,i (t)
βbmg,i (t)
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Dynamic estimation of βbmg

β (0) ∼ N (β0,P0) is the initial position of the state vector
We note β̂ (t | t − 1) = E [β (t) | F (t − 1)] and
β̂ (t | t) = E [β (t) | F (t)] as the optimal estimators of β (t) given
the available information until time t − 1 and t
P (t | t − 1) and P (t | t) are the covariance matrices associated with
β̂ (t | t − 1) and β̂ (t | t)
The estimate of y (t) is equal to:

ŷ (t | t − 1) = x (t)> β̂ (t | t − 1)

The innovation process v (t) = y (t)− ŷ (t | t − 1) is equal to:

v (t) = x (t)> β (t) + ε (t)− x (t)> β̂ (t | t − 1)

= −x (t)>
(
β̂ (t | t − 1)− β (t)

)
+ ε (t)

The variance F (t) of the innovation process v (t) is then equal to:

F (t) = x (t)> P (t | t − 1) x (t) + σ2
ε
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Dynamic estimation of βbmg

The Kalman filter becomes:

β̂ (t | t − 1) = β̂ (t − 1 | t − 1)
P (t | t − 1) = P (t − 1 | t − 1) + Σβ

v (t) = y (t)− x (t)> β̂ (t | t − 1)

F (t) = x (t)> P (t | t − 1) x (t) + σ2
ε

β̂ (t | t) = β̂ (t | t − 1) +

(
P (t | t − 1)

F (t)

)
x (t) v (t)

P (t | t) =

(
IK+1 −

(
P (t | t − 1)

F (t)

)
x (t) x (t)>

)
P (t | t − 1)
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Dynamic estimation of βbmg

In this model, the parameters σ2
ε and Σβ are unknown and can be

estimated by the method of maximum likelihood

Since v (t) ∼ N (0,F (t)), the log-likelihood function is equal to:

` (θ) = −T

2
ln (2π)− 1

2

T∑
t=1

(
lnF (t) +

v2 (t)

F (t)

)
where θ =

(
σ2
ε,Σ

)
Maximizing the log-likelihood function requires specifying the initial
conditions β0 and P0, which are not necessarily known. In this case,
we use the linear regression y (t) = x (t)> β + ε (t), and the OLS

estimates β̂ols and σ̂2
ε

(
X>X

)−1
to initialize β0 and P0
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Regional analysis of the relative carbon risk
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Figure 146: Dynamics of the average relative carbon risk βbmg,R (t) by region

Source: Roncalli et al. (2020)
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Regional analysis of the absolute carbon risk
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Figure 147: Dynamics of the average absolute carbon risk |β|bmg,R (t) by region

Source: Roncalli et al. (2020)
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Sectorial analysis
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Figure 148: Dynamics of the average absolute carbon risk |β|bmg,S (t) by sector

Source: Roncalli et al. (2020)
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Advantages and limits of the Carima factor

Advantages

Biases in the databases are
offset because the BGS scores
are derived from several
databases

No significant country-specific
and sector-specific effects

No problem of extreme values

Encompass a lot of climate
change-relevant information

Limits

No differentiation between
values near and far the median
of a variable

No rebalancing schemes

Correlation between BMG factor
and some other factors

Double counting problems

Not only carbon risk dimension

⇒ Some variables can create more noise than information

Which climate change-related dimensions
are the more priced by the market?
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Alternative risk factors

We consider the following dimensions

1 Carbon intensity

2 Carbon emissions exposure

3 Carbon emissions management

4 Carbon emissions (exposure +
management)

5 Climate change

6 Environmental

Differences with the CARIMA factor

1 Equally-weighted portfolio

2 Integration of the financials
sector

3 Rebalancing

4 One variable ⇒ no double
counting problems
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Alternative risk factors

Environmental
pillar

Environmental
opportunities

Climate change Natural capital Waste & recycling

Product
carbon

footprint

Insuring
climate risk

Carbon
emissions

Financing
environmental

impact

Energy
efficiency

Carbon
emissions

management

Carbon
emissions
exposure

Figure 149: Dimension hierarchy in the environmental pillar (MSCI methodology)

Source: MSCI (2020)
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Alternative risk factors
Exposure to carbon costs
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Figure 150: Cumulative performance of the carbon exposure factors

Source: Roncalli et al. (2020)
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Alternative risk factors
Exposure to carbon costs

Is carbon intensity the unique carbon dimension
priced by the market?
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Alternative risk factors
Environmental, climate and carbon dimensions
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Figure 151: Dynamics of the average absolute carbon risk |β|bmg,i (t)

Source: Roncalli et al. (2020)

Each carbon factor is standardized such that its monthly volatility is equal to the

monthly volatility of the market risk
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Alternative risk factors
Comparison of the explanatory power

Table 87: Adjusted R2 difference

Full period 1st subperiod 2nd subperiod
Carima 1.74 1.16 2.21

Carbon intensity 1.77 1.43 2.53
Carbon emissions 2.00 2.18 2.39
Climate change 1.58 1.98 1.83

Environment 1.63 1.35 2.17
Carbon intensity? 2.06 1.25 3.13
Carbon emissions? 1.91 1.41 2.42

Source: Roncalli et al. (2020)

?means that the carbon factor is based on the quintile methodology Q5 - Q1
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Alternative risk factors
Factor correlations

Table 88: Correlation matrix of factor returns (in %)

Factor MKT SMB HML WML BMG
Carbon intensity −6.46 13.71 8.71 −3.04 58.40∗∗∗

Carbon emissions exp. −6.71 14.95 4.03 −4.03 64.02∗∗∗

Carbon emissions mgmt. −17.93∗ 24.16∗∗ −20.91∗∗ 20.93∗∗ 38.66∗∗∗

Carbon emissions 1.22 25.85∗∗∗ −0.23 5.15 72.36∗∗∗

Climate change −15.02 16.30∗ 11.43 2.07 61.11∗∗∗

Environment −28.20∗∗∗ 21.16∗∗ −0.33 3.70 68.53∗∗∗

Carbon intensity? −18.69∗ 7.79 −3.64 8.24 54.13∗∗∗

Carbon emissions? 10.04 27.94∗∗∗ 22.15∗∗ −17.92∗ 81.42∗∗∗

Source: Roncalli et al. (2020)

Market-specific effect for carbon emissions management, environmental
and carbon intensity? factors ⇒ bias in a minimum variance portfolio
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Portfolio optimization with climate risk
Risk factor model

We consider the MKT+BMG risk factor model:

Ri (t) = αi + βmkt,iRmkt (t) + βbmg,iRbmg (t) + εi (t)

We assume that Rmkt (t) and Rbmg (t) are uncorrelated

The covariance matrix is:

Σ = βmktβ
>
mktσ

2
mkt + βbmgβ

>
bmgσ

2
bmg + D

where βmkt and βbmg are the vector of MKT and BMG betas
respectively, σ2

mkt and σ2
bmg are the variance of the market and

carbon portfolios and D = diag
(
σ̃2

1 , . . . , σ̃
2
n

)
is the diagonal matrix of

idiosyncratic risks
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Application to the minimum variance portfolio
Analytical model

We consider the GMV portfolio:

x? = arg min
1

2
x>Σx

s.t. 1>n x = 1

where x is the vector of portfolio weights and Σ is the covariance matrix of
stock returns
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Application to the minimum variance portfolio
Analytical model

Reminder (Lecture 3)

The solution is equal to:

x? =
Σ−11n

1>n Σ−11n
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Application to the minimum variance portfolio
Analytical model

Sherman-Morrison-Woodbury (SMW) formula

Suppose u and v are two n× 1 vectors and A is an invertible n× n matrix.
We can show that:(

A + uv>
)−1

= A−1 − 1

1 + v>A−1u
A−1uv>A−1
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Application to the minimum variance portfolio
Analytical model

Extended SMW formula

Roncalli et al. (2020) show that:(
A + u1v

>
1 + u2v

>
2

)−1
= A−1 − A−1US−1V>A−1

where U =
(
u1 u2

)
, V =

(
v1 v2

)
and:

S =

(
1 + v>1 A−1u1 v>1 A−1u2

v>2 A−1u1 1 + v>2 A−1u2

)
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Application to the minimum variance portfolio
Analytical model

In order to compute Σ−1, we apply the extended SMW formula with:

A = D

u1 = v1 = σmktβmkt

u2 = v2 = σbmgβbmg

It follows that the inverse of the covariance matrix is equal to:

Σ−1 = D−1 − D−1US−1V>D−1

where:
U = V =

(
σmktβmkt σbmgβbmg

)
and:

S =

(
1 + σ2

mktβ
>
mktD

−1βmkt σmktσbmgβ
>
mktD

−1βbmg

σmktσbmgβ
>
mktD

−1βbmg 1 + σ2
bmgβ

>
bmgD

−1βbmg

)
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Application to the minimum variance portfolio
Analytical model

Reminder (Lecture 3)

In the case of the MKT risk factor model, the solution of the GMV
portfolio is equal to:

x?i =
σ2 (x?)

σ̃2
i

(
1− βmkt,i

β?mkt

)
where β?mkt is a threshold value

In the case of the MKT+BMG risk factor model, the solution becomes:

x?i =
σ2 (x?)

σ̃2
i

(
1− βmkt,i

β?mkt

− βbmg,i

β?bmg

)

where β?mkt and β?bmg are two threshold values
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Application to the minimum variance portfolio
Analytical model

We consider the long-only MV portfolio:

x? = arg min
1

2
x>Σx

s.t.

 1>n x = 1
0n ≤ x ≤ 1n

x ∈ Ω

where x is the vector of portfolio weights and Σ is the covariance matrix of
stock returns
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Application to the minimum variance portfolio
Analytical model

In the case of long-only portfolios, we obtain the following formula:

x?i =


σ2 (x?)

σ̃2
i

(
1− βmkt,i

β?mkt

− βbmg,i

β?bmg

)
if
βmkt,i

β?mkt

+
βbmg,i

β?bmg

≤ 1

0 otherwise

where β?mkt is a positive threshold and β?bmg may be a positive or negative
threshold. The MV portfolio selects assets that present a low market beta
value but the impact of βbmg,i is more complex
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Application to the minimum variance portfolio
Analytical model

Low beta, low volatility and negative correlation

ρi,j =
βmkt,iβmkt,jσ

2
mkt + βbmg,iβbmg,jσ

2
bmg

σiσj

where βmkt,iβmkt,j is generally positive and βbmg,iβbmg,j is positive or
negative. By considering BMG contributions, there is no coherency
between low volatility and low correlated assets
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Application to the minimum variance portfolio
Applications

Example 2

We consider an investment universe of five assets. Their beta is
respectively equal to 0.9, 0.8, 1.2, 0.7 and 1.3 whereas their specific
volatility is 4%, 12%, 5%, 8% and 5%. We also assume that the market
portfolio volatility is equal to 25%

Parameter set #1
We assume that the BMG sensitivities are respectively equal to −0.5, 0.7,
0.2, 0.9 and −0.3, whereas the volatility of the BMG factor is set to 10%
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Application to the minimum variance portfolio
Applications

Table 89: Composition of the minimum variance portfolio (parameter set #1)

Asset βmkt,i βbmg,i
CAPM MKT+BMG

GMV MV GMV MV
1 0.90 −0.50 147.33 0.00 166.55 33.54
2 0.80 0.70 24.67 9.45 21.37 1.46
3 1.20 0.20 −49.19 0.00 −58.80 0.00
4 0.70 0.90 74.20 90.55 65.06 64.99
5 1.30 −0.30 −97.01 0.00 −94.18 0.00

β?mkt 1.0972 0.8307 1.0906 0.8667
β?bmg 19.7724 9.7394

Source: Roncalli et al. (2020)
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Application to the minimum variance portfolio
Applications

Example 3

We consider an investment universe of five assets. Their beta is
respectively equal to 0.9, 0.8, 1.2, 0.7 and 1.3 whereas their specific
volatility is 4%, 12%, 5%, 8% and 5%. We also assume that the market
portfolio volatility is equal to 25%

Parameter set #2
We assume that the BMG sensitivities are respectively equal to −1.5,
−0.5, 3.0, −1.2 and −0.9, whereas the volatility of the BMG factor is set
to 10%

Parameter set #2
We assume that the BMG sensitivities are respectively equal to 1.5, 0.5,
−3.0, 1.2 and 0.9, whereas the volatility of the BMG factor is set to 10%
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Application to the minimum variance portfolio
Applications

Table 90: Composition of the minimum variance portfolio (parameter sets #2
and #3)

Asset βmkt,i
Parameter set #2 Parameter set #3

βbmg,i GMV MV βbmg,i GMV MV
1 0.90 −1.50 105.46 0.00 1.50 105.46 0.00
2 0.80 −0.50 27.88 19.48 0.50 27.88 19.48
3 1.20 3.00 40.19 13.61 −3.00 40.19 13.61
4 0.70 −1.20 76.77 66.91 1.20 76.77 66.91
5 1.30 −0.90 −150.30 0.00 0.90 −150.30 0.00
β?mkt 1.0982 0.9070 1.0982 0.9070
β?bmg −19.4470 −9.0718 −19.4470 −9.0718

Source: Roncalli et al. (2020)
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Application to the minimum variance portfolio
Applications

MSCI World Index

December 2018

Remark

The BMG factor is rescaled in order to have the same volatility than the
MKT factor ⇒ does not change the results, but β and β are now
comparable!
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Application to the minimum variance portfolio
Absolute carbon risk management
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Figure 152: Weights of the MV portfolio (MSCI World Index, Dec. 2018)

Source: Roncalli et al. (2021)
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Application to the minimum variance portfolio
Absolute carbon risk management

No need to set the constraint:

Ω =
{
x ∈ Rn :

∣∣β>bmgx
∣∣ ≤ |β|+bmg

}
where |β|+bmg is the maximum absolute carbon risk threshold

The minimum variance portfolio reduces naturally the absolute carbon risk
without constraint. Indeed, the portfolio’s carbon risk is:

β>bmgx = 0.016

The market risk of a stock determine whether it takes into account in the
MV portfolio whereas the carbon risk adjusts the weights of the asset
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Application to the minimum variance portfolio
Relative carbon risk management

The optimization program becomes:

x? = arg min
1

2
x>Σx

s.t.


1>n x = 1
β>bmgx ≤ β

+
bmg

x ≥ 0n

where β+
bmg is the maximum tolerance of the investor with respect to the

relative BMG risk
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Application to the minimum variance portfolio
Relative carbon risk management

Table 91: Composition of the constrained MV portfolio (β+
bmg = 0)

Asset βmkt,i
Parameter set #1 Parameter set #2 Parameter set #3
βbmg,i MV βbmg,i MV βbmg,i MV

1 0.90 −0.50 64.29 −1.50 0.00 1.50 0.00
2 0.80 0.70 0.00 −0.50 19.48 0.50 16.11
3 1.20 0.20 0.00 3.00 13.61 −3.00 25.89
4 0.70 0.90 35.71 −1.20 66.91 1.20 58.00
5 1.30 −0.30 0.00 −0.90 0.00 0.90 0.00

Source: Roncalli et al. (2020)
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Relative carbon risk management
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Figure 153: Weights of the constrained MV portfolio (β+
bmg = −0.25)

Source: Roncalli et al. (2021)
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Market-based risk management
Absolute carbon risk ∣∣∣∑n

i=1
xi × βbmg,i

∣∣∣ ≈ 0

Relative carbon risk

βbmg (x) =
n∑

i=1

xi × βbmg,i ≤ β+
bmg

Fundamental-based risk management
Individual threshold

xi = 0 if CI i ≤ CI+

where CI i is the carbon intensity of stock i
Portfolio threshold

CI (x) =
∑n

i=1
xi × CI i ≤ CI?

where CI (x) is the weighted average carbon intensity (WACI) of
portfolio x
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Application to the minimum variance portfolio
Managing both systematic and idiosyncratic carbon risks

βbmg (x) is the carbon beta of portfolio x

CI (x) is the carbon intensity of portfolio x

CI (x) is the number of holdings of portfolio x

β+
bmg is the maximum tolerance of the investor with respect to the

relative carbon risk of the portfolio

CI+ is the maximum tolerance of the investor with respect to the
carbon intensity of individual assets

CI? is the maximum tolerance of the investor with respect to the
carbon intensity of the portfolio

WO (x) is the portfolio’s weight overlap with respect to the optimized
portfolio based only on the CI constraint
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Table 92: Minimum variance portfolios with a relative carbon beta constraint
(MSCI World Index, December 2018)

β+
bmg βbmg (x) CI (x) N (x)

1.43% 538 105
-10.00% -10.00% 501 100
-20.00% -20.00% 422 89
-40.00% -40.00% 289 70

Source: Roncalli et al. (2021)
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Table 93: Minimum variance portfolios with a carbon intensity constraint (MSCI
World Index, December 2018)

CI? CI (x) βbmg (x) N (x)
500 500 1.43% 105
250 250 1.37% 103
100 100 1.36% 98

50 50 1.33% 82

Source: Roncalli et al. (2021)
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Application to the minimum variance portfolio
Managing both systematic and idiosyncratic carbon risks

⇒ it makes sense to combine the approaches by imposing two constraints:{
CI (x) ≤ CI?
βbmg (x) ≤ β+

bmg

Table 94: Minimum variance portfolios with carbon beta and intensity
constraints — β+

bmg = −20% (MSCI World Index, December 2018)

CI? CI (x) βbmg (x) N (x) WO (x)
500 430 -20.00% 111 74.65%
250 250 -20.00% 86 75.26%
100 100 -20.00% 79 74.87%

50 50 -20.00% 74 74.99%

Source: Roncalli et al. (2021)
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Application to enhanced index portfolios
Several optimization approaches

1 Max-threshold optimization solution (integration policy)

2 Order-statistic optimization solution (exclusion policy)

3 Zero-inflated optimization solution (exclusion policy)

4 Neutral-absolute optimization solution (hedging policy)

Thierry Roncalli Asset Management (Lecture 4) 1164 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk
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Several optimization approaches

The generic optimization problem is:

x? = arg min
1

2
(x − b)> Σ (x − b)

s.t.

