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Abstract

We present an actor-critic-type reinforcement learning algorithm for solving the prob-

lem of hedging a portfolio of financial instruments such as securities and over-the-counter

derivatives using purely historic data.

The key characteristics of our approach are: the ability to hedge with derivatives such

as forwards, swaps, futures, options; incorporation of trading frictions such as trading cost

and liquidity constraints; applicability for any reasonable portfolio of financial instruments;

realistic, continuous state and action spaces; and formal risk-adjusted return objectives.

Most importantly, the trained model provides an optimal hedge for arbitrary initial port-

folios and market states without the need for re-training.

We also prove existence of finite solutions to our Bellman equation, and show the relation

to our vanilla Deep Hedging approach [BGTW19]
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1 Introduction

This note discusses a model-free, data-driven method of managing a portfolio of financial instru-

ments such as stock, FX, securities and derivatives with reinforcement learing ”AI” methods. It

is a dynamic programming “Bellman” version of our Deep Hedging approach [BGTW19]. The
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key characteristics of our Deep Hedging framework above several other proposed methods are

the ability to hedge with derivatives such as forwards, swaps, futures, options; incorporation

of trading frictions such as trading cost and liquidity constraints; applicability for any reason-

able portfolio of financial instruments; realistic, continuous state and action spaces; and formal

risk-adjusted return objectives. However, our original approach solved this problem for a given

initial portfolio and market state. That means that it needs to be re-trained, say, daily to reflect

changes in our trading universe or the market. The method proposed here, on the other hand,

attempts to solve the optimal hedging problem for any portfolio and market state, as long as

they are reasonably close to the data used to train the model.

The work presented here is an extension of our patent application [BMW20]. The main

contribution is to provide a numerical implementation method for the practical problem of

being able to represent arbitrary portfolios of derivatives as states using purely historic data.

We also clarify conditions under which the corresponding Bellman equation is well-posed and

admits finite solutions.

Quant Finance 2.0

The motivation for the work presented in this article – and of the Deep Hedging framework in

general – is to build financial risk management models which “learn” to trade from historic data

and experiences. Today, portfolios of derivatives, securities and other instruments are managed

using the traditional quantitative finance engineering paradigm borne out of the seminal work

by Black, Scholes & Morten. However, practical experience on any trading desk is that such

models do not perform sufficiently well to be automated directly. To start with, they do not

take into account trading frictions such as cost and liquidity constraints. Even beyond that

they suffer from the underlying engineering approach which prioritizes a focus on interpolating

hedging instruments such as forwards, options, swaps over realistic market dynamics. It is an

indication of the state of affairs that standard text books on financial engineering in quantitative

finance do not discuss real data out-of-sample performance of the models proposed.

As a result, the prices and risk management signals (“greeks”) are overly simplistic and do

not capture important real-life dynamics. A typical trader will therefore need to overwrite the

prices and trading signals from such as standard models with their own heuristics.

Our Deep Hedging framework takes a different approach and focuses on robust performance

under real-life dynamics, enabed by the use of modern machine learning techniques. The current

article is the closest attempting to mimicing a trader’s real life behaviour in that here we will

give an AI the same historic “experience” a real trader would have. Of course, our model will

still be limited by the coverage of historic scenarios used to train it. Hence, human oversight is

still required to cater for abrupt changes in market scenarios or starkly adverse risk scenarios.

The website http://deep-hedging.com gives an overview over available material on the

wider topic.

Related Works

There a few related works concerning the use of machine learning methods for managing port-

folios of financial instruments which include derivatives, starting with our own [BGTW19].

However, there we solved the optimal trading problem for a fixed initial portfolio and a fixed

initial market state using periodic policy search, a method akin to “American Monte Carlo”.
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In [DJK+20] the authors discuss the use of Bellman methods for this task, namely using

DQN and a number of similar methods. They also use risk-adjusted returns in the form of a

mean-variance objective. However, in their work the state and action spaces are finite which are

not realistic in practise. Moreover, their parametrization of the derivative portfolio is limited to

single vanilla options. They also do not cover derivatives as hedging instruments.

In [Hal17] the authors also develop a discrete state approach, where the problem is solved for

each derivative position separately. The authors focus in their first work on vanilla options and

minimize the terminal variance of the delta-hedged position. In their later [Hal19] the authors

present methods to smooth the state space. In neither account are derivatives as hedging

instruments supported.