 1>n x = 1
x ≥ 0n

x ∈ Ω
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Application to enhanced index portfolios
Several optimization approaches

1 Max-threshold optimization solution

Without a benchmark

Ω =
{
x ∈ Rn : β>bmgx ≤ β+

bmg

}
With a benchmark

Ω =
{
x ∈ Rn : β>bmg (x − b) ≤ −∆bmg

}
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Several optimization approaches

2 Order-statistic optimization solution
This approach consists in excluding the first m stocks that present the
largest carbon beta:

Ω =
{
x ∈ Rn : xi = 0 if βbmg,i ≥ β(m,n)

bmg

}
where β

(m,n)
bmg = βbmg,n−m+1:n is the (n −m + 1)-th order statistic of

(βbmg,1, . . . , βbmg,n)
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3 Zero-inflated optimization solution
This approach exclude the assets with both high weight and high
carbon beta:

Ω =
{
x ∈ Rn : xi = 0 if biβbmg,i ≥ (b � βbmg)(m,n)

}
where (b � βbmg)(m,n) = (b � βbmg)n−m+1:n is the (n −m + 1)-th
order statistic of the vector (b1βbmg,1, . . . , bnβbmg,n)
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Application to enhanced index portfolios
Several optimization approaches

4 Neutral-absolute optimization solution
In this approach, we consider the following constraint:

Ω =
{
x ∈ Rn :

∣∣β>bmgx
∣∣ ≤ |β|+bmg

}
where |β|+bmg is the maximum sensitivity to absolute carbon risk

Thierry Roncalli Asset Management (Lecture 4) 1169 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

Application to enhanced index portfolios
Max-threshold optimization problem

∆bmg is the difference between the benchmark’s carbon risk and the
portfolio’s carbon risk

σ (x | b) is the tracking error

AS (x | b) is the active share

N0 (x | b) is the number of excluding stocks

WACI (x) is the weighted average carbon intensity
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Max-threshold optimization problem
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Figure 154: Solution of the max-threshold optimization problem (MSCI World
Index, Dec. 2018)

Source: Roncalli et al. (2021)

Thierry Roncalli Asset Management (Lecture 4) 1171 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Introduction to climate risk
Climate risk modeling
Regulation of climate risk
Portfolio management with climate risk

Application to enhanced index portfolios
Order-statistic optimization problem

Remark

The order-statistic (or zero-inflated) optimization problem is less efficient
than the max-threshold optimization problem
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SRI Investment funds

Investment vehicles

Mutual funds
ETFs
Mandates & dedicated funds

Investment strategies

Thematic strategies (e.g. water, social, wind energy, climate, plastic,
etc.)
ESG-tilted strategies (e.g. exclusion, negative screening, best-in-class,
enhanced ESG score, controlled TE, etc.)
Climate strategies (e.g. low carbon, 2◦ alignment, activity
exclusions26, etc.)
Sustainability-linked securities (e.g. green bonds, social bonds, etc.)

Both α and β management

26e.g. coal exploration, oil exploration, electricity generation with a high GHG
intensity
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SRI Investment funds
Some examples

Mutual funds

Amundi Climate Transition

Amundi ARI European Credit
SRI

AXA World Funds – Euro Bonds
SRI

CPR Invest Social Impact

Fidelity U.S. Sustainability Index

Fidelity Sustainable Water &
Waste

Natixis ESG Dynamic Fund

Vanguard FTSE Social Index

Etc.

ETFs

Amundi Index MSCI Europe SRI
UCITS ETF

Amundi MSCI Emerging ESG
Leaders UCITS ETF

Amundi EURO ISTOXX Climate
Paris Aligned PAB UCITS ETF

Lyxor New Energy UCITS ETF

Lyxor World Water UCITS ETF

SPDR S&P 500 ESG

First Trust Global Wind Energy ETF

Invesco S&P 500 ESG UCITS ETF

Etc.
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SRI Investment funds
Regulation

The big issue for an investor is:

How to avoid Greenwashing (& ESG washing)?

Greenwash (also greenwashing)

• Activities by a company or an organization that are intended to make
people think that it is concerned about the environment, even if its
real business actually harms the environment

• A common form of greenwash is to publicly claim a commitment to
the environment while quietly lobbying to avoid regulation

Source: Oxford English Dictionary (2020), https://www.oed.com

In finance, greenwashing is understood as making misleading claims about
environmental practices, performance or products
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European sustainable finance labels

• Novethic label (pioneer label in 2009, suspended in 2016)

• French SRI label — https://www.lelabelisr.fr

• FNG label (Germany) — https://fng-siegel.org

• Towards Sustainability label (Belgium) —
https://www.towardssustainability.be

• LuxFLAG label (Luxembourg) — https://www.luxflag.org

• Nordic Swan Ecolabel (Nordic countries) —
https://www.nordic-ecolabel.org

• Umweltzeichen Ecolabel (Austria) —
https://www.umweltzeichen.at/en

• French Greenfin label —
https://www.ecologie.gouv.fr/label-greenfin
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Remark

According to Novethic (2020), 806 funds had a label at the end of
December 2019. Nine months later, this number has increased by 392 and
the AUM has be multiplied by 3.2!
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“Today it is difficult for consumers, companies and other market
actors to make sense of the many environmental labels and initia-
tives on the environmental performance of products and compa-
nies. There are more than 200 environmental labels active in the
EU, and more than 450 active worldwide; there are more than 80
widely used reporting initiatives and methods for carbon emissions
only. Some of these methods and initiatives are reliable, some not;
they are variable in the issues they cover” (European Commission,
2020).

Source: https://ec.europa.eu/environment/eussd/index.htm
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The High Level Expert Group (HLEG) on Sustainable Finance was created
in October 2016 by the European Commission

HLEG 2018 report

Definition of a taxonomy for sustainable assets

Inclusion of sustainability and ESG Duties of investors

Disclosure of ESG metrics

EU label for green investment funds

EU standard for green bonds

Sustainability as part of the mandates of European Supervisory
Authorities (ESA)
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ESMA

Final report on integrating sustainability risks and factors in the
UCITS Directive and the AIFMD (May 2019)

Final report on integrating sustainability risks and factors in the
MIFID II (May 2019)
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Green bonds

Definition

Green bonds (or green loans/green debt instruments) are debt instruments
where the proceeds will be exclusively applied to finance or re-finance, in
part or in full, new and/or existing eligible green projects, and which is
aligned with the four core components of the Green Bond Principles
(GBP) or the Green Loan Principles.

Source: CBI (2019), https://www.climatebonds.net

⇒ Green bonds are “regular” bonds27 aiming at funding projects with
positive environmental and/or climate benefits

27A regular bond pays regular interest to bondholders
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Green bonds

Standardization is strongly required by investors and regulators

Green Bond Principles28 (ICMA, 2018)

Climate Bonds Standard (CBI)

EU Green Bond Standard29

China’s Green Bond Standards30 (PBOC, 2015)

28The first version is published in 2014
29The European Green Deal Investment Plan of 14 January 2020 announced that the

European Commission will establish a GBS based on the report of the Technical Expert
Group on Sustainable Finance (TEG)

30See CBI (2020), China Green Bond Market 2019 Research Report,
https://www.climatebonds.net/resources/reports/

china-green-bond-market-2019-research-report
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Green Bonds Principles (GBP)

The 4 core components of the GBP are:
1 Use of proceeds

1 Pollution prevention and control
2 Biodiversity conservation
3 Climate change adaptation

2 Process for project evaluation and selection

3 Management of proceeds

4 Reporting

https://www.icmagroup.org/sustainable-finance/

the-principles-guidelines-and-handbooks
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The use of proceeds includes:

Renewable energy

Energy efficiency

Pollution prevention (e.g. GHG control, soil remediation, waste
recycling)

Sustainable management of living natural resources (e.g. sustainable
agriculture, sustainable forestry, restoration of natural landscapes)

Terrestrial and aquatic biodiversity conservation (e.g. protection of
coastal, marine and watershed environments)

Clean transportation

Sustainable water management

Climate change adaptation

Eco-efficient products

Green buildings
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Green Bonds Principles

With respect to the process for project evaluation and selection
(component 2), the issuer of a green bond should clearly communicate:

the environmental sustainability objectives

the eligible projects

the related eligibility criteria

The management of proceeds (component 3) includes:

The tracking of the “balance sheet” and the allocation of funds31

An external review (not mandatory but highly recommended)

31The proceeds should be credited to a sub-account
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Green Bonds Principles

The reporting (component 4) must be based on the following pillars:

Transparency

Description of the projects, allocated amounts and expected impacts

Qualitative performance indicators

Quantitative performance measures (e.g. energy capacity, electricity
generation, GHG emissions reduced/avoided, number of people
provided with access to clean power, decrease in water use, reduction
in the number of cars required)
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Types of debt instruments

Asset-linked bond structures

• Regular bond

• Revenue bond

• Project bond

• Green loans

Asset-backed bond structures

• Securitized bond

• Project bond

• ABS/MBS/CLO/CDO

• Covered bond
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The green bond market

Solar bond by the City of San Francisco in 2001

Equity-linked climate awareness bond by the European Investment
Bank (EIB) in 2007

First green bond issued by the World Bank (in collaboration with
Skandinaviska Enskilda Banken) in November 2008
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The green bond market

Green bond issuers

• Sovereigns (agencies,
municipals, governments)

• Multilateral development banks
(MDB)

• Energy and utility companies

• Banks

• Other corporates

Green bond investors

• Pension funds

• Sovereign wealth funds

• Insurance companies

• Asset managers

• Retail investors (e.g. employee
savings plans)

Strong imbalance between supply and demand

Thierry Roncalli Asset Management (Lecture 4) 1189 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

SRI Investment funds
Green bonds
Social bonds
Other sustainability-linked strategies
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Figure 155: The green bond market

Source: CBI (2020), https://www.climatebonds.net/market
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The green bond market

Figure 156: Growing momentum for sovereign green bonds (OECD, Sep. 2020)
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Investing in green bonds
Active management

Example of green bond funds:

Amundi Planet Emerging Green One (EGO), in collaboration with IFC
(World Bank)

Amundi ARI Impact Green Bonds

AXA WF Global Green Bonds

BNP Paribas Green Bond

Mirova Global Green Bond Fund

Etc.
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Investing in green bonds
Passive management

List of green bond indices:

Bloomberg Barclays MSCI Global Green Bond Index

S&P Green Bond Index

Solactive Green Bond Index

ChinaBond China Climate-Aligned Bond Index:

ICE BofA Green Index

⇒ ETF and index funds (e.g. Lyxor Green Bond UCITS ETF, iShares
Green Bond Index Fund)
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The green bond premium

Definition

The green bond premium (or greenium) is the difference in pricing between
green bonds and regular bonds
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The green bond premium

The greenium debate is a hot topic

You can read the article of the Wall Street Journal written by Matt Wirz32:

Why Going Green Saves Bond Borrowers Money

32The article is available on the following webpage: https://www.wsj.com/

articles/why-going-green-saves-bond-borrowers-money-11608201002
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Table 95: Overview of GB pricing
Study Market #GBs Universe Period Method Greenium
Bachelet et al.(2019) Secondary 89 Global 2013 - 2017 OLS model 2.1/5.9
Bour (2019) Secondary 95 Global 2014 - 2018 Fixed effects model −23.2
Ehlers and Packer (2017) Primary 21 EUR & USD 2014 - 2017 Yield comparison −18
Fatica et al. (2019) Primary 1 397 Global 2007 - 2018 OLS model
Hachenberg and Sciereck (2018) Secondary 63 Global August 2016 Panel data regression NS
Hyun et al (2020) Secondary 60 Global 2010 - 2017 Fixed effects GLS model NS
Karpf and Mandel (2018) Secondary 1 880 US Municipals 2010 - 2016 Oaxaca-Blinder decomposition +7.8
Larcker and Watts (2019) Secondary 640 US Municipals 2013 - 2018 Matching & Yield comparison NS
Lau et al. (2020) Secondary 267 Global 2013 - 2017 Two-way Fixed effects model −1.2
Nanayakkara and Colombage (2019) Secondary 43 Global 2016 - 2017 Panel data with hybrid model −62.7
Ostlund (2015) Secondary 28 Global 2011 - 2015 Yield comparison NS
Preclaw and Bakshi (2015) Secondary Index Global 2014 - 2015 OLS model −16.7
Schmitt (2017) Secondary 160 Global 2015 - 2017 Fixed effects model −3.2
Zerbib (2019) Secondary 110 Global 2013 - 2017 Fixed effects model −1.8

Baker et al. (2018) Secondary
2 083 US Municipals 2010 - 2016

OLS model −7.6/−5.5
19 US Corporates 2014 - 2016

Gianfrate and Peri (2019)
Primary 121

EUR
2013 - 2017

Propensity score matching
−18

Secondary 70/118 3 dates in 2017 −11/−5

Kapraun and Scheins (2019)
Primary 1 513

Global 2009 - 2018 Fixed effects model
−18

Secondary 769 +10

Partridge and Medda (2018)
Primary

521 US Municipals 2013 - 2018 Yield curve analysis
−4

Secondary NS

Source: Ben Slimane et al. (2020)
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The green bond premium

From the issuer’s point of view, a green bond issuance is more
expensive than a conventional issuance due to the need for external
review, regular reporting and impact assessments

From the investor’s point of view, there is no fundamental difference
between a green bond and a conventional bond, meaning that one
should consider a negative green bond premium as a market anomaly
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The green bond premium

Ben Slimane et al. (2020) test two approaches:

1 Top-down approach

Compare a green bond index portfolio to a conventional bond index
portfolio
Same characteristics in terms of currency, sector, credit quality and
maturity

2 Bottom-up approach

Compares the green bond of an issuer with a synthetic conventional
bond of the same issuer
Same characteristics in terms of currency, seniority and duration.
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The green bond premium

Main result (Ben Slimane et al., 2020)

The greenium is negative between −5 and −2 bps on average

Other results:

Differences between sectors, currencies, maturities, regions and ratings

Transatlantic divided between US and Europe

The volatility of green bond portfolios are lower than the volatility of
conventional bond portfolios ⇒ identical Sharpe ratio since the last
four years

Time-varying property of the greenium
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Figure 157: Evolution of the EUR greenium

Source: Ben Slimane et al. (2020)
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Figure 158: Evolution of the USD greenium

Source: Ben Slimane et al. (2020)
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Figure 159: Evolution of the green bond premium (all currencies)

Source: Ben Slimane et al. (2020)
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The green bond premium

Green financing ⇔ green investing

1 Bond issuers have a competitive advantage to finance their
environmental projects using green bonds instead of conventional
bonds

2 Another premium? the “green bond issuer premium”

Thierry Roncalli Asset Management (Lecture 4) 1203 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

SRI Investment funds
Green bonds
Social bonds
Other sustainability-linked strategies

Social bonds

Definition

Social Bonds are any type of bond instrument where the proceeds will be
exclusively applied to finance or re-finance in part or in full new and/or
existing eligible Social Projects and which are aligned with the four core
components of the Social Bonds Principles (SBP).

Source: ICMA (2020), https://www.icmagroup.org/sustainable-finance
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Social bonds
Social Bonds Principles

Social Bonds Principles (SBP)

The 4 core components of the SBP are:
1 Use of proceeds

1 Eligible social project categories
2 Target populations

2 Process for project evaluation and selection

3 Management of proceeds

4 Reporting

https://www.icmagroup.org/sustainable-finance/

the-principles-guidelines-and-handbooks
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Social bonds
Social Bonds Principles

The eligible social projects categories (component 1) are:

Affordable basic infrastructure (e.g. clean drinking water, sanitation,
clean energy)

Access to essential services (e.g. health, education)

Affordable housing (e.g. sustainable cities)

Employment generation (e.g. pandemic crisis)

Food security and sustainable food systems (e.g. nutritious and
sufficient food, resilient agriculture)

Socioeconomic advancement and empowerment (e.g. income
inequality, gender inequality)

Etc.
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Social bonds
Social Bonds Principles

The target populations (component 1) are:

Living below the poverty line

Excluded and/or marginalised populations/communities

People with disabilities

Migrants and /or displaced persons

Undereducated

Unemployed

Women and/or sexual and gender minorities

Aging populations and vulnerable youth

Etc.
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Social bonds
Social Bonds Principles

With respect to the process for project evaluation and selection
(component 2), the issuer of a social bond should clearly communicate:

the social objectives

the eligible projects

the related eligibility criteria

The management of proceeds (component 3) includes:

The tracking of the “balance sheet” and the allocation of funds33

An external review (not mandatory but highly recommended)

33The proceeds should be credited to a sub-account
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Social bonds
Social Bonds Principles

The reporting (component 4) must be based on the following pillars:

Transparency

Description of the projects, allocated amounts and expected impacts

Qualitative performance indicators

Quantitative performance measures (e.g. number of beneficiaries)
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Social bonds
Examples

You can download the Green, Social and Sustainability bonds database at
the following webpage:

https://www.icmagroup.org/sustainable-finance/

green-social-and-sustainability-bonds-database

You can download the market information template of the social project
“Women’s Livelihood Bond 2 (WLB 2) — Singapore” at the following
address:

https://www.icmagroup.org/Emails/icma-vcards/WLB2_Market%

20Information%20Template.pdf
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The social bond market

The tremendous growth of the social bond market

“Of the $1, 280 bn in cumulative sustainable fixed-income is-
suance, social bonds account for around 14% of the total, amount-
ing to $180bn [...] This overall expansion trend has intensified
during the pandemic. In fact, the growth of the social bond mar-
ket in 2020, i.e. +374% with respect to 2019 levels, dwarf both
the green and sustainability bonds markets’ expansion, respectively
+37% and +100%” (Laugel and Vic-Philippe, 2020)

The pandemic has increased the popularity of social bonds

Investors focus more on the S pillar of ESG
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Other sustainability-linked strategies

Sustainable bonds

Sustainable loans

Green notes

Green ABCP notes

Financing renewables

Green infrastructure funds

ESG private equity funds

Etc.
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Definition

Definition

The key elements of impact investing are:

1 Intentionality
The intention of an investor to generate a positive and measurable
social and environmental impact

2 Additionality
Fulfilling a positive impact beyond the provision of private capital

3 Measurement
Being able to account for in a transparent way on the financial, social
and environmental performance of investments