There is a larger literature on the application of AI methods for managing portfolio risks

in the context of perpetual assets such as stock and FX portfolios which might reasonably be

approximated by normal assets. See the summary [KR19] for an overview, where they also cover

the related topic of trade execution with AI methods.

Underlying our work is the use of dynamic risk measures, a topic with a wide literature. We

refer the interested reader to [DS05] and [?] among many others.

2 Deep Bellman Hedging

In this note we will use a notation much more similar to standard reinforcement learning liter-

ature, chiefly [SB18]. That means in particular that we will formulate our approach essentially

as a continuous state Markov Decision Process (MDP) problem. We will make a decision from

some point in time to another. That would typically be intraday or from day to day. To simplify

our discussion we will assume we are making a decision “today” and then again “tomorrow”.

Variables which are valid tomorrow will be denoted by ′. We will strive to use bold letters for

vectors. A product of two vectors is element wise, while “·” represents the dot product. We will

strive to use small letters for instances of data, and capital letters for random variables.

We denote by m the market state today. The market contains all information available to

us today such as current market prices, time, past prices, bid/asks, social media feeds and the

like. The set of all market states is denoted by M ⊂ RN . All quantities observed today are a

function of the market state.1 The market tomorrow is a random variable M′ whose distribution

is assumed to only depend on m, and not on our trading activity.2 In terms of notation, think

m ≡ mt and M′ ≡Mt+1. The expectation operator of a function f of M′ conditional on m is

written as E[f(M′)|m] :=
∫
f(m′)P[dm′|m].

We will trade financial instruments such as securities, OTC derivatives or currencies. We

will loosely refer to them as “derivatives” as the most general term, even if we explicitly include

primary asset such as stocks and currencies. We use X to refer to the space of these instruments.

For x ∈ X we denote by r(x,m) ∈ R the cashflows arising from holding x today, aggregated into

our accounting currency.3 Cashflows here cover everything from expiry settlements, coupons,

dividends, to payments arising from borrowing or lending an asset. For a vector x of instruments

we use r(x;m) to denote the vector of their cashflows.

1Mathematically, we say that m generates today’s σ-algebra.
2See the lecture notes [?] for an example of incorporating market impact.
3This implies implies that spot-FX transactions are frictionless.
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An instrument changes with the passage of time: an instrument x ∈ X today becomes x′ ∈ X
tomorrow, representing only cashflows from tomorrow onwards. If the expiry of the instrument

is today, then x′ = 0.

Every instrument x we may trade has a book value which we denote by B(x,m). The book

value of a financial instrument is its official mark-to-market, computed using the prevailing

market data m. This could be a simple closing price, a weighted mid-price, or the result of

computing more complex standard derivative model. Following our notation B(x′,M′) denotes

the book value of the instrument tomorrow. We use B(x,m) for the vector of book values if x

is a vector of instruments. We like to stress that contrary to [BMPW22] here the book value is

with respect to only to today’s and future cashflows, not past cashflows.

In order to take into account the value of money across time, we will also assume are given

a bank account – usually called the numeraire - which charges the same overnight interest rate

for credits and deposits. The respective one-day discount factor from tomorrow to today is

denoted by β(m) and we will assume that there is some β∗ such that β(m) ≤ β∗ < 1. Contrary

to [BGTW19] we do not assume that cashflows are implicitly discounted using our bank account.

The discounted profit-and-loss (P&L) for a given instrument x ∈ X is the random variable

dB(x,m,M′) := β(s)B(x′,M′)−B(x,m)
︸ ︷︷ ︸

Change in book value

+ r(x,m)
︸ ︷︷ ︸

Cashflows

. (1)

If x ∈ X n is a vector, then dB(x,m,M′) denotes the vector of P&Ls.

Trading

A trader is in charge of a portfolio z ∈ X – also called “book” – of financial instruments such as

currencies, securities and over-the-counter (OTC) derivatives. We call the combined s := (z,m)

our state today which takes values in s ∈ X ×S. We will switch in our notation between writing

functions in both variables (z,m) and only in (s) depending on context.

In order to risk manage her portfolio, the trader has access to n liquid hedging instruments

h ≡ h(s) ∈ X n in each time step. These are any liquid instruments such such as forwards, op-

tions, swaps etc. Across different market states they will usually not be the contractually same

fixed-strike fixed-maturity instruments: instead, they will usually be defined relative the prevail-

ing market in terms of time-to-maturities and strikes relative to at-the-money. See [BGTW19]

for details.