Source: Eurosif (2019)

The investor must be able to measure its impact
from a quantitative point of view
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GIIN

Figure 160: Global Impact Investing Network (GIIN)

https://thegiin.org
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The example of social impact bonds

Social impact bond (SIB) = pay-for-success bond (≈ call option)

The Peterborough SIB

On 18 March 2010, the UK Secretary of State for Justice announced
a six-year SIB pilot scheme that will see around 3 000 short term
prisoners from Peterborough prison, serving less than 12 months,
receiving intensive interventions both in prison and in the community

Funding from investors will be initially used to pay for the services

If reoffending is not reduced by at least 7.5%, the investors will
receive no recompense
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Measurement tools

Impact assessment and metrics

Avoided CO2 emissions in tons per $M invested

Amount of clean water produced by the project

Number of children who are less obese
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Sustainable development goals (SDG)

The sustainable development goals are a collection of 17 interlinked global
goals designed to be a “blueprint to achieve a better and more sustainable
future for all”

https://sdgs.un.org
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Sustainable development goals (SDG)

Figure 161: The map of sustainable development goals
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Sustainable development goals (SDG)

Figure 162: Mapping the SDGs across E , S and G
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Sustainable development goals (SDG)

Figure 163: Examples of sovereign SDG reports

Source: Sustainable Development Report 2019, https://dashboards.sdgindex.org
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Shareholder activism

Shareholder activism can take various forms

1 Exit (sell shares, take an offsetting bet)

2 Vote (form coalition/express dissent/call back lent shares)

3 Engage behind the scene with management and the board

4 Voice displeasure publicly (in the media)

5 Propose resolutions (shareholder proposals)

6 Initiate a takeover (acquire a sizable equity share)

Source: Bekjarovski and Brière (2018)
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ESG engagement policies

On-going engagement

Meet companies in order to better understand sectorial ESG challenges
Encourage companies to adopt best ESG practices
Challenge companies on ESG risks

Engagement for influence

Make recommendations
Measure companies ESG progress

AGM34 engagement

Exercise on voting rights
Discuss with companies any resolution items that the investor may
vote against

34Annual General Meeting
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The challenge of reporting

Impact reporting and investment standards (IRIS) proposed by GIIN

EU taxonomy on sustainable finance

Non-financial reporting directive 2014/95/EU (NFRD)

Carbon accounting
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Tutorial exercise 1
Probability distribution of an ESG score

Question 1

We consider an investment universe of 8 issuers with the following ESG
scores:

Issuer #1 #2 #3 #4 #5 #6 #7 #8

E −2.80 −1.80 −1.75 0.60 0.75 1.30 1.90 2.70

S −1.70 −1.90 0.75 −1.60 1.85 1.05 0.90 0.70

G 0.30 −0.70 −2.75 2.60 0.45 2.35 2.20 1.70
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Tutorial exercise 1
Probability distribution of an ESG score

Question 1.a

Calculate the ESG score of the issuers if we assume the following

weighting scheme: 40% for E , 40% for S and 20% for G .
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We have:

s (ESG)
i = 0.4× s (E)

i + 0.4× s (S)
i + 0.2× s (G)

i

We obtain the following results:

Issuer #1 #2 #3 #4 #5 #6 #7 #8

s (E)
i −2.80 −1.80 −1.75 0.60 0.75 1.30 1.90 2.70

s (S)
i −1.70 −1.90 0.75 −1.60 1.85 1.05 0.90 0.70

s (G)
i 0.30 −0.70 −2.75 2.60 0.45 2.35 2.20 1.70

s (ESG)
i −1.74 −1.62 −0.95 0.12 1.13 1.41 1.56 1.70
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Question 1.b

Calculate the ESG score of the equally-weighted portfolio xew.
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We obtain:

s (ESG) (xew) =
8∑

i=1

xew,i × s (ESG)
i

= 0.2013
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Question 2

We assume that the ESG scores are iid and follow a standard Gaussian
distribution:

si ∼ N (0, 1)
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Probability distribution of an ESG score

Question 2.a

We note x
(n)
ew the equally-weighted portfolio composed of n issuers.

Calculate the distribution of the ESG score s
(
x

(n)
ew

)
of the portfolio x

(n)
ew .
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We have:

s
(
x (n)
ew

)
=

n∑
i=1

x
(n)
ew,i × si

=
1

n

n∑
i=1

si

We deduce that s
(
x

(n)
ew

)
follows a Gaussian distribution.
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Its mean is equal to:

E
[
s
(
x (n)
ew

)]
=

1

n

n∑
i=1

E [si ] = 0

Its standard deviation is equal to:

σ
(

s
(
x (n)
ew

))
=

√√√√ 1

n2

n∑
i=1

σ2 (si )

=
1√
n

Finally, we obtain:

s
(
x (n)
ew

)
∼ N

(
0,

1

n

)
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Question 2.b

What is the ESG score of a well-diversified portfolio?
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The behavior of a well-diversified portfolio is close to an
equally-weighted portfolio with n sufficiently large. Therefore, the
ESG score is close to zero because we have:

lim
n→∞

s
(
x (n)
ew

)
= 0
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Question 2.c

We note T ∼ Fα where Fα (t) = tα, t ∈ [0, 1] and α ≥ 0. Draw the graph
of the probability density function fα (t) when α is respectively equal to
0.5, 1.5, 2.5 and 70. What do you notice?
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Figure 164: Probability density function fα (t)
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We have:
fα (t) = αtα−1

We notice that the function fα (t) tends to the dirac delta function
when α tends to infinity:

lim
α→∞

fα (t) = δ1 (t) =

{
0 if t 6= 1
+∞ if t = 1
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Question 2.d

We assume that the weights of the portfolio x = (x1, . . . , xn) follow a
power-law distribution Fα:

xi ∼ cTi

where Ti ∼ Fα are iid random variables and c is a normalization constant.
Explain how to simulate the portfolio weights x = (x1, . . . , xn). Represent
one simulation of the portfolio x for the previous values of α. Comment on
these results. Deduce the relationship between the Herfindahl index
Hα (x) of the portfolio weights x and the parameter α.

Remark

We use n = 50 in the rest of the exercise.
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To simulate Ti , we use the property of the probability integral
transform:

Ui = Fα (Ti ) ∼ U[0,1]

We deduce that:

Ti = F−1
α (Ui )

= U
1/α
i
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The algorithm for simulating the portfolio x is then the following:

1 We simulate n independent uniform random numbers (u1, . . . , un).

2 We compute the random variates (t1, . . . , tn) where:

ti = u
1/α
i

3 We calculate the normalization constant:

c =

(
n∑

i=1

ti

)−1

=

(
n∑

i=1

u
1/α
i

)−1

4 We deduce the portfolio weights x = (x1, . . . , xn):

xi = c · ti = c · u1/α
i =

u
1/α
i∑n

j=1 u
1/α
j
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Figure 165: Repartition of the portfolio weights in descending order
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In Figure 165, we have represented the composition of the portfolio x
for the 4 values of α. The weights are ranked in descending order.
We deduce that the portfolio x is uniform when α→∞. The
parameter α controls the concentration of the portfolio. Indeed, when
α is small, the portfolio is highly concentrated. It follows that the
Herfindahl index Hα (x) of the portfolio weights is a decreasing
function of the parameter α.
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Question 2.e

We assume that the weight xi and the ESG score si of the issuer i are
independent. How to simulate the portfolio ESG score s (x)? Using 50 000
replications, estimate the probability distribution function of s (x) by the
Monte Carlo method. Comment on these results.
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We simulate x = (x1, . . . , xn) using the previous algorithm. The vector
of ESG scores s = (s1, . . . , sn) is generated with normally-distributed
random variables since we have si ∼ N (0, 1). We deduce that the
simulated value of the portfolio ESG score s (x) is equal to:

s (x) =
n∑

i=1

xi · si

We replicate the simulation of s (x) 50 000 times and draw the
corresponding histogram in Figure 166. We also report the fitted
Gaussian distribution. We observe that the portfolio ESG score s (x)
is equal to zero on average, and its variance is an increasing function
of the portfolio concentration.
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Figure 166: Histogram of the portfolio ESG score s (x)
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Question 2.f

We now assume that the weight xi and the ESG score si of the issuer i are
positively correlated. More precisely, the dependence function between xi

and si is the Normal copula function with parameter ρ. Show that this is
also the copula function between Ti and si . Deduce an algorithm to
simulate s (x).
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Since xi ∼ cTi , xi is an increasing function of Ti . We deduce that the
copula function of (Ti , si ) is the same as the copula function of
(xi , si ).

To simulate the Normal copula function C (u, v), we use the
transformation algorithm based on the Cholesky decomposition:{

ui = Φ (g ′i )

vi = Φ
(
ρg ′i +

√
1− ρ2g ′′i

)
where g ′i and g ′′i are two independent random numbers from the
probability distribution N (0, 1).
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Here is the algorithm to simulate the ESG portfolio score s (x):
1 We simulate n independent normally-distributed random numbers

g ′i and g ′′i and we compute (ui , vi ):{
ui = Φ (g ′i )

vi = Φ
(
ρg ′i +

√
1− ρ2g ′′i

)
2 We compute the random variates (t1, . . . , tn) where ti = u

1/α
i

3 We deduce the vector of weights x = (x1, . . . , xn):

xi = ti

/∑n

j=1
tj

4 We simulate the vector of scores s = (s1, . . . , sn):

si = Φ−1 (vi ) = ρg ′i +
√

1− ρ2g ′′i

5 We calculate the portfolio score:

s (x) =
∑n

i=1
xi · si
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Question 2.g

Using 50 000 replications, estimate the probability distribution function of
s (x) by the Monte Carlo method when the correlation parameter ρ is set
to 50%. Comment on these results.
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Figure 167: Histogram of the portfolio ESG score s (x) (ρ = 50%)
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In the independent case, we found that E [s (x)] = 0. In Figure 167,
we notice that E [s (x)] 6= 0 when ρ is equal to 50%. Indeed, we
obtain:

E [s (x)] =


0.418 if α = 0.5
0.210 if α = 1.5
0.142 if α = 2.5
0.006 if α = 70.0
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Question 2.h

Estimate the relationship between the correlation parameter ρ and the
expected ESG score E [s (x)] of the portfolio x . Comment on these results.
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Figure 168: Relationship between ρ and E [s (x)]
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We notice that there is a positive relationship between ρ and E [s (x)]
and the slope increases with the concentration of the portfolio.
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Question 2.i

How are the previous results related to the size bias of ESG scoring?
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Big cap companies have more (financial and human) resources to
develop an ESG policy than small cap companies.

Therefore, we observe a positive correlation between the market
capitalization and the ESG score of an issuer.

It follows that ESG portfolios have generally a size bias. For instance,
we generally observe that cap-weighted indexes have an ESG score
which is greater than the average of ESG scores.

In the previous questions, we verify that E [s (x)] ≥ E [s ] when the
Herfindahl index of the portfolio x is high and the correlation between
xi and si is positive.
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Question 3

Let s be the ESG score of the issuer. We assume that the ESG score
follows a standard Gaussian distribution:

s ∼ N (0, 1)

The ESG score s is also converted into an ESG rating R, which can take
the values A, B, C and D — A is the best rating and D is the worst rating.
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Question 3.a

We assume that the breakpoints of the rating system are −1.5, 0 and
+1.5. Compute the frequencies of the ratings.
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We have:

Pr {R = A} = Pr {s ≥ 1.5}
= 1− Φ (1.5)

= 6.68%

and:

Pr {R = B} = Pr {0 ≤ s < 1.5}
= Φ (1.5)− Φ (0)

= 43.32%

Since the Gaussian distribution is symmetric around 0, we also have:

Pr {R = C} = Pr {R = B} = 43.32%

and:
Pr {R = D} = Pr {R = A} = 6.68%
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The mapping function is:

Mappring (s) =


A if s < −1.5
B if − 1.5 ≤ s < 0
C if 0 ≤ s < 1.5
D if s ≥ 1.5
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Question 3.b

We would like to build a rating system such that each category has the
same frequency. Find the mapping function.
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We have:

Pr {R (t) = A} = Pr {R (t) = B} = Pr {R (t) = C} = Pr {R (t) = D}

and:

Pr {R (t) = A}+Pr {R (t) = B}+Pr {R (t) = C}+Pr {R (t) = D} = 1

We deduce that:

Pr {R (t) = A} =
1

4
= 25%

and Pr {R (t) = B} = Pr {R (t) = C} = Pr {R (t) = D} = 25%.

We want to find the breakpoints (s1, s2, s3) such that:
Pr {s < s1} = 25%
Pr {s1 ≤ s < s2} = 25%
Pr {s2 ≤ s < s3} = 25%
Pr {s ≥ s3} = 25%
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We deduce that:  s1 = Φ−1 (0.25) = −0.6745
s2 = Φ−1 (0.50) = 0
s3 = Φ−1 (0.75) = +0.6745

The mapping function is:

Mappring (s) =


A if s < −0.6745
B if − 0.6745 ≤ s < 0
C if 0 ≤ s < 0.6745
D if s ≥ 0.6745
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Question 3.c

We would like to build a rating system such that the frequency of the
median ratings B and C is 40% and the frequency of the extreme ratings
A and D is 10%. Find the mapping function.
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We have:  s1 = Φ−1 (0.10) = −1.2816
s2 = Φ−1 (0.50) = 0
s3 = Φ−1 (0.90) = +1.2816

The mapping function is:

Mappring (s) =


A if s < −1.2816
B if − 1.2816 ≤ s < 0
C if 0 ≤ s < 1.2816
D if s ≥ 1.2816
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Question 4

Let s (t) be the ESG score of the issuer at time t. The ESG scoring
system is evaluated every month. The index time t corresponds to the
current month, whereas the previous month is t − 1. We assume that:

The ESG score at time t − 1 follows a standard Gaussian distribution:

s (t − 1) ∼ N (0, 1)

The variation of the ESG score is Gaussian between two months:

∆s (t) = s (t)− s (t − 1) ∼ N
(
0, σ2

)
The ESG score s (t − 1) and the variation ∆s (t) are independent.
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Question 4

The ESG score s (t) is converted into an ESG rating R (t), which can take
following grades:

R1 ≺ R2 ≺ · · · ≺ Rk ≺ · · · ≺ RK−1 ≺ RK

We assume that the breakpoints of the rating system are
(s1, s2, . . . , sK−1). We also note s0 = −∞ and sK = +∞.
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Question 4.a

Compute the bivariate probability distribution of the random vector
(s (t − 1) ,∆s (t)).
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The joint distribution of (s (t − 1) ,∆s (t)) is:(
s (t − 1)
∆s (t)

)
∼ N

((
0
0

)
,

(
1 0
0 σ2

))
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Question 4.b

Compute the bivariate distribution of the random vector (s (t − 1) , s (t)).
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Since we have:
s (t) = s (t − 1) + ∆s (t)

we deduce that:(
s (t − 1)

s (t)

)
=

(
1 0
1 1

)(
s (t − 1)
∆s (t)

)
We conclude that (s (t − 1) , s (t)) is a Gaussian random vector.
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We have:
var (s (t)) = 1 + σ2

and:

cov (s (t − 1) , s (t)) = E [s (t − 1) · s (t)]

= E
[
s2 (t − 1) + s (t − 1) ·∆s (t)

]
= 1
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It follows that: (
s (t − 1)

s (t)

)
∼ N (02,Σσ)

where Σσ is the covariance matrix:

Σσ =

(
1 1
1 1 + σ2

)
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Question 4.c

Compute the probability pk = Pr {R (t − 1) = Rk}.
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We have:

Pr {R (t − 1) = Rk} = Pr {sk−1 ≤ s (t − 1) < sk}
= Φ (sk )− Φ (sk−1)
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Question 4.d

Compute the joint probability Pr {R (t) = Rk ,R (t − 1) = Rj}.
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We have:

(∗) = Pr {R (t) = Rk ,R (t − 1) = Rj}
= Pr {sk−1 ≤ s (t) < sk , sj−1 ≤ s (t − 1) < sj}
= Φ2 (sj , sk ; Σσ)− Φ2 (sj−1, sk ; Σσ)−

Φ2 (sj , sk−1; Σσ) + Φ2 (sj−1, sk−1; Σσ)

where Φ2 (x , y ; Σσ) is the bivariate Normal cdf with covariance matrix
Σσ.
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Question 4.e

Compute the transition probability
pj,k = Pr {R (t) = Rk | R (t − 1) = Rj}.
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We have:

pj,k = Pr {R (t) = Rk | R (t − 1) = Rj}

=
Pr {R (t) = Rk ,R (t − 1) = Rj}

Pr {R (t − 1) = Rj}

=
Φ2 (sj , sk ; Σσ) + Φ2 (sj−1, sk−1; Σσ)

Φ (sj )− Φ (sj−1)
−

Φ2 (sj−1, sk ; Σσ) + Φ2 (sj , sk−1; Σσ)

Φ (sj )− Φ (sj−1)

Asset Management (Lecture 4) 1289 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Tutorial exercise 1
Probability distribution of an ESG score

Question 4.f

Compute the monthly turnover T (Rk ) of the ESG rating Rk .
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We have:

T (Rk ) = Pr {R (t) 6= Rk | R (t − 1) = Rk}
= 1− Pr {R (t) = Rk | R (t − 1) = Rk}
= 1− pk,k
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Question 4.g

Compute the monthly turnover T (R1, . . . ,RK ) of the ESG rating system.
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We have:

T (R1, . . . ,RK ) =
K∑

k=1

Pr {R (t − 1) = Rk} · T (Rk )

=
K∑

k=1

Pr {R (t) 6= Rk ,R (t − 1) = Rk}
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Question 4.h

For each rating system given in Questions 3.a, 3.b and 3.c, determine the
corresponding ESG migration matrix and the monthly turnover of the
rating system if we assume that σ is equal to 10%. What is the best ESG
rating system if we would like to control the turnover of ESG ratings?
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Table 96: ESG rating migration matrix (Question 3.a)

Rating sk pk Transition probability pj,k T (Rk )
D −1.50

6.68% 92.96% 7.04% 0.00% 0.00% 7.04%
C

0.00
43.32% 1.31% 95.03% 3.66% 0.00% 4.97%

B
1.50

43.32% 0.00% 3.66% 95.03% 1.31% 4.97%
A 6.68% 0.00% 0.00% 7.04% 92.96% 7.04%

T (R1, . . . ,RK ) 5.25%
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Table 97: ESG rating migration matrix (Question 3.b)

Rating sk pk Transition probability pj,k T (Rk )
D −0.67

25.00% 95.15% 4.85% 0.00% 0.00% 4.85%
C

0.00
25.00% 5.27% 88.38% 6.35% 0.00% 11.62%

B
0.67

25.00% 0.00% 6.35% 88.38% 5.27% 11.62%
A 25.00% 0.00% 0.00% 4.85% 95.15% 4.85%

T (R1, . . . ,RK ) 8.23%
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Table 98: ESG rating migration matrix (Question 3.c)

Rating sk pk Transition probability pj,k T (Rk )
D −1.28

10.00% 93.54% 6.46% 0.00% 0.00% 6.46%
C

0.00
40.00% 1.89% 94.14% 3.97% 0.00% 5.86%

B
1.28

40.00% 0.00% 3.97% 94.14% 1.89% 5.86%
A 10.00% 0.00% 0.00% 6.46% 93.54% 6.46%

T (R1, . . . ,RK ) 5.98%
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The ESG rating system defined in Question 3.a is the best rating system if
we would like to reduce the monthly turnover of ESG ratings.
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Question 4.i

Draw the relationship between the parameter σ and the turnover
T (R1, . . . ,RK ) for the three ESG rating systems.
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Figure 169: Relationship between σ and T (R1, . . . ,RK )
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Question 4.j

We consider a uniform ESG rating system where:

Pr {R (t − 1) = Rk} =
1

K

Draw the relationship between the number of notches K and the turnover
T (R1, . . . ,RK ) when the parameter σ takes the values 5%, 10% and 25%.
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Figure 170: Relationship between K and T (R1, . . . ,RK )
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Question 4.k

Why is an ESG rating system different than a credit rating system? What
do you conclude from the previous analysis? What is the issue of ESG
exclusion policy and negative screening?
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An ESG rating system is mainly quantitative and highly depends on
the mapping function. This is not the case of a credit rating system,
which is mainly qualitative and discretionary.

This explains that the turnover of an ESG rating system is higher
than the turnover of a credit rating system.

The stabilization of the ESG rating system implies to reduce the
turnover T (R1, . . . ,RK ), which depends on:

1 The number of notches35 K ;
2 The volatility σ of score changes
3 The design of the ESG rating system (s1, . . . , sK−1)

The turnover T (R1, . . . ,RK ) has a big impact on an ESG exclusion
(or negative screening) policy, because it creates noisy short-term
entry/exit positions that do not necessarily correspond to a decrease
or increase of the long-term ESG risks.

35This is why ESG rating systems have less notches than credit rating systems
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Exercise

We consider a capitalization-weighted equity index, which is composed of
8 stocks. Their weights, volatilities and ESG scores are the following:

Stock #1 #2 #3 #4 #5 #6 #7 #8
CW weight 0.23 0.19 0.17 0.13 0.09 0.08 0.06 0.05
Volatility 0.22 0.20 0.25 0.18 0.35 0.23 0.13 0.29

ESG score −1.20 0.80 2.75 1.60 −2.75 −1.30 0.90 −1.70

The correlation matrix is given by:

ρ =



100%
80% 100%
70% 75% 100%
60% 65% 80% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 80% 100%
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Question 1

Calculate the ESG score of the benchmark.
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We note bi and si the weight in the benchmark and the ESG score of
Stock i

The ESG score of the benchmark is equal to:

s (b) =
8∑

i=1

bi · si = 0.1690

Asset Management (Lecture 4) 1307 / 1520



ESG investing
Climate risk

Sustainable financing products
Impact investing

Tutorial exercise 2
Enhanced ESG score & tracking error control

Question 2

We consider the EW and ERC portfolios. Calculate the ESG score of these
two portfolios. Define the ESG excess score with respect to the
benchmark. Comment on these results.
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The composition of the EW portfolio is xi = 12.5% and we have:

s (xew) =
8∑

i=1

si

8
= −0.1125

The composition of the ERC portfolio is x1 = 12.42%, x2 = 14.03%,
x3 = 10.17%, x4 = 13.79%, x5 = 7.59%, x6 = 12.34%, x7 = 20.61%
and x8 = 9.06%. We have:

s (xerc) =
8∑

i=1

xi · si = 0.1259
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The ESG excess score with respect to the benchmark is:

s (x | b) = s (x)− s (b)

We have:

s (xew | b) = −0.1125− 0.1690 = −0.2815

s (xerc | b) = 0.1259− 0.1690 = −0.0431

The two portfolios are riskier than the benchmark portfolio in terms
of ESG risk
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Question 3

Write the γ-problem of the ESG optimized portfolio when the goal is to
improve the ESG score of the benchmark and control at the same time the
tracking error volatility. Give the QP objective function.
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We have:

x? = arg min
1

2
σ2 (x | b)− γs (x | b)

u.c.

 1>n x = 1
0n ≤ x ≤ 1n

x ∈ Ω

Since σ2 (x | b) = (x − b)>Σ (x − b) and s (x | b) = (x − b)> s , we
deduce that the QP objective function is:

x? = arg min
1

2
x>Σx − x> (γs + Σb)
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Question 4

Draw the efficient frontier between the tracking error volatility and the
ESG excess scorea.

aWe notice that γ ∈ [0, 1.2%] is sufficient for drawing the efficient frontier.
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Figure 171: ESG efficient frontier
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Question 5

Using the bisection algorithm, find the optimal portfolio if we would like to
improve the ESG score of the benchmark by 0.5. Give the optimal value of
γ. Compute the tracking error volatility σ (x | b).
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The solution is equal to:

Stock si bi x?i
#1 −1.200 23.000 25.029
#2 0.800 19.000 14.251
#3 2.750 17.000 21.947
#4 1.600 13.000 27.305
#5 −2.750 9.000 3.718
#6 −1.300 8.000 1.339
#7 0.900 6.000 1.675
#8 −1.700 5.000 4.736

The optimal value of γ is 0.02768%

The tracking error volatility is equal to 1.17636%
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Question 6

Same question if we would like to improve the ESG score of the
benchmark by 1.0.
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The solution is equal to:

Stock si bi x?i
#1 −1.200 23.000 21.699
#2 0.800 19.000 12.443
#3 2.750 17.000 28.739
#4 1.600 13.000 33.555
#5 −2.750 9.000 0.002
#6 −1.300 8.000 0.000
#7 0.900 6.000 2.433
#8 −1.700 5.000 1.129

The optimal value of γ is 0.07276%

The tracking error volatility is equal to 2.48574%
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Question 7

We impose that the portfolio weights can not be greater than 30%. Find
the optimal portfolio if we would like to improve the ESG score of the
benchmark by 1.0.
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The solution is equal to:

Stock si bi x?i
#1 −1.200 23.000 20.116
#2 0.800 19.000 14.082
#3 2.750 17.000 29.481
#4 1.600 13.000 30.000
#5 −2.750 9.000 0.644
#6 −1.300 8.000 0.000
#7 0.900 6.000 4.662
#8 −1.700 5.000 1.015

The optimal value of γ is 0.07355%

The tracking error volatility is equal to 2.50317%
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Question 8

Comment on these results.
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We notice that the evolution of the weights is not necessarily
monotonous with respect to the ESG excess score s (x | b). For
instance, if we target an improvement of 0.5, the weight of Stock #1
increases (23%⇒ 25.029%). If we target an improvement of 1.0, the
the weight of Stock #1 decreases (25.029%⇒ 21.699%)

Generally, the optimiser reduces the weight of stocks with low ESG
scores and increases the weight of stocks with high ESG scores

Nevertheless, the weight differences are not ranked in the same order
than the ESG scores. For instance, if we target an improvement of
0.5, the largest variation is observed for Stock #4, which has an ESG
score of 1.6. This is not the largest ESG score, since Stock #3 has an
ESG score of 2.75

This is due to the structure of the covariance matrix (Stock #3 is
riskier than Stock #4)
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Prologue

Machine learning is a hot topic in asset management (and more
generally in finance)

Machine learning and data mining are two sides of the same coin

backtesting performance 6= live performance

Reaching for the stars: a complex/complicated process does not mean
a good solution

Don’t forget the 3 rules in asset management

1 It is difficult to make money

2 It is difficult to make money

3 It is difficult to make money
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Prologue

In this lecture, we focus on ML optimization algorithms, because they
have proved their worth

We have no time to study classical ML methods that can be used by
quants to build investment strategies36

36Don’t believe that they are always significantly better than standard statistical
approaches!!!
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Standard optimization algorithms

Gradient descent methods

Conjugate gradient (CG) methods (Fletcher–Reeves, Polak–Ribiere,
etc.)

Quasi-Newton (QN) methods (NR, BFGS, DFP, etc.)

Quadratic programming (QP) methods

Sequential QP methods

Interior-point methods
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Standard optimization algorithms

We consider the following unconstrained minimization problem:

x? = arg min
x

f (x) (7)

where x ∈ Rn and f (x) is a continuous, smooth and convex function

In order to find the solution x?, optimization algorithms use iterative
algorithms:

x (k+1) = x (k) + ∆x (k)

= x (k) − η(k)D(k)

where:

x (0) is the vector of starting values
x (k) is the approximated solution of Problem (7) at the kth iteration
η(k) > 0 is a scalar that determines the step size
D(k) is the direction
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Standard optimization algorithms

Gradient descent:

D(k) = ∇f
(
x (k)

)
=
∂ f
(
x (k)

)
∂ x

Newton-Raphson method:

D(k) =
(
∇2f

(
x (k)

))−1

∇f
(
x (k)

)
=

(
∂2 f

(
x (k)

)
∂ x ∂ x>

)−1
∂ f
(
x (k)

)
∂ x

Quasi-Newton method:

D(k) = H(k)∇f
(
x (k)

)
where H(k) is an approximation of the inverse of the Hessian matrix
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Standard optimization algorithms

What are the issues?

1 How to solve large-scale optimization problems?

2 How to solve optimization problems where there are multiple
solutions?

3 How to just find an “acceptable” solution?

The case of neural networks and deep learning

⇒ Standard approaches are not well adapted
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Machine learning optimization algorithms

Machine learning problems

Non-smooth objective function

Non-unique solution

Large-scale dimension

Optimization in machine learning requires

to reinvent numerical optimization
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Machine learning optimization algorithms

We consider 4 methods:

Cyclical coordinate descent (CCD)

Alternative direction method of multipliers (ADMM)

Proximal operators (PO)

Dykstra’s algorithm (DA)
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Coordinate descent methods

The fall and the rise of the steepest descent method

In the 1980s:

Conjugate gradient methods (Fletcher–Reeves, Polak–Ribiere, etc.)

Quasi-Newton methods (NR, BFGS, DFP, etc.)

In the 1990s:

Neural networks

Learning rules: Descent, Momentum/Nesterov and Adaptive learning
methods

In the 2000s:

Gradient descent (by observations): Batch gradient descent (BGD),
Stochatic gradient descent (SGD), Mini-batch gradient descent
(MGD)

Gradient descent (by parameters): Coordinate descent (CD), cyclical
coordinate descent (CCD), Random coordinate descent (RCD)
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Coordinate descent methods

Descent method

The descent algorithm is defined by the following rule:

x (k+1) = x (k) + ∆x (k) = x (k) − η(k)D(k)

At the kth Iteration, the current solution x (k) is updated by going in the
opposite direction to D(k) (generally, we set D(k) = ∂x f

(
x (k)

)
)

Coordinate descent method

Coordinate descent is a modification of the descent algorithm by
minimizing the function along one coordinate at each step:

x
(k+1)
i = x

(k)
i + ∆x

(k)
i = x

(k)
i − η(k)D

(k)
i

⇒ The coordinate descent algorithm becomes a scalar problem
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Coordinate descent methods

Choice of the variable i

1 Random coordinate descent (RCD)
We assign a random number between 1 and n to the index i
(Nesterov, 2012)

2 Cyclical coordinate descent (CCD)
We cyclically iterate through the coordinates (Tseng, 2001):

x
(k+1)
i = arg min

x
f
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x , x

(k)
i+1, . . . , x

(k)
n

)
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Cyclical coordinate descent (CCD)

Example 1

We consider the following function:

f (x1, x2, x3) = (x1 − 1)2 + x2
2 − x2 + (x3 − 2)4 ex1−x2+3

We have:

D1 =
∂ f (x1, x2, x3)

∂ x1
= 2 (x1 − 1) + (x3 − 2)4 ex1−x2+3

D2 =
∂ f (x1, x2, x3)

∂ x2
= 2x2 − 1− (x3 − 2)4 ex1−x2+3

D3 =
∂ f (x1, x2, x3)

∂ x3
= 4 (x3 − 2)3 ex1−x2+3
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Cyclical coordinate descent (CCD)

The CCD algorithm is defined by the following iterations:

x
(k+1)
1 = x

(k)
1 − η(k)

(
2
(
x

(k)
1 − 1

)
+
(
x

(k)
3 − 2

)4

ex
(k)
1 −x

(k)
2 +3

)
x

(k+1)
2 = x

(k)
2 − η(k)

(
2x

(k)
2 − 1−

(
x

(k)
3 − 2

)4

ex
(k+1)
1 −x

(k)
2 +3

)
x

(k+1)
3 = x

(k)
3 − η(k)

(
4
(
x

(k)
3 − 2

)3

ex
(k+1)
1 −x

(k+1)
2 +3

)
We have the following scheme:(

x
(0)
1 , x

(0)
2 , x

(0)
3

)
→ x

(1)
1 →

(
x

(1)
1 , x

(0)
2 , x

(0)
3

)
→ x

(1)
2 →

(
x

(1)
1 , x

(1)
2 , x

(0)
3

)
→ x

(1)
3 →(

x
(1)
1 , x

(1)
2 , x

(1)
3

)
→ x

(2)
1 →

(
x

(2)
1 , x

(1)
2 , x

(1)
3

)
→ x

(2)
2 →

(
x

(2)
1 , x

(2)
2 , x

(1)
3

)
→ x

(2)
3 →(

x
(2)
1 , x

(2)
2 , x

(2)
3

)
→ x

(3)
1 → . . .
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Cyclical coordinate descent (CCD)

Table 99: Solution obtained with the CCD algorithm (η(k) = 0.25)

k x
(k)
1 x

(k)
2 x

(k)
3 D

(k)
1 D

(k)
2 D

(k)
3

0 1.0000 1.0000 1.0000
1 -4.0214 0.7831 1.1646 20.0855 0.8675 -0.6582
2 -1.5307 0.8834 2.2121 -9.9626 -0.4013 -4.1902
3 -0.2663 0.6949 2.1388 -5.0578 0.7540 0.2932
4 0.3661 0.5988 2.0962 -2.5297 0.3845 0.1703
5 0.6827 0.5499 2.0758 -1.2663 0.1957 0.0818
6 0.8412 0.5252 2.0638 -0.6338 0.0989 0.0480
7 0.9205 0.5127 2.0560 -0.3172 0.0498 0.0314
8 0.9602 0.5064 2.0504 -0.1588 0.0251 0.0222
9 0.9800 0.5033 2.0463 -0.0795 0.0126 0.0166
∞ 1.0000 0.5000 2.0000 0.0000 0.0000 0.0000
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The lasso revolution

Least absolute shrinkage and selection operator (lasso)

The lasso method consists in adding a `1 penalty function to the least
square problem:

β̂lasso (τ) = arg min
1

2
(Y − Xβ)> (Y − Xβ)

s.t. ‖β‖1 =
m∑

j=1

|βj | ≤ τ

This problem is equivalent to:

β̂lasso (λ) = arg min
1

2
(Y − Xβ)> (Y − Xβ) + λ ‖β‖1

We have:
τ =

∥∥∥β̂lasso (λ)
∥∥∥

1
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Solving the lasso regression problem

We introduce the parametrization:

β =
(
Im −Im

)( β+

β−

)
= β+ − β−

under the constraints β+ ≥ 0m and β− ≥ 0m. We deduce that:

‖β‖1 =
m∑

j=1

∣∣∣β+
j − β

−
j

∣∣∣ =
m∑

j=1

∣∣∣β+
j

∣∣∣+
m∑

j=1

∣∣∣β−j ∣∣∣ = 1>mβ
+ + 1>mβ

−
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Solving the lasso regression problem

Augmented QP program of the lasso regression (λ-problem)

The augmented QP program is specified as follows:

θ̂ = arg min
1

2
θ>Qθ − θ>R

s.t. θ ≥ 02m

where θ = (β+, β−), X̃ =
(
X −X

)
, Q = X̃>X̃ and

R = X̃>Y + λ12m. If we denote T =
(
Im −Im

)
, we obtain:

β̂lasso (λ) = T θ̂
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Solving the lasso regression problem

Augmented QP program of the lasso regression (τ -problem)

If we consider the τ -problem, we obtain another augmented QP program:

θ̂ = arg min
1

2
θ>Qθ − θ>R

s.t.