The action of buying4 a ∈ Rn units of our hedging instruments will incur transaction cost

c(a; z,m) on top of the book value. Making cost dependent on both the current portfolio and

the market allows modelling trading restrictions based on our current position such as short-sell

constraints, or restrictions based on risk exposure. Transaction cost as function of a is assumed

to be normalized to c(0; s) = 0, non-negative, and convex.5 The convex set of admissible actions

is given as A(s) := {a ∈ Rn : c(a; s) <∞}.
A trading policy π is a function π(s) ≡ π(z, s) which determines the next action based on

our current state, i.e. simply a := π(s).

A trader will usually manage her book by referring to the change in book values plus any

other cashflows, most notably cashflows and the cost of hedging. The associated reward for

4Purchasing a negative quantity is a sell.
5Convexity excludes fixed transaction cost.
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taking an action a per time step is given as

R(a; z,m) := dB(z,m,M′) + a · dB(h,m,M′)− c(a, z,m) . (2)

The new joint portfolio tomorrow is given by

z′a := z′ + a · h′ . (3)

The new state tomorrow is a random variable depending on our action which we write as

S′
a := (z′a,M

′) .

2.1 The Bellman Equation for Monetary Utilities

Standard reinforcement learning as discussed for example in [SB18] usually aims to maximize

the “discounted” expected future rewards of running a given policy. Essentially, the optimal

value function V ∗ is stipulated to satisfy a Bellman equation







V ∗
(
z; m

) !
= TV ∗(z,m)

Tf(z,m) := supa∈A(z,m) : E
[
β(m) f

(
z′ + a · h′; M′

)
+R(a; z,m)

∣
∣m

]
.

(4)

Instead of using the expectation it is more natural in finance to choose an operator U which

takes into account risk aversion: this roughly means that if two events have the same expected

outcome, then we prefer the one with the lower uncertainty. The respective Bellman equation

becomes






V ∗
(
z; m

) !
= TV ∗(z,m)

Tf(z,m) := supa∈A(z,m) : U
[
β(m) f

(
z′ + a · h′; M′

)
+R(a; z,m)

∣
∣m

]
.

(5)

The action a in above operator has to be found per state s = (z,m).

We would like to stress that the “value function” here represents the “excess value” of a

portfolio over its book value. If V ∗ were zero, that would mean the optimal risk-adjuste value

for a portfolio is given as the book value. Remark 2 makes this statement explicit.

There are many different reasonable risk-adjusted return metrics U used in finance, most

notably mean-volatility, mean-variance and their downside versions which where all first dis-

cussed in the seminal [Mar52]. Mean-volatility in particular remains a popular choice for many

practical applications. However, it is well known that mean-volatility, mean-variance and their

downside variants are not monotone, which means that even if f(s) ≥ g(s) for all states s it

is not guaranteed that U [f(S′) ≥ U [g(S′)], c.f. [Bue17]. The lack of monotonicity means that

standard convergence proofs for the Bellman equation do not apply; see section 5.

We will here take a somewhat more formal route and focus on monetary utilities. A func-

tional U is a monetary utility if it is monotone increasing (more is better),6 concave (we are

risk averse)7 and cash-invariant. The latter means that for any function y(s) then U [f(S′, s) +

y(s)|s] = U [f(S′, s)|s] + y(s). The intuition behind this property is if we add a cash amount y

6If f ≥ g then U [f(S′)] ≥ U [g(S′)].
7For X = f(S′), Y = g(S′) and α ∈ [0, 1] we have U [αX + (1− α)Y ] ≥ αU [X] + (1− α)U [Y ].
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to our portfolio, then its monetary utility increases by this amount.8 An important implication

of cash-invariance is that our optimal actions do not depend on our current wealth.

The negative of a monetary utility is also called a convex risk measure, c.f. [FS16]. See

also [DS05] on the topic of dynamic and time-consistent risk measures.

As in [BMPW22] we will focus on monetary utilities given as optimized certainty equivalents

(OCE) of a utility function, introduced by [BTT07]. A utility function u : R → R here is

assumed to be C1, monotone increasing, and concave. We also normalize it to u(0) = 0 and

u′(0) = 1. The respective OCE monetary utility is then defined by

U
[
f(S′)

∣
∣ s
]
:= sup

y(s)∈R
E
[
u
(
f(S′) + y(s)

) ∣
∣ s
]
− y(s)

The function y will be modelled as a neural network.