{
Cθ ≤ D
θ ≥ 02m

where Q = X̃>X̃ , R = X̃>Y , C = 1>2m and D = τ . Again, we have:

β̂ (τ) = T θ̂
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Solving the lasso regression problem

We consider the linear regression:

Y = Xβ + ε

where Y is a n × 1 vector, X is a n ×m matrix and β is a m × 1 vector.
The optimization problem is:

β̂ = arg min f (β) =
1

2
(Y − Xβ)> (Y − Xβ)

Since we have ∂β f (β) = −X> (Y − Xβ)), we deduce that:

∂ f (β)

∂ βj
= x>j (Xβ − Y )

= x>j
(
xjβj + X(−j)β(−j) − Y

)
= x>j xjβj + x>j X(−j)β(−j) − x>j Y

where xj is the n × 1 vector corresponding to the jth variable and X(−j) is

the n × (m − 1) matrix (without the jth variable)
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Solving the lasso regression problem

At the optimum, we have ∂βj f (β) = 0 or:

βj =
x>j Y − x>j X(−j)β(−j)

x>j xj
=

x>j
(
Y − X(−j)β(−j)

)
x>j xj

CCD algorithm for the linear regression

We have:

β
(k+1)
j =

x>j

Y −
j−1∑
j′=1

xj′β
(k+1)
j′ −

m∑
j′=j+1

xj′β
(k)
j′


x>j xj

⇒ Introducing pointwise constraints is straightforward
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Solving the lasso regression problem

The objective function becomes:

f (β) =
1

2
(Y − Xβ)> (Y − Xβ) + λ ‖β‖1

= fOLS (β) + λ ‖β‖1

Since the norm is separable — ‖β‖1 =
∑m

j=1 |βj |, the first-order condition
is:

∂ fOLS (β)

∂ βj
+ λ∂ |βj | = 0

or: (
x>j xj

)︸ ︷︷ ︸
c

βj − x>j
(
Y − X(−j)β(−j)

)︸ ︷︷ ︸
v

+ λ∂ |βj | = 0
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Derivation of the soft-thresholding operator

We consider the following equation:

cβj − v + λ∂ |βj | ∈ {0}

where c > 0 and λ > 0. Since we have ∂ |βj | = sign (βj ), we deduce that:

β?j =


c−1 (v + λ) if β?j < 0
0 if β?j = 0
c−1 (v − λ) if β?j > 0

If β?j < 0 or β?j > 0, then we have v + λ < 0 or v − λ > 0. This is
equivalent to set |v | > λ > 0. The case β?j = 0 implies that |v | ≤ λ. We
deduce that:

β?j = c−1 · S (v ;λ)

where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) =

{
0 if |v | ≤ λ
v − λ sign (v) otherwise

= sign (v) · (|v | − λ)+
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Solving the lasso regression problem

CCD algorithm for the lasso regression

We have:

β
(k+1)
j =

1

x>j xj
S

x>j

Y −
j−1∑
j′=1

xj′β
(k+1)
j′ −

m∑
j′=j+1

xj′β
(k)
j′

 ;λ


where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) = sign (v) · (|v | − λ)+
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Solving the lasso regression problem

Table 100: Matlab code'

&

$

%

for k = 1:nIters

for j = 1:m

x_j = X(:,j);

X_j = X;

X_j(:,j) = zeros(n,1);

if lambda > 0

v = x_j’*(Y - X_j*beta);

beta(j) = max(abs(v) - lambda,0) * sign(v) / (x_j’*x_j);

else

beta(j) = x_j’*(Y - X_j*beta) / (x_j’*x_j);

end

end

end
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Solving the lasso regression problem

Example 2

We consider the following data:

i y x1 x2 x3 x4 x5

1 3.1 2.8 4.3 0.3 2.2 3.5
2 24.9 5.9 3.6 3.2 0.7 6.4
3 27.3 6.0 9.6 7.6 9.5 0.9
4 25.4 8.4 5.4 1.8 1.0 7.1
5 46.1 5.2 7.6 8.3 0.6 4.5
6 45.7 6.0 7.0 9.6 0.6 0.6
7 47.4 6.1 1.0 8.5 9.6 8.6
8 −1.8 1.2 9.6 2.7 4.8 5.8
9 20.8 3.2 5.0 4.2 2.7 3.6

10 6.8 0.5 9.2 6.9 9.3 0.7
11 12.9 7.9 9.1 1.0 5.9 5.4
12 37.0 1.8 1.3 9.2 6.1 8.3
13 14.7 7.4 5.6 0.9 5.6 3.9
14 −3.2 2.3 6.6 0.0 3.6 6.4
15 44.3 7.7 2.2 6.5 1.3 0.7
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Solving the lasso regression problem
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Figure 172: Convergence of the CCD algorithm (lasso regression, λ = 2)

Note: we start the CCD algorithm with β
(0)
j = 0 (don’t forget to standardize the data!)
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Solving the lasso regression problem

1 The dimension problem is (2m, 2m) for QP and (1, 0) for CCD!

2 CCD is faster for lasso regression than for linear regression (because
of the soft-thresholding operator)!

Suppose n = 50 000 and m = 1 000 000 (DNA sequence problem!)
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Solving the lasso regression problem

Example 3

We consider an experiment with n = 100 000 observations and
m = 50 variables.

The design matrix X is built using the uniform distribution while the
residuals are simulated using a Gaussian distribution and a standard
deviation of 20%.

The beta coefficients are distributed uniformly between −3 and +3
except four coefficients that take a larger value.

We then standardize the data of X and Y .

For initializing the coordinates, we use uniform random numbers
between −1 and +1.
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Solving the lasso regression problem
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Figure 173: Convergence of the CCD algorithm (lasso vs linear regression)
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Alternative direction method of multipliers

Definition

The alternating direction method of multipliers (ADMM) is an algorithm
introduced by Gabay and Mercier (1976) to solve optimization problems
which can be expressed as:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. Ax + By = c

The algorithm is:

x (k+1) = arg min
x

{
fx (x) +

ϕ

2

∥∥∥Ax + By (k) − c + u(k)
∥∥∥2

2

}
y (k+1) = arg min

y

{
fy (y) +

ϕ

2

∥∥∥Ax (k+1) + By − c + u(k)
∥∥∥2

2

}
u(k+1) = u(k) +

(
Ax (k+1) + By (k+1) − c

)
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Alternative direction method of multipliers

What is the underlying idea?

Minimizing fx (x) + fy (y) with respect to (x , y) is a difficult task

Minimizing

gx (x) = fx (x) +
ϕ

2
‖Ax + By − c‖2

2

with respect to x and minimizing

gy (y) = fy (y) +
ϕ

2
‖Ax + By − c‖2

2

with respect to y is easier
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Alternative direction method of multipliers

We use the following notations:

f
(k+1)

x (x) is the objective function of the x-update step:

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥Ax + By (k) − c + u(k)
∥∥∥2

2

f
(k+1)

y (y) is the objective function of the y -update step:

f (k+1)
y (y) = fy (y) +

ϕ

2

∥∥∥Ax (k+1) + By − c + u(k)
∥∥∥2

2
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Alternative direction method of multipliers

When A = In and B = −In, we have:
1

Ax + By (k) − c + u(k) = x − y (k) − c + u(k) = x − v (k+1)
x

where:
v (k+1)

x = y (k) + c − u(k)

2

Ax (k+1) + By − c + u(k) = x (k+1) − y − c + u(k) = v (k+1)
y − y

where:
v (k+1)

y = x (k+1) − c + u(k)

3

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥x − v (k+1)
x

∥∥∥2

2

f (k+1)
y (y) = fy (y) +

ϕ

2

∥∥∥y − v (k+1)
y

∥∥∥2

2
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Alternative direction method of multipliers

We consider a problem of the form:

x? = arg min
x

g (x)

The idea is then to write g (x) as a separable function:

g (x) = g1 (x) + g2 (x)

and to consider the following equivalent ADMM problem:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. x = y

where fx (x) = g1 (x) and fy (y) = g2 (y)

Thierry Roncalli Asset Management (Lecture 5) 1358 / 1520



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Alternative direction method of multipliers

We consider a problem of the form:

x? = arg min
x

g (x)

s.t. x ∈ Ω

We have:

{x?, y?} = arg min
(x,y)

fx (x) + fy (y)

s.t. x = y

where fx (x) = g (x), fy (y) = 1Ω (y) and:

1Ω (y) =

{
0 if y ∈ Ω
+∞ if y /∈ Ω
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Alternative direction method of multipliers

Special case

Ω =
{
x : x− ≤ x ≤ x+

}
By setting ϕ = 1, the y -step becomes:

y (k+1) = arg min

{
1Ω (y) +

1

2

∥∥∥x (k+1) − y + u(k)
∥∥∥2

2

}
= proxfy

(
x (k+1) + u(k)

)
where the proximal operator is the box projection or the truncation
operator:

proxfy
(v) = x− � 1

{
v < x−

}
+

v � 1
{
x− ≤ v ≤ x+

}
+

x+ � 1
{
v > x+

}
= T

(
v ; x−, x+

)
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Alternative direction method of multipliers

Special case

Ω =
{
x : x− ≤ x ≤ x+

}
The ADMM algorithm is then:

x (k+1) = arg min

{
g (x) +

1

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

}
y (k+1) = proxfy

(
x (k+1) + u(k)

)
u(k+1) = u(k) +

(
x (k+1) − y (k+1)

)
⇒ Solving the constrained optimization problem consists in solving the
unconstrained optimization problem, applying the box projection and
iterating these steps until convergence
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Alternative direction method of multipliers

Lasso regression

The λ-problem of the lasso regression has the following ADMM
formulation:{

β?, β̄?
}

= arg min
1

2
(Y − Xβ)>(Y − Xβ) + λ‖β̄‖1

s.t. β − β̄ = 0m

We have:

fx (β) =
1

2
(Y − Xβ)>(Y − Xβ)

=
1

2
β>
(
X>X

)
β − β>

(
X>Y

)
+

1

2
Y>Y

and:
fy
(
β̄
)

= λ‖β̄‖1
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Alternative direction method of multipliers

The x-step is:

β(k+1) = arg min
β

{
1

2
β>
(
X>X

)
β − β>

(
X>Y

)
+
ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2

}
Since we have:

ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2
=

ϕ

2
β>β − ϕβ>

(
β̄(k) − u(k)

)
+

ϕ

2

(
β̄(k) − u(k)

)> (
β̄(k) − u(k)

)
we deduce that the x-update is a standard QP problem where:

f (k+1)
x (β) =

1

2
β>
(
X>X + ϕIm

)
β − β>

(
X>Y + ϕ

(
β̄(k) − u(k)

))
It follows that the solution is:

β(k+1) = arg min f (k+1)
x (β)

=
(
X>X + ϕIm

)−1
(
X>Y + ϕ

(
β̄(k) − u(k)

))
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Alternative direction method of multipliers

The y -step is:

β̄(k+1) = arg min
β̄

{
λ‖β̄‖1 +

ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= arg min

{
1

2

∥∥∥β̄ − (β(k+1) + u(k)
)∥∥∥2

2
+
λ

ϕ
‖β̄‖1

}
We recognize the soft-thresholding problem with v = β(k+1) + u(k). We
have:

β̄(k+1) = S
(
β(k+1) + u(k);ϕ−1λ

)
where:

S (v ;λ) = sign (v) · (|v | − λ)+
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Alternative direction method of multipliers

ADMM-Lasso algorithm (Boyd et al., 2011)

Finally, the ADMM algorithm is made up of the following steps: β(k+1) =
(
X>X + ϕIm

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
β̄(k+1) = S

(
β(k+1) + u(k);ϕ−1λ

)
u(k+1) = u(k) +

(
β(k+1) − β̄(k+1)

)
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Alternative direction method of multipliers
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Figure 174: Convergence of the ADMM algorithm (Example 3, λ = 900)

Note: the initial values are the OLS estimates and we set ϕ = λ
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Alternative direction method of multipliers

In practice, we use a time-varying parameter ϕ(k) (see Perrin and Roncalli,
2020).
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Proximal operator

Definition

The proximal operator proxf (v) of the function f (x) is defined by:

proxf (v) = x? = arg min
x

{
fv (x) = f (x) +

1

2
‖x − v‖2

2

}
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Proximal operator

Example 4

We consider the scalar-valued logarithmic barrier function f (x) = −λ ln x
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Proximal operator

We have:

fv (x) = −λ ln x +
1

2
(x − v)2

= −λ ln x +
1

2
x2 − xv +

1

2
v2

The first-order condition is −λx−1 + x − v = 0. We obtain two roots with
opposite signs:

x ′ =
v −
√
v2 + 4λ

2
and x ′′ =

v +
√
v2 + 4λ

2

Since the logarithmic function is defined for x > 0, we deduce that:

proxf (v) =
v +
√
v2 + 4λ

2
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Proximal operator

In the case where f (x) = 1Ω (x), we have:

proxf (v) = arg min
x

{
1Ω (x) +

1

2
‖x − v‖2

2

}
= arg min

x∈Ω

{
‖x − v‖2

2

}
= PΩ (v)

where PΩ (v) is the standard projection of v onto Ω
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Proximal operator

Table 101: Projection for some simple polyhedra

Notation Ω PΩ (v)
Affineset [A,B] Ax = B v − A† (Av − B)

Hyperplane [a, b] a>x = b v −
(
a>v − b

)
‖a‖2

2

a

Halfspace [c , d ] c>x ≤ d v −
(
c>v − d

)
+

‖c‖2
2

c

Box [x−, x+] x− ≤ x ≤ x+ T (v ; x−, x+)

Source: Parikh and Boyd (2014)

Note: A† is the Moore-Penrose pseudo-inverse of A, and T
(

v ; x−, x+
)

is the truncation operator

Remark: No analytical formula for the (multi-dimensional) inequality constraint Cx ≤ D ⇒ it may

be solved using the Dykstra’s algorithm
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Proximal operator

Separable sum

If f (x) =
∑n

i=1 fi (xi ) is fully separable, then the proximal of f (v) is the
vector of the proximal operators applied to each scalar-valued function
fi (xi ):

proxf (v) =

 proxf1
(v1)

...
proxfn

(vn)
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Proximal operator

If f (x) = −λ ln x , we have:

proxf (v) =
v +
√
v2 + 4λ

2

In the case of the vector-valued logarithmic barrier f (x) = −λ
∑n

i=1 ln xi ,
we deduce that:

proxf (v) =
v +
√
v � v + 4λ

2
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Proximal operator

Moreau decomposition theorem

We have:
proxf (v) + proxf ∗ (v) = v

where f ∗ is the convex conjugate of f .

Application

If f (x) is a `q-norm function, then f ∗ (x) = 1Bp (x) where Bp is the `p

unit ball and p−1 + q−1 = 1. Since we have proxf ∗ (v) = PBp (v), we
deduce that:

proxf (v) + PBp (v) = v

The proximal of the `p-ball can be deduced from the proximal operator of
the `q-norm function.
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Proximal operator

Table 102: Proximal of the `p-norm function f (x) = ‖x‖p

p proxλf (v)
p = 1 S (v ;λ) = sign (v)� (|v | − λ1n)+

p = 2

(
1− λ

max (λ, ‖v‖2)

)
v

p =∞ sign (v)� proxλmax x (|v |)

We have:
proxλmax x (v) = min (v , s?)

where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}
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Proximal operator

Table 103: Proximal of the `p-ball Bp (c, λ) =
{
x ∈ Rn : ‖x − c‖p ≤ λ

}
when c

is equal to 0n

p PBp(0n,λ) (v) q
p = 1 v − sign (v)� proxλmax x (|v |) q =∞
p = 2 v − proxλ‖x‖2

(v) q = 2

p =∞ T (v ;−λ, λ) q = 1
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Proximal operator

Scaling and translation

Let us define g (x) = f (ax + b) where a 6= 0. We have:

proxg (v) =
proxa2f (av + b)− b

a

Application

We can use this property when the center c of the `p ball is not equal to
0n. Since we have proxg (v) = proxf (v − c) + c where g (x) = f (x − c)
and the equivalence Bp (0n, λ) = {x ∈ Rn : f (x) ≤ λ} where
f (x) = ‖x‖p, we deduce that:

PBp(c,λ) (v) = PBp(0n,λ) (v − c) + c
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Application to the τ -problem of the lasso regression

We have:

β̂ (τ) = arg min
β

1

2
(Y − Xβ)> (Y − Xβ)

s.t. ‖β‖1 ≤ τ

The ADMM formulation is:{
β?, β̄?

}
= arg min

(β,β̄)

1

2
(Y − Xβ)> (Y − Xβ) + 1Ω

(
β̄
)

s.t. β = β̄

where Ω = B1 (0m, τ) is the centered `1 ball with radius τ

Thierry Roncalli Asset Management (Lecture 5) 1379 / 1520



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Application to the τ -problem of the lasso regression

1 The x-update is:

β(k+1) = arg min
β

{
1

2
(Y − Xβ)> (Y − Xβ) +

ϕ

2

∥∥∥β − β̄(k) + u(k)
∥∥∥2

2

}
=

(
X>X + ϕIm

)−1
(
X>Y + ϕ

(
β̄(k) − u(k)

))
where v

(k+1)
x = β̄(k) − u(k)
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Application to the τ -problem of the lasso regression

2 The y -update is:

β̄(k+1) = arg min
β̄

{
1Ω

(
β̄
)

+
ϕ

2

∥∥∥β(k+1) − β̄ + u(k)
∥∥∥2

2

}
= proxfy

(
β(k+1) + u(k)

)
= PΩ

(
v (k+1)

y

)
= v (k+1)

y − sign
(
v (k+1)

y

)
� proxτ max x

(∣∣∣v (k+1)
y

∣∣∣)
where v

(k+1)
y = β(k+1) + u(k)
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Application to the τ -problem of the lasso regression

3 The u-update is:

u(k+1) = u(k) + β(k+1) − β̄(k+1)
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Application to the τ -problem of the lasso regression

ADMM-Lasso algorithm

The ADMM algorithm is :
β(k+1) =

(
X>X + ϕIm

)−1 (
X>Y + ϕ

(
β̄(k) − u(k)

))
β̄(k+1) =

{
S
(
β(k+1) + u(k);ϕ−1λ

)
(λ-problem)

PB1(0m,τ)

(
β(k+1) + u(k)

)
(τ -problem)

u(k+1) = u(k) +
(
β(k+1) − β̄(k+1)

)

Remark

The ADMM algorithm is similar for λ- and τ -problems since the only
difference concerns the y -step. However, the τ -problem is easier to solve
with the ADMM algorithm from a practical point of view, because the
y -update of the τ -problem is independent of the penalization parameter ϕ.
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Derivation of the soft-thresholding operator

We consider the following equation:

cx − v + λ∂ |x | ∈ 0

where c > 0 and λ > 0. Since we have ∂ |x | = sign (x), we deduce that:

x? =

 c−1 (v + λ) if x? < 0
0 if x? = 0
c−1 (v − λ) if x? > 0

If x? < 0 or x? > 0, then we have v + λ < 0 or v − λ > 0. This is
equivalent to set |v | > λ > 0. The case x? = 0 implies that |v | ≤ λ. We
deduce that:

x? = c−1 · S (v ;λ)

where S (v ;λ) is the soft-thresholding operator:

S (v ;λ) =

{
0 if |v | ≤ λ
v − λ sign (v) otherwise

= sign (v) · (|v | − λ)+
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Derivation of the soft-thresholding operator

We use the result on the separable sum

Remark

If f (x) = λ ‖x‖1, we have f (x) = λ
∑n

i=1 |xi | and fi (xi ) = λ |xi |. We
deduce that the proximal operator of f (x) is the vector formulation of the
soft-thresholding operator:

proxλ‖x‖1
(v) =

 sign (v1) · (|v1| − λ)+
...

sign (vn) · (|vn| − λ)+

 = sign (v)� (|v | − λ1n)+

The soft-thresholding operator is the proximal operator of the `1-norm
f (x) = ‖x‖1. Indeed, we have proxf (v) = S (v ; 1) and
proxλf (v) = S (v ;λ).
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Dykstra’s algorithm

We consider the following optimization problem:

x? = arg min fx (x)

s.t. x ∈ Ω

where Ω is a complex set of constraints:

Ω = Ω1 ∩ Ω2 ∩ · · ·Ωm

We set y = x and fy (y) = 1Ω (y). The ADMM algorithm becomes

x (k+1) = arg min

{
fx (x) +

ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

}
v (k) = x (k+1) + u(k)

y (k+1) = PΩ

(
v (k)

)
u(k+1) = u(k) +

(
x (k+1) − y (k+1)

)
How to compute PΩ (v)?
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Dykstra’s algorithm

More generally, we consider the proximal optimization problem where the
function f (x) is the convex sum of basic functions fj (x):

x? = arg min
x


m∑

j=1

fj (x) +
1

2
‖x − v‖2

2


and the proximal of each basic function is known.

How to find the solution x??
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Dykstra’s algorithm
The case m = 2

We know the proximal solution of the `1-norm function
f1 (x) = λ1 ‖x‖1

We know the proximal solution of the logarithmic barrier function
f2 (x) = λ2

∑n
i=1 ln xi

We don’t know how to compute the proximal operator of
f (x) = f1 (x) + f2 (x):

x? = arg min
x

f1 (x) + f2 (x) +
1

2
‖x − v‖2

2

= proxf (v)
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Dykstra’s algorithm
The case m = 2

The Dykstra’s algorithm consists in the following iterations:
x (k+1) = proxf1

(
y (k) + p(k)

)
p(k+1) = y (k) + p(k) − x (k+1)

y (k+1) = proxf2

(
x (k+1) + q(k)

)
q(k+1) = x (k+1) + q(k) − y (k+1)

where x (0) = y (0) = v and p(0) = q(0) = 0n
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Dykstra’s algorithm
The case m = 2

This algorithm is related to the Douglas-Rachford splitting framework:
x(k+ 1

2 ) = proxf1

(
x (k) + p(k)

)
p(k+1) = p(k) −∆1/2x

(k+ 1
2 )

x (k+1) = proxf2

(
x(k+ 1

2 ) + q(k)
)

q(k+1) = q(k) −∆1/2x
(k+1)

where ∆hx
(k) = x (k) − x (k−h)
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Dykstra’s algorithm
The case m = 2

x (k−1) x (k) x (k+1) x (k+2)x(k− 1
2) x(k+ 1

2) x(k+ 3
2)

f1 (x) f1 (x) f1 (x)f2 (x) f2 (x) f2 (x)

p(k) p(k+1) p(k+2)

q(k) q(k+1) q(k+2)

Residual of f1 (x)

Residual of f2 (x)

Figure 175: Splitting method of the Dykstra’s algorithm
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Dykstra’s algorithm
The case m > 2

The case m > 2 is a generalization of the previous algorithm by
considering m residuals:

1 The x-update is:

x (k+1) = proxfj(k)

(
x (k) + z (k+1−m)

)
2 The z-update is:

z (k+1) = x (k) + z (k+1−m) − x (k+1)

where x (0) = v , z (k) = 0n for k < 0 and j (k) = mod (k + 1,m)
denotes the modulo operator taking values in {1, . . . ,m}

Remark

The variable x (k) is updated at each iteration while the residual z (k) is
updated every m iterations. This implies that the basic function fj (x) is
related to the residuals z (j), z (j+m), z (j+2m), etc.
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Dykstra’s algorithm
The case m > 2

Tibshirani (2017) proposes to write the Dykstra’s algorithm by using two
iteration indices k and j . The main index k refers to the cycle, whereas
the sub-index j refers to the constraint number

The Dykstra’s algorithm becomes:

1 The x-update is:

x (k+1,j) = proxfj

(
x (k+1,j−1) + z (k,j)

)
2 The z-update is:

z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

where x (1,0) = v , z (k,j) = 0n for k = 0 and x (k+1,0) = x (k,m)
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Dykstra’s algorithm
The case m > 2

The Dykstra’s algorithm is particularly efficient when we consider the
projection problem:

x? = PΩ (v)

where:
Ω = Ω1 ∩ Ω2 ∩ · · · ∩ Ωm

Indeed, the Dykstra’s algorithm becomes:

1 The x-update is:

x (k+1,j) = proxfj

(
x (k+1,j−1) + z (k,j)

)
= PΩj

(
x (k+1,j−1) + z (k,j)

)
2 The z-update is:

z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

where x (1,0) = v , z (k,j) = 0n for k = 0 and x (k+1,0) = x (k,m)
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Dykstra’s algorithm

Successive projections of PΩj

(
x (k+1,j−1)

)
do not work!

Successive projections of PΩj

(
x (k+1,j−1) + z (k,j)

)
do work!
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Table 104: Solving the proximal problem with linear inequality constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x) and Ω = {x ∈ Rn : Cx ≤ D}
We initialize x (0,m) ← v
We set z (0,1) ← 0n, . . . , z

(0,m) ← 0n

k ← 0
repeat
x (k+1,0) ← x (k,m)

for j = 1 : m do
The x-update is:

x (k+1,j) = x (k+1,j−1) + z (k,j) −

(
c>(j)x

(k+1;j−1) + c>(j)z
(k,j) − d(j)

)
+∥∥c(j)

∥∥2

2

c(j)

The z-update is:
z (k+1,j) = x (k+1,j−1) + z (k,j) − x (k+1,j)

end for
k ← k + 1

until Convergence
return x? ← x (k,m)
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Dykstra’s algorithm

Table 105: Solving the proximal problem with general linear constraints

The goal is to compute the solution x? = proxf (v) where f (x) = 1Ω (x), Ω = Ω1 ∩ Ω2 ∩ Ω3, Ω1 =
{x ∈ Rn : Ax = B}, Ω2 = {x ∈ Rn : Cx ≤ D} and Ω3 = {x ∈ Rn : x− ≤ x ≤ x+}
We initialize x

(0)
m ← v

We set z
(0)
1 ← 0n, z

(0)
2 ← 0n and z

(0)
3 ← 0n

k ← 0
repeat

x
(k+1)
0 ← x

(k)
m

x
(k+1)
1 ← x

(k+1)
0 + z

(k)
1 − A†

(
Ax

(k+1)
0 + Az

(k)
1 − B

)
z

(k+1)
1 ← x

(k+1)
0 + z

(k)
1 − x

(k+1)
1

x
(k+1)
2 ← PΩ2

(
x

(k+1)
1 + z

(k)
2

)
I Previous algorithm

z
(k+1)
2 ← x

(k+1)
1 + z

(k)
2 − x

(k+1)
2

x
(k+1)
3 ← T

(
x

(k+1)
2 + z

(k)
3 ; x−, x+

)
z

(k+1)
3 ← x

(k+1)
2 + z

(k)
3 − x

(k+1)
3

k ← k + 1
until Convergence

return x? ← x
(k)
3
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Dykstra’s algorithm

Remark

Since we have:

1

2
‖x − v‖2

2 =
1

2
x>x − x>v +

1

2
v>v

the two previous problems can be cast into a QP problem:

x? = arg min
x

1

2
x>Inx − x>v

s.t. x ∈ Ω
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Dykstra’s algorithm

Dykstra’s algorithm versus QP algorithm

The vector v is defined by the elements vi = ln
(
1 + i2

)
The set of constraints is:

Ω =

{
x ∈ Rn :

n∑
i=1

xi ≤
1

2
,

n∑
i=1

e−ixi ≥ 0

}

Using a Matlab implementation, we find that the computational time
of the Dykstra’s algorithm when n is equal to 10 million is equal to
the QP algorithm when n is equal to 12 500!

The QP algorithm requires to store the matrix In — impossible when
n > 105. For instance, the size of In is equal to 7450.6 GB when
n = 106
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Table 106: Some objective functions used in portfolio optimization

Item Portfolio f (x) Reference
(1) MVO 1

2x
>Σx − γx>µ Markowitz (1952)

(2) GMV 1
2x
>Σx Jagganathan and Ma (2003)

(3) MDP ln
(√

x>Σx
)
− ln

(
x>σ

)
Choueifaty and Coignard (2008)

(4) KL
∑n

i=1 xi ln (xi/x̃i ) Bera and Park (2008)
(5) ERC 1

2x
>Σx − λ

∑n
i=1 ln xi Maillard et al. (2010)

(6) RB R (x)− λ
∑n

i=1RBi · ln xi Roncalli (2015)
(7) RQE 1

2x
>Dx Carmichael et al. (2018)
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Table 107: Some regularization penalties used in portfolio optimization

Item Regularization R (x) Reference

(8) Ridge λ ‖x − x̃‖2
2 DeMiguel et al. (2009)

(9) Lasso λ ‖x − x̃‖1 Brodie at al. (2009)
(10) Log-barrier −

∑n
i=1 λi ln xi Roncalli (2013)

(11) Shannon’s entropy λ
∑n

i=1 xi ln xi Yu et al. (2014)
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Table 108: Some constraints used in portfolio optimization

Item Constraint Ω
(12) No cash and leverage

∑n
i=1 xi = 1

(13) No short selling xi ≥ 0
(14) Weight bounds x−i ≤ xi ≤ x+

i

(15) Asset class limits c−j ≤
∑

i∈Cj
xi ≤ c+

j

(16) Turnover
∑n

i=1 |xi − x̃i | ≤ τ+

(17) Transaction costs
∑n

i=1

(
c−i (x̃i − xi )+ + c+

i (xi − x̃i )+

)
≤ ccc+

(18) Leverage limit
∑n

i=1 |xi | ≤ L+

(19) Long/short exposure −LS− ≤
∑n

i=1 xi ≤ LS+

(20) Benchmarking

√
(x − x̃)>Σ (x − x̃) ≤ σ+

(21) Tracking error floor

√
(x − x̃)> Σ (x − x̃) ≥ σ−

(22) Active share floor 1
2

∑n
i=1 |xi − x̃i | ≥ AS−

(23) Number of active bets
(
x>x

)−1 ≥ N−
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Most of portfolio optimization problems are a combination of:

1 an objective function (Table 106)

2 one or two regularization penalty functions (Table 107)

3 some constraints (Table 108)

Perrin and Roncalli (2020) solve all these problems using CCD, ADMM,
Dykstra and the appropriate proximal functions. For that, they derive:

the semi-analytical solution of the x-step for all objective functions

the proximal solution of the y -step for all regularization penalty
functions and constraints
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Herfindahl-MV optimization
Formulation of the mathematical problem

The second generation of minimum variance strategies uses a global
diversification constraint
The most popular solution is based on the Herfindahl index:

H (x) =
n∑

i=1

x2
i

The effective number of bets is the inverse of the Herfindahl index:

N (x) = H (x)−1

The optimization program is:

x? = arg min
x

1

2
x>Σx

s.t.

 1>n x = 1
0n ≤ x ≤ x+

N (x) ≥ N−

where N− is the minimum number of effective bets.
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Herfindahl-MV optimization
The QP solution

The Herfindhal constraint is equivalent to:

N (x) ≥ N− ⇔
(
x>x

)−1 ≥ N−

⇔ x>x ≤ 1

N−

The QP problem is:

x? (λ) = arg min
x

1

2
x>Σx + λx>x =

1

2
x> (Σ + 2λIn) x

s.t.

{
1>n x = 1
0n ≤ x ≤ x+

where λ ≥ 0 is a scalar

We have N (x) ∈ [N (x? (0)) , n]

The optimal value λ? is found using the bi-section algorithm such
that N (x? (λ)) = N−
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Herfindahl-MV optimization
The ADMM solution (first version)

The ADMM form is:

{x?, y?} = arg min
(x,y)

1

2
x>Σx + 1Ω1 (x) + 1Ω2 (y)

s.t. x = y

where Ω1 =
{
x ∈ Rn : 1>n x = 1, 0n ≤ x ≤ x+

}
and

Ω2 = B2

(
0n,
√

1
N−

)
The x-update is a QP problem:

x (k+1) = arg min
x

{
1

2
x> (Σ + ϕIn) x − ϕx>

(
y (k) − u(k)

)
+ 1Ω1 (x)

}
The y -update is:

y (k+1) =
x (k+1) + u(k)

max
(

1,
√
N−

∥∥x (k+1) + u(k)
∥∥

2

)
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Herfindahl-MV optimization
The ADMM solution (second version)

A better approach is to write the problem as follows:

{x?, y?} = arg min
(x,y)

1

2
x>Σx + 1Ω3 (x) + 1Ω4 (y)

s.t. x = y

where Ω3 = Hyperplane [1n, 1] and Ω4 = Box [0n, x
+] ∩ B2

(
0n,
√

1
N−

)
The x-update is:

x (k+1) = (Σ + ϕIn)−1

ϕ(y (k) − u(k)
)

+
1− 1>n (Σ + ϕIn)−1 ϕ

(
y (k) − u(k)

)
1>n (Σ + ϕIn)−1 1n

1n


The y -update is:

y (k+1) = PBox−Ball

(
x (k+1) + u(k); 0n, x

+, 0n,

√
1

N−

)
where PBox−Ball corresponds to the Dykstra’s algorithm given by

Perrin and Roncalli (2020)
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Herfindahl-MV optimization

Remark

If we compare the computational time of the three approaches, we observe
that the best method is the second version of the ADMM algorithm:

CT (QP; n = 1000) = 50× CT (ADMM2; n = 1000)

CT (ADMM1; n = 1000) = 400× CT (ADMM2; n = 1000)
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Herfindahl-MV optimization
The QP solution

Example 5

We consider an investment universe of eight stocks. We assume that their
volatilities are 21%, 20%, 40%, 18%, 35%, 23%, 7% and 29%. The
correlation matrix is defined as follows:

ρ =



100%
80% 100%
70% 75% 100%
60% 65% 90% 100%
70% 50% 70% 85% 100%
50% 60% 70% 80% 60% 100%
70% 50% 70% 75% 80% 50% 100%
60% 65% 70% 75% 65% 70% 80% 100%
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Herfindahl-MV optimization

Table 109: Minimum variance portfolios (in %)

N− 1.00 2.00 3.00 4.00 5.00 6.00 6.50 7.00 7.50 8.00
x?1 0.00 3.22 9.60 13.83 15.18 15.05 14.69 14.27 13.75 12.50
x?2 0.00 12.75 14.14 15.85 16.19 15.89 15.39 14.82 14.13 12.50
x?3 0.00 0.00 0.00 0.00 0.00 0.07 2.05 4.21 6.79 12.50
x?4 0.00 10.13 15.01 17.38 17.21 16.09 15.40 14.72 13.97 12.50
x?5 0.00 0.00 0.00 0.00 0.71 5.10 6.33 7.64 9.17 12.50
x?6 0.00 5.36 8.95 12.42 13.68 14.01 13.80 13.56 13.25 12.50
x?7 100.00 68.53 52.31 40.01 31.52 25.13 22.92 20.63 18.00 12.50
x?8 0.00 0.00 0.00 0.50 5.51 8.66 9.41 10.14 10.95 12.50

λ? (in %) 0.00 1.59 3.10 5.90 10.38 18.31 23.45 31.73 49.79 ∞

Note: the upper bound x+ is set to 1n. The solutions are those found by the ADMM algorithm. We

also report the value of λ? found by the bi-section algorithm when we use the QP algorithm.
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ERC portfolio optimization

We recall that:

x? = arg min
x

1

2
x>Σx − λ

n∑
i=1

ln xi

and:

xerc =
x?

1>n x?
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ERC portfolio optimization
The CCD solution

The first-order condition (Σx)i − λx
−1
i = 0 implies that:

x2
i σ

2
i + xiσi

∑
j 6=i

xjρi,jσj − λ = 0

The CCD algorithm is:

x
(k+1)
i =

−v (k+1)
i +

√(
v

(k+1)
i

)2

+ 4λσ2
i

2σ2
i

where:
v

(k+1)
i = σi

∑
j<i

x
(k+1)
j ρi,jσj + σi

∑
j>i

x
(k)
j ρi,jσj
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ERC portfolio optimization
The ADMM solution

In the case of the ADMM algorithm, we set:

fx (x) =
1

2
x>Σx

fy (y) = −λ
n∑

i=1

ln yi

x = y

The x-update step is:

x (k+1) = (Σ + ϕIn)−1
ϕ
(
y (k) − u(k)

)
The y -update step is:

y
(k+1)
i =

1

2

((
x

(k+1)
i + u

(k)
i

)
+

√(
x

(k+1)
i + u

(k)
i

)2

+ 4λϕ−1

)
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RB portfolio optimization

The RB portfolio is equal to:

xrb =
x?