Examples of COE utility functions are

• Expectation (risk-neutral): u(x) := x.

• Worst Case: u(x) := inf x.

• CVaR or Expected Short Fall: u(x) := (1 + λ) min{0,X}.

• Entropy: u(x) := (1 − e−λx)/λ in which case U [f(S′)|s] = − 1
λ
E[exp(−λf(S′))|s]. The

entropy reduces to mean-variance if the variables concerned are normal. It has many

other desirable properties, but it also penalizes losses rather harshly: an unhedgable short

position in a Black&Scholes stock has negative infinite entropy.

• Truncated Entropy: to avoid the harsh penalaties for short positions imposed by the

exponential utility we might instead use u(x) := (1− e−λx)/λ1x>0 + (x− 1
2λx

2)1x<0 .

• Vicky: the following functional was proposed in [HH09]: u(x) := 1
λ

(

1 + λx−
√
1 + λ2x2

)

.

• Normalized quadratic utility: u(x) := −1
2λ(x− 1

λ
)21

x<
1
λ

+ 1
2λ .

We call a monetary utility coherent if U [n(s) f(S′)|s] = n(s)U [f(S′)|s]. An OCE monetary

utility is coherent if u(nx) = nu(nx). Coherence is not the most natural property: it says

that the value of risk of a position growths linearly with position size. Usually, we would

assume that it increases superlinearly. The practical relevance of this property for us is that

if U is coherent, then we can move the discount factor β in and out of our monetary utility:

β(s)U [f(S′)|s] = U [β(s) f(S′)|s].
We say U is time-consistent if iterative application lead to the same monetary utility in the

sense that U [U [f(S′′)|S′]|s] = U(f(S′′|s). The only time-consistent OCE montary utilities are

the entropy and the expectation, c.f. [KS09].

We may now present the first key result of this article: we say that any statistical arbitrage is

finite if

sup
a∈A(s),s∈S

R(a, s) <∞ .

This can be achieved for example if A(s) is bounded.
8We have shown in [Bue17] that cash-invariance is equivalent to being able to write-off parts of our portfolio

for the worst possible outcome.
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Theorem 1 Assume any statistical arbitrage is finite.

Then the Bellman equation (5) has a unique finite solution.

The proof can be found in section 5. It relies on monotonicity and cash-invariance of the

monetary utility.

Remark 2 (Using only Cashflows as Rewards) Our definition of our rewards (2) as the full

mark to market of the hedged portfolio is in so far unusual as the reward term contains fu-

ture variables, namely the book value of the hedged book tomorrow.

A more classic approach would be to let the rewards represent only actual cashflows, e.g.

R̃(a, z,m) := r(z,m)
︸ ︷︷ ︸

Cashflows from

our portfolio

−a ·B(h,m)− c(a, z,m)
︸ ︷︷ ︸

Proceeds from

trading a

, (6)

The numerical challenge with this formulation is that cashflows are relatively rare for most

hedging instruments: if we trade a 1M vanilla option, then it only has one cashflow at maturity

– if it ends up in the money that is. That means that learning the value of future cashflows is

harder when we train with only daily cashflows. Hence, it is numerically more efficient to solve

for the difference between the optimal value function and the book value of a portfolio.

Theoretically, though, the two are equivalent: let Ṽ ∗(z,m) := V ∗(z,m) +B(z,m). Then Ṽ ∗

solves the Bellman equation

Ṽ ∗(z,m)
!
= sup

a∈A(s)
: U

[

β(m) Ṽ ∗( z′ + a · h′,M ) + R̃(a, z,m)
∣
∣ s
]

. (7)

Remark 3 (Multiple time steps) It is straight forward to formally extend (5) to multiple time

steps. Let S(1) := s and S(i+1) = S(i)′. We use the same numbering for other variables. Define

the discount factors βi :=
∏i

e=1 β(M
(e−1)) and set

Tnf(z,m) := sup
π

: U

[

βn f
(
z(n) +A(n) ·H(n); M(n+1)

)
+

n∑

i=1

βi−1 R(A(i),S(i))
∣
∣ m

]

(8)

where we used A(n) := π(z(n),M(n)). Our indexing scheme means that T1 = T .