1>n x?

where x? is the solution of the logarithmic barrier problem:

x? = arg min
x
R (x)− λ

n∑
i=1

RBi · ln xi

λ is any positive scalar and RBi is the risk budget allocated to Asset i
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RB portfolio optimization
The CCD solution (SD risk measure)

In the case of the standard deviation-based risk measure:

R (x) = −x> (µ− r) + ξ
√
x>Σx

the first-order condition for defining the CCD algorithm is:

− (µi − r) + ξ
(Σx)i√
x>Σx

− λRBi

xi
= 0

It follows that ξxi (Σx)i − (µi − r) xiσ (x)− λσ (x) · RBi = 0 or
equivalently:

αix
2
i + βixi + γi = 0

where αi = ξσ2
i , βi = ξσi

∑
j 6=i xjρi,jσj − (µi − r)σ (x) and

γi = −λσ (x) · RBi
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RB portfolio optimization
The CCD solution (SD risk measure)

The CCD algorithm is:

x
(k+1)
i =

−β(k+1)
i +

√(
β

(k+1)
i

)2

− 4α
(k+1)
i γ

(k+1)
i

2α
(k+1)
i

where:

α
(k+1)
i = ξσ2

i

β
(k+1)
i = ξσi

(∑
j<i x

(k+1)
j ρi,jσj +

∑
j>i x

(k)
j ρi,jσj

)
− (µi − r)σ

(k+1)
i (x)

γ
(k+1)
i = −λσ(k+1)

i (x) · RBi

σ
(k+1)
i (x) =

√
χ>Σχ

χ =
(
x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i , x

(k)
i+1 . . . , x

(k)
n

)
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RB portfolio optimization
The ADMM solution (convex risk measure)

We have:

{x?, y?} = arg min
x,y
R (x)− λ

n∑
i=1

RBi · ln yi

s.t. x = y

The ADMM algorithm is:
x (k+1) = proxϕ−1R(x)

(
y (k) − u(k)

)
v

(k+1)
y = x (k+1) + u(k)

y (k+1) = 1
2

(
v

(k+1)
y +

√
v

(k+1)
y � v

(k+1)
y + 4λϕ−1 · RB

)
u(k+1) = u(k) + x (k+1) − y (k+1)
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Tips and tricks of portfolio optimization

Full allocation —
∑n

i=1 xi = 1:

Ω = Hyperplane [1n, 1]

We have:

PΩ (v) = v −
(

1>n v − 1

n

)
1n

Cash neutral —
∑n

i=1 xi = 0:

Ω = Hyperplane [1n, 0]

We have:

PΩ (v) = v −
(

1>n v

n

)
1n

Thierry Roncalli Asset Management (Lecture 5) 1418 / 1520



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Standard optimization algorithms
Machine learning optimization algorithms
Application to portfolio allocation

Tips and tricks of portfolio optimization

No short selling — x ≥ 0n:

Ω = Box [0n,∞]

We have:
PΩ (v) = T (v ; 0n,∞)

Weight bounds — x− ≤ x ≤ x+:

Ω = Box

[
x−, x+

]
We have:

PΩ (v) = T
(
v ; x−, x+

)
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Tips and tricks of portfolio optimization

µ-problem — µ (x) ≥ µ?:

Ω = Halfspace [−µ,−µ?]

We have:

PΩ (v) = v +

(
µ? − µ>v

)
+

‖µ‖2
2

µ
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Tips and tricks of portfolio optimization

σ-problem — σ (x) ≤ σ?:

Ω =
{
x :
√
x>Σx ≤ σ?

}
We have:

√
x>Σx ≤ σ? ⇔

√
x> (LL>) x ≤ σ?

⇔
∥∥y>y∥∥

2
≤ σ?

⇔ y ∈ B2 (0n, σ
?)

where y = L>x and L is the Cholesky decomposition of Σ. It follows
that the proximal of the y -update is the projection onto the `2 ball
B2 (0n, σ

?):

PΩ (v) = v − proxσ?‖x‖2
(v)

= v −
(

1− σ?

max (σ?, ‖v‖2)

)
v
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Tips and tricks of portfolio optimization

Leverage management —
∑n

i=1 |xi | ≤ L+:

Ω =
{
x : ‖x‖1 ≤ L

+
}

= B1

(
0n,L+

)
The proximal of the y -update is the projection onto the `1 ball
B1 (0n,L+):

PΩ (v) = v − sign (v)� proxL+ max x (|v |)
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Tips and tricks of portfolio optimization

Leverage management — LS− ≤
∑n

i=1 xi ≤ LS+:

Ω = Halfspace

[
1n,LS+

]
∩Halfspace

[
−1n,−LS−

]
The proximal of the y -update is obtained with the Dykstra’s
algorithm by combining the two half-space projections.

Leverage management —
∣∣∑n

i=1 xi

∣∣ ≤ L+:

Ω =
{
x :
∣∣1>n x

∣∣ ≤ L+
}

This is a special case of the previous result where LS+ = L+ and
LS− = −L+:

Ω = Halfspace

[
1n,L+

]
∩Halfspace

[
−1n,L+

]
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Tips and tricks of portfolio optimization

Concentration management37

Portfolio managers can also use another constraint concerning the
sum of the k largest values:

f (x) =
n∑

i=n−k+1

x(i :n) = x(n:n) + . . .+ x(n−k+1:n)

where x(i :n) is the order statistics of x : x(1:n) ≤ x(2:n) ≤ · · · ≤ x(n:n).
Beck (2017) shows that:

proxλf (x) (v) = v − λPΩ

(v
λ

)
where:

Ω =
{
x ∈ [0, 1]n : 1>n x = k

}
= Box [0n, 1n] ∩Hyperlane [1n, k]

37An example is the 5/10/40 UCITS rule: A UCITS fund may invest no more than
10% of its net assets in transferable securities or money market instruments issued by
the same body, with a further aggregate limitation of 40% of net assets on exposures of
greater than 5% to single issuers.
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Tips and tricks of portfolio optimization

Entropy portfolio management
Bera and Park (2008) propose using a cross-entropy measure as the
objective function:

x? = arg min
x

KL (x | x̃)

s.t.

 1>n x = 1
0n ≤ x ≤ 1n

µ (x) ≥ µ?, σ (x) ≤ σ?

where KL (x | x̃) is the Kullback-Leibler measure:

KL (x | x̃) =
n∑

i=1

xi ln (xi/x̃i )

and x̃ is a reference portfolio
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Tips and tricks of portfolio optimization

Entropy portfolio management
We have:

proxλKL(v |x̃) (v) = λ


W
(
λ−1x̃1e

λ−1v1−x̃−1
1

)
...

W
(
λ−1x̃ne

λ−1vn−x̃−1
n

)


where W (x) is the Lambert W function
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Tips and tricks of portfolio optimization

Remark

Since the Shannon’s entropy is equal to SE (x) = −KL (x | 1n), we
deduce that:

proxλ SE(x) (v) = λ


W
(
λ−1eλ

−1v1−1
)

...

W
(
λ−1eλ

−1vn−1
)
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Tips and tricks of portfolio optimization

Active share constraint — AS (x | x̃) ≥ AS−:

AS (x | x̃) =
1

2

n∑
i=1

|xi − x̃i | ≥ AS−

We use the projection onto the complement B̄1 (c , r) of the `1 ball
and we obtain:

PΩ (v) = v + sign (v − x̃)�
max

(
2AS− − ‖v − x̃‖1 , 0

)
n
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Tips and tricks of portfolio optimization

Tracking error volatility — σ (x | x̃) ≤ σ?:

σ (x | x̃) ≤ σ? ⇔
√

(x − x̃)>Σ (x − x̃) ≤ σ?

⇔ ‖y‖2 ≤ σ
?

⇔ y ∈ B2 (0n, σ
?)

where y = L>x − L>x̃ . It follows that Ax + By = c where A = L>,
B = −In and c = L>x̃ . It follows that the proximal of the y -update is
the projection onto the `2 ball B2 (0n, σ

?):

PΩ (v) = v − proxσ?‖x‖2
(v)

= v −
(

1− σ?

max (σ?, ‖v‖2)

)
v
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Tips and tricks of portfolio optimization

Bid-ask transaction cost management:

ccc (x | x0) = λ

n∑
i=1

(
c−i (x0,i − xi )+ + c+

i (xi − x0,i )+

)
where c−i and c+

i are the bid and ask transaction costs. We have:

proxccc(x|x0) (v) = x0 + S
(
v − x0;λc−, λc+

)
where S (v ;λ−, λ+) = (v − λ+)+ − (v + λ−)− is the two-sided
soft-thresholding operator.
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Tips and tricks of portfolio optimization

Turnover management:

Ω =
{
x ∈ Rn : ‖x − x0‖1 ≤ τ

+
}

The proximal operator is:

PΩ (v) = v − sign (v − x0)�min (|v − x0| , s?)

where s? =
{
s ∈ R :

∑n
i=1 (|vi − x0,i | − s)+ = τ+

}
.
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Table 110: What works / What doesn’t

Bond Stock Trend Mean Index HF Stock Technical
Scoring Picking Filtering Reverting Tracking Tracking Classification Analysis

Lasso , , , / ,
NMF , /

Boosting , ,
Bagging , ,

Random forests , / /
Neural nets , /

SVM , / / /
Sparse Kalman / ,

K-NN /
K-means , ,

Testing protocols38 , , , , ,

Source: Roncalli (2014), Big Data in Asset Management, ESMA/CEMA/GEA meeting, Madrid.

38Cross-validation, training/test/probe sets, K-fold, etc.
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2021 6= 2014

The evolution of machine learning in finance is fast, very fast!
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Some examples

Natural Language Processing
(NLP)

Deep learning (DL)

Reinforcement learning (RL)

Gaussian process (GP) and
Bayesian optimization (BO)

Learning to rank (MLR)

Etc.

Some applications

Robo-advisory

Stock classification

Q1 − Q5 long/short strategy

Trend-following strategies

Mean-reverting strategies

Scoring models

Sentiment and news analysis

Etc.

Thierry Roncalli Asset Management (Lecture 5) 1434 / 1520



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises
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The underlying idea is to simulate artificial multi-dimensional financial
time series, whose statistical properties are the same as those
observed in the financial markets

≈ Monte Carlo simulation of the financial market

3 main approaches:

1 Restricted Boltzmann machines (RBM)
2 Generative adversarial networks (GAN)
3 Convolutional Wasserstein models (W-GAN)

The goal is to:

improve the the risk management of quantitative investment strategies
avoid the over-fitting bias of backtesting

The current research shows that results are disappointed until now
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Regularized portfolio optimization

Portfolio optimization with CCD and ADMM algorithms

Question 1

We consider the following optimization program:

x? = arg min
1

2
x>Σx − λ

n∑
i=1

bi ln xi

where Σ is the covariance matrix, b is a vector of positive budgets and x is
the vector of portfolio weights.
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Portfolio optimization with CCD and ADMM algorithms

Question 1.a

Write the first-order condition with respect to the coordinate xi and show
that the solution x? corresponds to a risk-budgeting portfolio.
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Portfolio optimization with CCD and ADMM algorithms

We have:

L (x ;λ) = arg min
1

2
x>Σx − λ

n∑
i=1

bi ln xi

The first-order condition is:

∂ L (x ;λ)

∂ xi
= (Σx)i − λ

bi

xi
= 0

or:
xi · (Σx)i = λbi
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Portfolio optimization with CCD and ADMM algorithms

If we assume that the risk measure is the portfolio volatility:

R (x) =
√
x>Σx

the risk contribution of Asset i is equal to:

RC i (x) =
xi · (Σx)i√

x>Σx

We deduce that the optimization problem defines a risk budgeting
portfolio:

xi · (Σx)i

bi
=

xj · (Σx)j

bj
= λ⇔ RC i (x)

bi
=
RCj (x)

bj

where the risk measure is the portfolio volatility and the risk budgets are
(b1, . . . , bn).
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Portfolio optimization with CCD and ADMM algorithms

Question 1.b

Find the optimal value x?i when we consider the other coordinates
(x1, . . . , xi−1, xi+1, . . . , xn) as fixed.
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Portfolio optimization with CCD and ADMM algorithms

The first-order condition is equivalent to:

xi · (Σx)i − λbi = 0

We have:
(Σx)i = xiσ

2
i + σi

∑
j 6=i

xjρi,jσj

It follows that:
x2

i σ
2
i + xiσi

∑
j 6=i

xjρi,jσj − λbi = 0
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Portfolio optimization with CCD and ADMM algorithms

We obtain a second-degree equation:

αix
2
i + βixi + γi = 0

where: 
αi = σ2

i

βi = σi

∑
j 6=i xjρi,jσj

γi = −λbi

1 The polynomial function is convex because we have αi = σ2
i > 0

2 The product of the roots is negative:

x ′i x
′′
i =

γi

αi
= −λbi

σ2
i

< 0

3 The discriminant is positive:

∆ = β2
i − 4αiγi =

σi

∑
j 6=i

ρi,jσjyj

2

+ 4λbiσ
2
i > 0
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Portfolio optimization with CCD and ADMM algorithms

We always have two solutions with opposite signs. We deduce that the
solution is the positive root of the second-degree equation:

x?i = x ′′i =
−βi +

√
β2

i − 4αiγi

2αi

=
−σi

∑
j 6=i xjρi,jσj +

√
σ2

i

(∑
j 6=i xjρi,jσj

)2

+ 4λbiσ2
i

2σ2
i
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Portfolio optimization with CCD and ADMM algorithms

Question 1.c

We note x
(k)
i the value of the i th coordinate at the kth iteration. Deduce

the corresponding CCD algorithm. How to find the RB portfolio xrb?
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Portfolio optimization with CCD and ADMM algorithms

The CCD algorithm consists in iterating the following formula:

x
(k)
i =

−β(k)
i +

√(
β

(k)
i

)2

− 4α
(k)
i γ

(k)
i

2α
(k)
i

where: 
α

(k)
i = σ2

i

β
(k)
i = σi

(∑
j<i ρi,jσjx

(k)
j +

∑
j>i ρi,jσjx

(k−1)
j

)
γ

(k)
i = −λbi

The RB portfolio is the scaled solution:

xrb =
x?∑n

i=1 x
?
i
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Portfolio optimization with CCD and ADMM algorithms

Question 1.d

We consider a universe of three assets, whose volatilities are equal to 20%,
25% and 30%. The correlation matrix is equal to:

ρ =

 100%
50% 100%
60% 70% 100%


We would like to compute the ERC portfolioa using the CCD algorithm.
We initialize the CCD algorithm with the following starting values
x (0) = (33.3%, 33.3%, 33.3%). We assume that λ = 1.

aThis means that:

bi =
1

3
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Portfolio optimization with CCD and ADMM algorithms

Question 1.d.i

Starting from x (0), find the optimal coordinate x
(1)
1 for the first asset.
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Portfolio optimization with CCD and ADMM algorithms

We have: 
α

(1)
1 = 0.22 = 4%

β
(1)
1 = 0.02033

γ
(1)
i = −0.333%

We obtain:
x

(1)
1 = 2.64375
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Question 1.d.ii

Compute then the optimal coordinate x
(1)
2 for the second asset.
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Portfolio optimization with CCD and ADMM algorithms

We have: 
α

(1)
2 = 0.252 = 6.25%

β
(1)
2 = 0.08359

γ
(1)
2 = −0.333%

We obtain:
x

(1)
2 = 1.73553
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Question 1.d.iii

Compute then the optimal coordinate x
(1)
3 for the third asset.
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We have: 
α

(1)
3 = 0.32 = 9%

β
(1)
3 = 0.18629

γ
(1)
3 = −0.333%

We obtain:
x

(1)
3 = 1.15019
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Question 1.d.iv

Give the CCD coordinates x
(k)
i for k = 1, . . . , 10.
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Table 111: CCD coordinates (k = 1, . . . , 5)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
1 1 0.04000 0.02033 −0.33333 2.64375 2.64375 0.33333 0.33333
1 2 0.06250 0.08359 −0.33333 1.73553 2.64375 1.73553 0.33333
1 3 0.09000 0.18629 −0.33333 1.15019 2.64375 1.73553 1.15019
2 1 0.04000 0.08480 −0.33333 2.01525 2.01525 1.73553 1.15019
2 2 0.06250 0.11077 −0.33333 1.58744 2.01525 1.58744 1.15019
2 3 0.09000 0.15589 −0.33333 1.24434 2.01525 1.58744 1.24434
3 1 0.04000 0.08448 −0.33333 2.01782 2.01782 1.58744 1.24434
3 2 0.06250 0.11577 −0.33333 1.56202 2.01782 1.56202 1.24434
3 3 0.09000 0.15465 −0.33333 1.24842 2.01782 1.56202 1.24842
4 1 0.04000 0.08399 −0.33333 2.02183 2.02183 1.56202 1.24842
4 2 0.06250 0.11609 −0.33333 1.56044 2.02183 1.56044 1.24842
4 3 0.09000 0.15471 −0.33333 1.24821 2.02183 1.56044 1.24821
5 1 0.04000 0.08395 −0.33333 2.02222 2.02222 1.56044 1.24821
5 2 0.06250 0.11609 −0.33333 1.56044 2.02222 1.56044 1.24821
5 3 0.09000 0.15472 −0.33333 1.24817 2.02222 1.56044 1.24817
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Table 112: CCD coordinates (k = 6, . . . , 10)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
6 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56044 1.24817
6 2 0.06250 0.11608 −0.33333 1.56045 2.02223 1.56045 1.24817
6 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56045 1.24816
7 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56045 1.24816
7 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
7 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
8 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
8 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
8 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
9 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
9 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
9 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816

10 1 0.04000 0.08395 −0.33333 2.02223 2.02223 1.56046 1.24816
10 2 0.06250 0.11608 −0.33333 1.56046 2.02223 1.56046 1.24816
10 3 0.09000 0.15472 −0.33333 1.24816 2.02223 1.56046 1.24816
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Question 1.d.v

Deduce the ERC portfolio.
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The CCD algorithm has converged to the following solution:

x? =

 2.02223
1.56046
1.24816


Since

∑3
i=1 x

?
i = 4.83085, we deduce that:

xerc =
1

4.83085

 2.02223
1.56046
1.24816

 =

 41.86076%
32.30189%
25.83736%
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Question 1.d.vi

Compute the variance of the previous CCD solution. What do you notice?
Explain this result.
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We remind that the CCD solution is:

x? =

 2.02223
1.56046
1.24816


We have:

σ2 (x?) = x?>Σx? = 1

We notice that:
σ2 (x?) = λ
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At the optimum, we remind that:

λ =
x?i · (Σx?)i

bi
=

x?i · (Σx?)i

n−1

We deduce that:

λ =
1

n

n∑
i=1

x?i · (Σx?)i

n−1

=
n∑

i=1

x?i · (Σx?)i

= x?>Σx?