It is straight forward to amend the proof of theorem 1 to show that if any statistical arbitrage

is finite, then the associated equation Tnf = f also has a unique finite solution V ∗
n .

However, for n > 1 in general V ∗
n 6= T nV ∗ unless U is the expectation.9

9We show the claim for n = 2. Let R(n) := R(A(n),S(n))

T 2f(s) = sup
π

: U

[

β(S(1))

{

sup
π

U
[

β(S(2)) f(π′ · · · ,M(3)) +R(2)
∣

∣S
(1)

]

}

+R(1)
∣

∣ s

]

= sup
π

: U
[

β(S(1))
{

U
[

β(S(2)) f(· · · ,M(3)) +R(2)
∣

∣S
(1)

]}

+R(1)
∣

∣ s

]

(∗)
≥ / = sup

π

: U
[

U
[

β(S(1))β(S(2)) f(· · · ,M(3)) +R(2) + β(S(1))R(1)
∣

∣S
(1)

]

∣

∣ s

]

(∗∗)
= sup

π

U [· · · | s ] = T2f(s) .

Here, (∗) is an equality for the expectation or any other coherent monetary utility. For all others convexity and

U(0) = 0 imply the stated inequality. The final equality (∗) is only true of U is time-consistent which means

either the entropy or the expectation. �
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3 Numerical Implementation

We now present an algorithm which will iteratively approach an optimal solution of our Bellman

equation (5). This is an extension over the entropy case presented in [BMW20].

We first initialize V (0)( s ) := 0 for all portfolios and states s.10

Then we solve iteratively for each n the following scheme (n− 1)→ n:

1. Actor: given V (n−1) we wish to find an optimal neural network policy π(n) which solves

for all states s = (z,m) ∈ S

sup
π(s)

: U
[

β(s)V (n−1)
(
z′π; M

′
)
+R(π; s)

∣
∣
∣ s
]

(zπ := z′ + π(s) · h′) . (9)

(We recall that c(a, s) =∞ whenever s 6∈ A(s).) In the case of our OCE monetary utility,

we will need to find both a network π(n) and a network y(n) to satisfy for all states s

sup
π,y

: E

[

β(s)u
(

V (n−1)( z′π; M
′ ) + y(s)

)

− y(s) +R(π; s)
∣
∣
∣ s
]

. (10)

We will approach this by stipulating that we have a density Q over all sample S, for

example a uniform distribution if S is a finite set. This allows us defining the unconditional

expectation operator E[·] =
∫
Q[ds]E[·|s].

We then solve

sup
π,y

: E

[

u
(

β(S) V (n−1)(Z ′
π; M

′ ) + y(S)
)

− y(S) +R(π;S)
]

(Z ′
π := Z + π(S) ·H′) .

(11)

Under Q the current market state, the portfolio and the hedging instrument representation

are random variables, hence we have referred to them with capital letters.

The existence of Q is not trivial: it is meant to represent the probability of possible

portfolio and market state conditions. We will discuss this later when we comment on

implementation.

2. Critic (Interpolation): as next step, we estimate a new value function V (n) given π(n)

and y(n). This means fitting a neural network V (n) such that

V (n)(z,m) ≡ TV (n−1)(z,m) (12)

We note that solving (11) numerically with packages like TensorFlow or PyTorch will also

yield samples TV (n−1)(s) for all s ∈ S. Assuming this is the case we may find network

weights for V (n) by solving the interpolation problem

inf
V

: E

[ (

−V (n)(Z,M) + TV (n−1)(Z,M)
)2
]

over our discrete sample space.

Instead of using neural networks for the last step we may also consider classic interpolation

techniques such as kernel interpolators.

10It is not a good idea to initialize a network with zero to achieve this as all gradients will look rather the

same. Assume N (θ;x) is a neural network initialized by random weights θ0. Then use the Buehler-zero network

N(θ;x) := N (θ;x)−N (θ0;x).

8
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This scheme is reasonably intuitive as it iteratively improves the estimation of the monetary

utility V (n) and the optimal action a(n). There is a question on how many training epochs to use

when solving, in each step, for the action and the value function. In [SB18] there is a suggestion

that using just one step is sufficient. The authors call this the actor-critic method. There are

several other discussions on the viability of such methdos, see also [MBM+16] and the references

therein.

Remark 4 In some applications we may not be able to use samples of TV (n−1) to solve (12),

but make use of trained a(n) and y(n) directly. We therefore may solve

inf
V

: E

[(

−V (Z; M ) + E

[

β(S) u
(

V (n−1)(Z ′
π(n) ,M

′ ) + y(n)(S)
)

− y(n)(S) +R(π(n),S)
∣
∣
∣S
])2
]

.

(13)

The nested expectation is numerically suboptimal. In order to address this, we solve instead the

unconditional

inf
V

: E

[(

−V (Z; M ) + β(S) u
(

V (n−1)(Z ′
π(n) ,M

′ ) + y(n)(S)
)

− y(n)(S) +R(π(n),S)
)2
)

.

(14)

which has the same gradient in V , and therefore the same optimal solution.11

3.1 Representing Portfolios

The most obvious challenge when applying the approach presented in section 3 is the need to

represent our portfolio is some numerically efficient way. The following is an extension of the

patent [BMW20] where we proposed using a more cumbersome signature representation of our

trader instruments a’la [LNA19].

Assume that we are given historic market data mt at time points τ0, . . . , τN . Further assume

that at each point τj we had in our book instruments xt = (xt,1, . . . , xt,mt) with xt,i ∈ X .
As x were actual historic instruments, we have for each xt,i a vector f t,it ∈ RF of historic risk

metrics computed in t, such as the book value, a range of greeks, scenarios and other calculations

made in τt to assist humans in their risk management decisions. We assume that those metrics

f tt = (f t,1t , . . . , f t,mt

t ) are also available for the same instruments at the next time step τt+1,

denoted by f tt+1. Instrument which expire between τt and τt+1 will have their book value and

all greeks and scenario values set to zero.

It is a reasonable assumption that those metrics f have decent predictive power for the

behaviour of our instruments; after all this is what human traders use to do drive their risk

management decisions. Hence we will use them as instrument features. We will here only

consider linear features such that for any weight vector w ∈ Rmt the feature vector (the greeks,

scenarios etc) of the weighted instrument w ·xt is correctly given as w · f t, so there is no need to

11Proof – Assume that V (s) ≡ V (θ; s) where θ are our network parameters. Denote by ∂i the derivative with

respect to the ith parameter. Our equation then has the form infθ f(θ) where

f(θ) := E
[

(V (θ;S) + E[h(S′)|S] + g(S))2
]

The gradient is

∂θi
f ′(θ) = 2E

[

∂iV (θ;S)(V (θ;S) + E[h(S′)|S] + g(S))
]

= 2E
[

∂iV (θ;S)(V (θ;S) + h(S′) + g(S))
]

Therefore f has the same gradient as θ 7→ E
[

(V (θ;S) + h(S′) + g(S))2
]

. �
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recompute it later.12 We have referred to such a representation in [BMW20] as Finite Markov

Representation, or short FMR.

We further denote by rit the historic aggregated cashflows of xt,i over the period [τt, τt), all

in our accounting currency. We set rt := (r1t , . . . , r
mt

t ). The aggregated cashflows of a weighted

instrument w ·x(t) are w ·rt. Similarly, we use Bt
u = (Bt:1

u , . . . ,Bi,mt

u ) to refer to the book values

of our instruments in u ∈ {t, t+ 1}, respectively.
We also assume that we have for all our hedging instruments access to their respective feature

vectors fh:tt for both τt and τt+1. It is important to recall that the greeks fh:t,it+1 refer to the features

of the ith hedging instrument traded at τt, but computed at τt+1. That means in particular

fh:t,it+1 6= fh:t+1,i
t+1 as the instrument definition changes between time steps. We also denote by bh:t

u

the book values of our hedging instruments for u ∈ {t, t+ 1}.
In addition to our instrument features, we also assume that we chose a reasonable subset of

market features at each time step τt. We continue to use the symbol m for those features

even though in practise we will not use the entire available state vector.

We will now generate random scenarios as follows

1. Randomly choose t ∈ {0, . . . , N − 1}, which determines the market states m := mt and

m′ := mt+1.

2. Identify the hedging instruments h with their finite Markov representation

Terminal FMR of hedging instruments h′ := fh:tt+1

Book values for our hedging instruments B(h, s) := bh:t
t

B(h, s′) := bh:t
t+1

Cashflows of the hedging instruments r(h,m) := rh:tt

Cost c(a; s) ← st, f
h
t

The concrete implementation of the last line depends on the specifics of the cost function.