= σ2 (x?)

It follows that the portfolio variance of the CCD solution is exactly equal
to λ.
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Question 1.d.vii

Verify that the CCD solution converges faster to the ERC portfolio when
we assume that λ = x>ercΣxerc.
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We have:

σ (xerc) =
√

x>ercΣxerc = 20.70029%

and:
σ2 (xerc) = 4.28502%

We obtain the results given in Table 113 when λ = 4.28502%. If we
compare with those given in Tables 111 and 112, it is obvious that the
convergence is faster in the present case.
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Table 113: CCD coordinates (k = 1, . . . , 5)

k i α
(k)
i β

(k)
i γ

(k)
i x

(k)
i

CCD coordinates
x1 x2 x3

0 0.33333 0.33333 0.33333
1 1 0.04000 0.02033 −0.01428 0.39521 0.39521 0.33333 0.33333
1 2 0.06250 0.02738 −0.01428 0.30680 0.39521 0.30680 0.33333
1 3 0.09000 0.03033 −0.01428 0.26403 0.39521 0.30680 0.26403
2 1 0.04000 0.01718 −0.01428 0.42027 0.42027 0.30680 0.26403
2 2 0.06250 0.02437 −0.01428 0.32133 0.42027 0.32133 0.26403
2 3 0.09000 0.03200 −0.01428 0.25847 0.42027 0.32133 0.25847
3 1 0.04000 0.01734 −0.01428 0.41893 0.41893 0.32133 0.25847
3 2 0.06250 0.02404 −0.01428 0.32295 0.41893 0.32295 0.25847
3 3 0.09000 0.03204 −0.01428 0.25835 0.41893 0.32295 0.25835
4 1 0.04000 0.01737 −0.01428 0.41863 0.41863 0.32295 0.25835
4 2 0.06250 0.02403 −0.01428 0.32302 0.41863 0.32302 0.25835
4 3 0.09000 0.03203 −0.01428 0.25837 0.41863 0.32302 0.25837
5 1 0.04000 0.01738 −0.01428 0.41861 0.41861 0.32302 0.25837
5 2 0.06250 0.02403 −0.01428 0.32302 0.41861 0.32302 0.25837
5 3 0.09000 0.03203 −0.01428 0.25837 0.41861 0.32302 0.25837
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Question 2

We recall that the ADMM algorithm is based on the following
optimization problem:

{x?, y?} = arg min fx (x) + fy (y)

s.t. Ax + By = c
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Question 2.a

Describe the ADMM algorithm.
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The ADMM algorithm consists in the following iterations:
x (k+1) = arg minx

{
fx (x) +

ϕ

2

∥∥Ax + By (k) − c + u(k)
∥∥2

2

}
y (k+1) = arg miny

{
fy (y) +

ϕ

2

∥∥Ax (k+1) + By − c + u(k)
∥∥2

2

}
u(k+1) = u(k) +

(
Ax (k+1) + By (k+1) − c

)
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Question 2.b

We consider the following optimization problem:

w? (γ) = arg min
1

2
(w − b)> Σ (w − b)− γ (w − b)> µ

s.t.

 1>n w = 1∑n
i=1 |wi − bi | ≤ τ+

0n ≤ w ≤ 1n
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Question 2.b.i

Give the meaning of the symbols w , b, Σ, and µ. What is the goal of this
optimization program? What is the meaning of the constraint∑n

i=1 |wi − bi | ≤ τ+?
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w is the vector of portfolio weights:

w = (w1, . . . ,wn)

b is the vector of benchmark weights:

b = (b1, . . . , bn)

Σ is the covariance matrix of asset returns

µ is the vector of expected returns
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The goal of the optimization problem is to tilt a benchmark portfolio by
controlling the volatility of the tracking error:

σ (w | b) =

√
(w − b)>Σ (w − b)

and improving the expected excess return:

µ (w | b) = (w − b)> µ

This is a typical γ-problem when there is a benchmark
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We remind that the turnover between the benchmark b and the portfolio
w is equal to:

τ (w | b) =
n∑

i=1

|wi − bi |

Therefore, we impose that the turnover is less than an upper limit:

τ (w | b) ≤ τ+
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Question 2.b.ii

What is the best way to specify fx (x) and fy (y) in order to find
numerically the solution. Justify your choice.
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The best way to specify fx (x) and fy (y) is to split the QP problem and
the turnover constraint:

{x?, y?} = arg min
x,y

fx (x) + fy (y)

s.t. x − y = 0n

where:

fx (x) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ+ 1Ω1 (x) + 1Ω3 (x)

fy (y) = 1Ω2 (y)

Ω1 (x) =
{
x : 1>n x = 1

}
Ω2 (y) =

{
y :

n∑
i=1

|yi − bi | ≤ τ+

}
Ω3 (x) = {x : 0n ≤ x ≤ 1n}

Indeed, the x-update step is a standard QP problem whereas the y -update
step is the projection onto the `1-ball B1 (b, τ+).
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Question 2.b.iii

Give the corresponding ADMM algorithm.
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We have:

(∗) =
1

2
(x − b)>Σ (x − b)− γ (x − b)> µ

=
1

2
x>Σx − x>Σb +

1

2
b>Σb − γx>µ+ γb>µ

=
1

2
x>Σx − x> (Σb + γµ) +

(
γb>µ+

1

2
b>Σb

)
︸ ︷︷ ︸

constant
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If we note v
(k+1)
x = y (k) − u(k), we have:∥∥∥x − y (k) + u(k)

∥∥∥2

2
=

∥∥∥x − v (k+1)
x

∥∥∥2

2

=
(
x − v (k+1)

x

)> (
x − v (k+1)

x

)
= x>Inx − 2x>v (k+1)

x +
(
v (k+1)

x

)>
v (k+1)

x︸ ︷︷ ︸
constant
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It follows that:

f (k+1)
x (x) = fx (x) +

ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

=
1

2
(x − b)> Σ (x − b)− γ (x − b)> µ+

1Ω1 (x) + 1Ω3 (x) +
ϕ

2

∥∥∥x − y (k) + u(k)
∥∥∥2

2

=
1

2
x> (Σ + ϕIn) x − x>

(
Σb + γµ+ ϕv (k+1)

x

)
+

1Ω1 (x) + 1Ω3 (x) + constant
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We have:

f (k+1)
y (y) = 1Ω2 (y) +

ϕ

2

∥∥∥x (k+1) − y + u(k)
∥∥∥2

2

= 1Ω2 (y) +
ϕ

2

∥∥∥y − v (k+1)
y

∥∥∥2

2

where v
(k+1)
y = x (k+1) + u(k). We deduce that:

y (k+1) = arg min
y

f (k+1)
y (y)

= PΩ2

(
v (k+1)

y

)
where:

Ω2 = B1

(
b, τ+

)
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We remind that:

PB1(c,λ) (v) = PB1(0n,λ) (v − c) + c

PB1(0n,λ) (v) = v − sign (v)� proxλmax x (|v |)
proxλmax x (v) = min (v , s?)

where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(vi − s)+ = λ

}
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We deduce that:

PΩ2

(
v (k+1)

y

)
= PB1(b,τ+)

(
v (k+1)

y

)
= PB1(0n,τ+)

(
v (k+1)

y − b
)

+ b

= v (k+1)
y − sign

(
v (k+1)

y − b
)
� proxτ+ max x

(∣∣∣v (k+1)
y − b

∣∣∣)
= v (k+1)

y − sign
(
v (k+1)

y − b
)
�min

(∣∣∣v (k+1)
y − b

∣∣∣ , s?)
where s? is the solution of the following equation:

s? =

{
s ∈ R :

n∑
i=1

(∣∣∣v (k+1)
y ,i − bi

∣∣∣− s
)

+
= τ+

}
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The ADMM algorithm becomes:

v
(k+1)
x = y (k) − u(k)

Q(k+1) = Σ + ϕIn
R(k+1) = Σb + γµ+ ϕv

(k+1)
x

x (k+1) = arg minx

{
1
2x
>Q(k+1)x − x>R(k+1) + 1Ω1 (x) + 1Ω3 (x)

}
v

(k+1)
y = x (k+1) + u(k)

s? =

{
s ∈ R :

∑n
i=1

(∣∣∣v (k+1)
y ,i − bi

∣∣∣− s
)

+
= τ+

}
y (k+1) = v

(k+1)
y − sign

(
v

(k+1)
y − b

)
�min

(∣∣∣v (k+1)
y − b

∣∣∣ , s?)
u(k+1) = u(k) + x (k+1) − y (k+1)
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Question 2.c

We consider the following optimization problem:

w? = arg min ‖w − w̃‖1

s.t.


1>n w = 1√

(w − b)> Σ (w − b) ≤ σ+

0n ≤ w ≤ 1n
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Question 2.c.i

What is the meaning of the objective function ‖w − w̃‖1? What is the

meaning of the constraint

√
(w − b)>Σ (w − b) ≤ σ+?
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The objective function ‖w − w̃‖1 is the turnover between a given portfolio
w̃ and the optimized portfolio w

The constraint

√
(w − b)> Σ (w − b) ≤ σ+ is a tracking error limit with

respect to a benchmark b
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Question 2.c.ii

Propose an equivalent optimization problem such that fx (x) is a QP
problem. How to solve the y -update?
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The optimization problem is equivalent to solve the following program:

w? = arg min
1

2
(w − b)>Σ (w − b) + λ ‖w − w̃‖1

s.t.

{
1>n w = 1
0n ≤ w ≤ 1n
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We deduce that:

fx (x) =
1

2
(x − b)>Σ (x − b) + 1Ω1 (x) + 1Ω2 (x)

where:
Ω1 (x) =

{
x : 1>n x = 1

}
and:

Ω2 (x) = {x : 0n ≤ x ≤ 1n}
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We have:
fy (y) = λ ‖w − w̃‖1

We remind that:

proxλ‖x‖1
(v) = S (v ;λ) = sign (v)� (|v | − λ1n)+

and:
proxf (x+b) (v) = proxf (v + b)− b

The y -update step is then equal to:

y (k+1) = proxλ‖w−w̃‖1

(
x (k+1) + u(k)

)
= w̃ + sign

(
x (k+1) + u(k) − w̃

)
�
(∣∣∣x (k+1) + u(k) − w̃

∣∣∣− λ1n

)
+

because fy (y) is fully separable39

39Otherwise the scaling property does not work!
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Exercise

We consider an investment universe with 6 assets. We assume that their
expected returns are 4%, 6%, 7%, 8%, 10% and 10%,, and their
volatilities are 6%, 10%, 11%, 15%, 15% and 20%. The correlation matrix
is given by:

ρ =


100%

50% 100%
20% 20% 100%
50% 50% 80% 100%

0% −20% −50% −30% 100%
0% 20% 30% 0% 0% 100%
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Question 1

We restrict the analysis to long-only portfolios meaning that
∑n

i=1 xi = 1
and xi ≥ 0.
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Question 1.a

We consider the Herfindahl index H (x) =
∑n

i=1 x
2
i . What are the two

limit cases of H (x)? What is the interpretation of the statistic
N (x) = H−1 (x)?
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We consider the following optimization problem:

x? = arg minH (x)

s.t.
n∑

i=1

xi = 1

We deduce that the Lagrange function is:

L (x ;λ) = H (x)− λ

(
n∑

i=1

xi = 1

)
= x>x − λ

(
1>n x − 1

)
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The first-order condition is:

∂ L (x ;λ)

∂ x
= x − λ1n = 0n

Since we have 1>n x − 1 = 0, we deduce that:

λ =
1

1>n 1n
=

1

n

We conclude that the lower bound is reached for the equally-weighted
portfolio:

xew =
1

n
· 1n

and we have:

H (xew) =
1

n2
· 1>n 1n =

1

n
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Since the weights are positive, we have:

H (x) =
n∑

i=1

x2
i

≤

(
n∑

i=1

xi

)2

≤ 1

The upper bound is reached when the portfolio is concentrated on one
asset:

∃i : xi = 1
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We conclude that:
1

n
≤ H (x) ≤ 1

The statistic N (x) = H−1 (x) is the effective number of assets
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Question 1.b

We consider the following optimization problem (P1):

x? (λ) = arg min
1

2
x>Σx + λx>x

s.t.

{ ∑n
i=1 xi = 1

xi ≥ 0

What is the link between this constrained optimization program and the
weight diversification based on the Herfindahl index?
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The optimization problem (P1) is equivalent to:

x?
(
H+
)

= arg min
1

2
x>Σx

s.t.


∑n

i=1 xi = 1
xi ≥ 0
x>x ≤ H+

We obtain a long-only minimum variance portfolio with a diversification
constraint based on the Herfindahl index:

H (x) ≤ H+

We have the following correspondance:

H+ = H (x? (λ)) = x? (λ)> x? (λ)

Given a value of λ, we can then compute the implicit constraint
H (x) ≤ H+.
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Question 1.c

Solve Program (P1) when λ is equal to respectively 0, 0.001, 0.01, 0.05,
0.10 and 10. Compute the statistic N (x). Comment on these results.
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Table 114: Solution of the optimization problem (P1)

λ 0.000 0.001 0.010 0.050 0.100 10.000
x?1 (λ) (in %) 44.60 35.66 23.97 18.71 17.76 16.68
x?2 (λ) (in %) 9.12 14.60 18.10 17.08 16.89 16.67
x?3 (λ) (in %) 25.46 26.57 19.96 16.89 16.71 16.67
x?4 (λ) (in %) 0.00 0.00 7.64 14.46 15.52 16.65
x?5 (λ) (in %) 20.40 22.11 22.38 19.31 18.21 16.69
x?6 (λ) (in %) 0.43 1.07 7.94 13.55 14.92 16.65
H (x? (λ)) 0.3137 0.2680 0.1923 0.1693 0.1675 0.1667
N (x? (λ)) 3.19 3.73 5.20 5.91 5.97 6.00
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Question 1.d

Using the bisection algorithm, find the optimal value of λ? that satisfies:

N (x? (λ?)) = 4

Give the composition of x? (λ?). What is the interpretation of x? (λ?)?
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The optimal solution is:
λ? = 0.002301

The optimal weights (in %) are equal to:

x? =


31.62%
17.24%
26.18%

0.00%
22.63%

2.33%


The effective number of bets N (x?) is equal to 4
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Question 2

We consider long/short portfolios and the following optimization problem
(P2):

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

|xi |

s.t.
n∑

i=1

xi = 1

Thierry Roncalli Asset Management (Lecture 5) 1502 / 1520



Portfolio optimization
Pattern learning and self-automated strategies

Market generators
Tutorial exercises

Portfolio optimization with CCD and ADMM algorithms
Regularized portfolio optimization

Regularized portfolio optimization

Question 2.a

Solve Program (P2) when λ is equal to respectively 0, 0.0001, 0.001, 0.01,
0.05, 0.10 and 10. Comment on these results.
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Table 115: Solution of the optimization problem (P2)

λ 0.000 0.0001 0.001 0.010 0.050 0.100 10.000
x?1 (λ) (in %) 35.82 37.17 44.50 44.60 44.60 44.60 44.60
x?2 (λ) (in %) 33.08 30.26 11.48 9.12 9.12 9.12 9.12
x?3 (λ) (in %) 77.62 71.77 31.28 25.46 25.46 25.46 25.46
x?4 (λ) (in %) −53.48 −47.97 −7.16 0.00 0.00 0.00 0.00
x?5 (λ) (in %) 20.83 20.56 19.90 20.40 20.40 20.40 20.40
x?6 (λ) (in %) −13.87 −11.78 0.00 0.43 0.43 0.43 0.43
L (x) (in %) 234.69 219.50 114.33 100.00 100.00 100.00 100.00
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Question 2.b

For each optimized portfolio, calculate the following statistic:

L (x) =
n∑

i=1

|xi |

What is the interpretation of L (x)? What is the impact of Lasso
regularization?
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L (x) =
∑n

i=1 |xi | is the leverage ratio. Their values are reported in Table
115.
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Question 3

We assume that the investor holds an initial portfolio x (0) defined as
follows:

x (0) =


10%
15%
20%
25%
30%

0%


We consider the optimization problem (P3):

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1
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Question 3.a

Solve Program (P3) when λ is equal respectively to 0, 0.0001, 0.001,
0.0015 and 0.01. Compute the turnover of each optimized portfolio.
Comment on these results.
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Table 116: Solution of the optimization problem (P3)

λ 0.000 0.000 0.001 0.002 0.010
x?1 (λ) (in %) 35.82 35.55 27.90 24.28 10.00
x?2 (λ) (in %) 33.08 30.61 15.00 15.00 15.00
x?3 (λ) (in %) 77.62 72.35 33.36 22.86 20.00
x?4 (λ) (in %) −53.48 −48.00 −5.20 7.87 25.00
x?5 (λ) (in %) 20.83 21.51 28.94 30.00 30.00
x?6 (λ) (in %) −13.87 −12.02 0.00 0.00 0.00

τ
(
x? (λ) | x (0)

)
(in %) 203.04 187.02 62.51 34.27 0.00
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Question 3.b

Using the bisection algorithm, find the optimal value of λ? such that the
two-way turnover is equal to 60%. Give the composition of x? (λ?).
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The optimal solution is:
λ? = 0.00103

The optimal weights (in %) are equal to:

x? =


27.23%
15.00%
32.77%
−4.30%
29.30%

0.00%


The turnover τ

(
x? | x (0)

)
is equal to 60%
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Question 3.c

Same question when the two-way turnover is equal to 50%.
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The optimal solution is:
λ? = 0.00119

The optimal weights (in %) are equal to:

x? =


25.53%
15.00%
29.47%

0.00%
30.00%

0.00%


The turnover τ

(
x? | x (0)

)
is equal to 50%
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Question 3.d

What becomes the portfolio x? (λ) when λ→∞? How do you explain
this result?
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We notice that:
lim
λ→∞

x? (λ) = x (0)

This is normal since we have:

x? (λ) = arg min
1

2
x>Σx + λ

n∑
i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1

We deduce that:

x? (∞) = arg min
n∑

i=1

∣∣∣xi − x
(0)
i

∣∣∣
s.t.

n∑
i=1

xi = 1

The solution is x? (∞) = x (0)
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