For example, proportional transaction cost on net traded feature exposure are implemented

using a weight vector γ ∈ RF by setting c(a; s) := |a · (γ f tt )|.

3. Choose a random weight vector w ∈ Rmt and define a sample portfolio as z := w · x with

Initial and terminal FMR of the portfolio z := w · f tt
z′ := w · f tt+1

Book value of our portfolio B(z, s) := w · bt
t

B(z, s′) := w · bt
t+1

Cashflows of the portfolio r(z,m) := w · xt .

The construction of a reasonable randomization of the weight vector is important: if the

samples are too different from likely portfolios, then the resulting model will underperform.

However, if only historic portfolios are used, then the model is less able to learn handling

deviations. More importantly, though, generating portfolios increases sample size.

12We note that this linearity is satisfied for all common risk metric calculations except VaR and counterparty

credit calculations.
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4 Relation to Vanilla Deep Hedging

We will now discuss the relation of equation (5) to the solution of a corresponding vanilla Deep

Hedging Problem.

We start by stating our original Deep Hedging problem [BGTW19] adapting the notation

used here so far. We fix some initial time t = 0 with state s ≡ s0 ≡ S0. Subsequent states are

denoted by St−1 := S′
t. We use a similar notation for all other variables. We also define the

stochastic discount factor to zero as βt := β(St)βt−1 starting with β0 := 1.

For this part we will need to assume that every hedging instrument has a time-to-maturity

less than τ∗ in the sense that if we by a · ht at time t, then all the book value and all cashflows

from the portfolio are zero beyond t + τ∗. This assumption excludes perpetual assets such as

shares or currencies. We will need to trade those with their respective forwards in the current

setup.

Assume we are starting with an initial portfolio z and follow a trading policy π. Let At :=

π(Zt,Mt). Assume the portfolio has maturity T ∗. Then

∞∑

t=0

βtR(At,St) = −B(z, s0) +
T ∗

∑

t=0

βtr(z,Mt)

︸ ︷︷ ︸

P&L from z

+
∞∑

t=0

βt

(

−At ·B(ht,Mt)− c(At,St) +At ·
t+τ∗∑

u=t

βu
βt

r(ht,Mu)

)

︸ ︷︷ ︸

P&L from trading ht in t
(15)

If the market is free of statistical arbitrage, then E[
∑∞

t=0 βtR(At,St)] < ∞,13 and therefore

U(·) ≤ E[· · · ] <∞.

The Vanilla Deep Hedging problem for an infinite trading horizon is then defined as

U∗(s0) := sup
π

: U

[
∞∑

t=0

βtR(π,St)
∣
∣
∣ s0

]

(16)

This formulation is justified if the market is free of statistical arbitrage since then U∗(s0) <∞.

That means that if U is time-consistent – which means it is the entropy of the expectation –,

then U∗ satisfies the dynamic programming equation






Û∗
(
z; m

) !
= T̂ Û∗(z,m)

T̂ f(z,m) := supa∈A(z,m) : U
[
f
(
z′ + a · h′; M′

) ∣
∣m

]
+ R̂(a; z,m) .

(17)

with discounted cashflow rewards

R̂(a; z,m) := βt(s) ( r(z + a · h,m)− a ·B(h,m)− c(a, z,m) ) .

(We used t(s) to extract calendar time from the state s.) This is structurally similar to the

cashflow rewards (6). Since we have discounted all cashflows in (17) we must interpret Û∗ as

units of numeraire. In other words, the actual cash value is U∗(s) := Û∗(s)/βt(s) . Inserting this

into our operator yields

U∗(z,m) = sup
a∈A(z,m)

:
1

βt(m)
U
[
βt(M′)U

∗
(
z′ + a · h′; M′

) ∣
∣m

]
+ R̃(a; z,m) . (18)

13In (15) the P&L from z is finite since all x ∈ X are integrable. If we have no statistical arbitrage it means

that each expected P&L from trading h
t in t has non-positive expectation. Dominance convergence yields the

claim. �
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If U were coherent, we would get

U ∗ (z,m) = sup
a∈A(z,m)

: U
[
β(m) U∗

(
z′ + a · h′; M′

) ∣
∣m

]
+ R̃(a; z,m) .

which via the discussion in remark 2 is equivalent to our original Bellman equation (5). However,

since the entropy is not coherent it means that this equivalence only holds for the expectation

operator.

To summarize:

Proposition 5 If the market is free of arbitrage, if all hedging instruments have a common

finite time-to-maturity, and if U = E, then the value function of the vanilla Deep Hedging

problem satisfies our Deep Bellman Hedging equation (5).

5 Existence of Finite Solutions for Deep Bellman Hedging

We will now prove with theorem 1 convergence of our Deep Bellman Hedging equations. This is

easiest understood when the space Z of future cashflows is parameterized in R|Z| with a finite

Markov representation. However, in more generality we may assume that Z represents the set

of suitably integrable adapted stochastic processes with values in R. Therefore, we may just

assume that (S,Q),S = Z×M is a measure space. In the following we will consider the function

space F by the Q-equivalence classes of functions f : S → R.

Let as before

(Tf)(z,m) := sup
a∈A(z,m)

: U
[
β(m)f

(
z′ + a · h′,M′

)∣
∣m
]
+R(a, z,m) (19)

for β(m) ≤ β∗ < 1. Then the Bellman equation f = Tf has a unique, finite solution.

We will demonstrate the proof for bounded value functions. See [RZRP03] on how to extend

results of convergence of Bellman operators to the unbounded case. The below mimicd the spirit

of the proof of the classic Banach contraction theorem.

Proof of theorem 1– Step 1: equip F with the supremum norm. We wish to show that for

‖f‖∞ <∞ we have ‖Tf‖ <∞ We have

Tf ≤ T‖f‖ = T0 + ‖f‖

because of monotonicity and cash-invariance. Since we assumed supa∈A(s),s : R(a, s) < ∞ we

find that T0 <∞.

Remark 6 It is clear from (19) the gains we can make from the rewards in any time step must

be bounded to ensure convergence to a finite optimal point.

Step 2: We wish to show that Tf is a contraction for bounded f , i.e. ‖Tf−Tg‖ ≤ β∗‖f−g‖
for our β∗ < 1. Note that f(x) − g(x) ≤ ‖f − g‖. Monotonicity and cash invariance of the

operator T yield

(Tf)(x) ≤ T (g + ‖f − g‖) (x) ≤ Tg(x) + β∗‖f − g‖

and, similarly,

(Tg)(x) ≤ T (f + ‖f − g‖) (x) ≤ Tf(x) + β∗‖f − g‖ .

12
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Jointly this gives

‖Tf − Tg‖ ≤ β∗‖f − g‖ .

Step 3 Chose f0 and let fn := Tfn−1 such that fn = T nf0. We know that ‖Tf1 − Tf0‖ ≤
β∗‖f1 − f0‖ and therefore iteratively ‖Tfn − Tfn−1‖ ≤ β∗n‖fn − fn−1‖. Trianlge inequality

implies ‖Tfn − Tfm‖ ≤
∑n

i=m+1 ‖Tfi − Tfi−1‖ ≤ ‖f1 − f0‖
∑n

i=m+1 β
∗i ↓ 0. This means Tfn is

a Cauchy sequence and therefore converges to a unique point fn → f .

Step 4 To show that f is a fixed point note that ‖Tf − f | ≤ ‖Tf − fn‖ + ‖fn − f‖ ≤
β∗‖f − fn−1‖+ ‖fn − f‖ ↓ 0. �

Disclaimer

Opinions and estimates constitute our judgement as of the date of this Material, are for infor-

mational purposes only and are subject to change without notice. It is not a research report

and is not intended as such. Past performance is not indicative of future results. This Material

is not the product of J.P. Morgan’s Research Department and therefore, has not been prepared

in accordance with legal requirements to promote the independence of research, including but

not limited to, the prohibition on the dealing ahead of the dissemination of investment research.

This Material is not intended as research, a recommendation, advice, offer or solicitation for

the purchase or sale of any financial product or service, or to be used in any way for evaluat-

ing the merits of participating in any transaction. Please consult your own advisors regarding

legal, tax, accounting or any other aspects including suitability implications for your particular

circumstances. J.P. Morgan disclaims any responsibility or liability whatsoever for the qual-

ity, accuracy or completeness of the information herein, and for any reliance on, or use of this

material in any way. Important disclosures at: www.jpmorgan.com/disclosure
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