
Universidad Autónoma de Madrid
Escuela Politécnica Superior

Thesis to obtain PhD. degree in
Computer and Telecommunication Engineering

by
Universidad Autónoma de Madrid

Thesis advisor:
Dr. Francisco Javier Gómez Arribas

Harnessing low-level tuning in modern
architectures for high-performance network
monitoring in physical and virtual platforms

Víctor Moreno Martínez

This thesis was presented on May 2015

Tribunal:

Dr. Jaime H. Moreno
Dr. Sandrine Vaton

Dr. David Fernández Cambronero
Dr. Mikel Izal Azcárate

Dr. Iván González Martínez

All rights reserved.

No reproduction in any form of this book, in whole or in part
(except for brief quotation in critical articles or reviews),
may be made without written authorization from the publisher.

© May 2015 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, no 1
Madrid, 28049
Spain

Víctor Moreno Martínez

Harnessing low-level tuning in modern architectures for high-performance net-

work monitoring in physical and virtual platforms

Víctor Moreno Martínez

Escuela Politécnica Superior. High Performance Computing and Networking Group

IMPRESO EN ESPAÑA � PRINTED IN SPAIN

A mis padres, Teresa y Fernando, por ser un ejemplo de vida.
A Merce, por compartir la suya conmigo.

Every man dies. Not every man really lives.
William Wallace.

Thesis evaluators:

Dr. Jaime H. Moreno
(Chairman)

Dr. Sandrine Vaton Dr. David Fernández Cambronero

Dr. Mikel Izal Azcárate Dr. Iván González Martínez

Defense date:

Calification:

Table of contents

1 Introduction 1

1.1 Overview and motivation . 1

1.2 Objectives . 5

1.3 Thesis structure . 7

2 Architectures for network monitoring 9

2.1 Hardware components . 10

2.1.1 Application-Specific Integrated Circuits 10

2.1.2 Field Programmable Gate Arrays 11

2.1.3 General-Purpose Graphical Processing Units 12

2.1.4 Commodity hardware . 14

2.2 Background experience . 15

2.2.1 ARGOS . 15

2.2.2 Twin−1 . 18

2.3 Conclusions . 20

3 Packet capture using commodity hardware 21

3.1 Commodity Hardware . 22

3.1.1 NUMA architectures . 25

3.1.2 Current and past operating system network stacks 26

3.2 Packet capturing . 33

3.2.1 Limitations: wasting the potential performance 33

3.2.2 How to overcome limitations . 36

3.3 Capture Engine implementations . 41

3.3.1 PF_RING DNA . 41

3.3.2 PacketShader . 45

3.3.3 netmap . 47

3.3.4 PFQ . 48

3.3.5 Intel DPDK . 51

3.3.6 HPCAP . 52

3.4 Testing your traffic capture performance 53

3.4.1 General concerns . 53

3.4.2 Captures engines performance evaluation 55

3.5 Use cases of novel capture engines . 64

3.5.1 Creating a high-performance network application 64

3.5.2 Application examples . 66

3.6 Conclusions . 73

4 HPCAP implementation details and features 77

4.1 HPCAP’s design . 78

4.1.1 Kernel polling thread . 78

4.1.2 Multiple listeners . 81

4.1.3 User-level API . 82

4.1.4 HPCAP packet reception scheme 83

4.2 Packet timestamping . 86

4.2.1 Accuracy issues . 86

4.2.2 Performance evaluation . 93

4.3 Packet storage . 99

4.3.1 Motivation . 100

4.3.2 Storing data on hard-drives . 101

4.3.3 Network traffic storage solutions . 109

4.4 Duplicates detection and removal . 112

4.4.1 Accuracy . 114

4.4.2 Performance . 116

4.5 Conclusions . 120

5 M3OMon: a framework on top of HPCAP 123

5.1 Introduction . 123

5.1.1 Novel features: multi-granular / multi-purpose 124

5.1.2 High-performance in off-the-self systems 125

5.1.3 Contributions . 127

5.2 System Overview . 128

5.2.1 M3Omon . 130

5.2.2 M3Omon’s API . 132

5.3 Performance Evaluation Results . 133

5.4 Industrial application samples . 137

5.4.1 DetectPro . 137

5.4.2 VoIPCallMon . 139

5.5 Related Work . 144

5.6 Conclusions . 146

6 Network monitoring in virtualized environments 147

6.1 High-performance network processing 149

6.2 Virtualized environments and I/O processing 153

6.2.1 Full-virtualization . 155

6.2.2 Paravirtualization and VirtIO . 155

6.2.3 PCI passthrough . 159

6.2.4 PCI virtual functions . 160

6.3 Virtual network probe . 164

6.4 Virtual network monitoring agent . 168

6.5 Conclusions . 171

7 Conclusions and future work 173

7.1 Results dissemination and publications 174

7.2 Industrial applications . 179

7.3 Future work . 180

8 Conclusiones y trabajo futuro 183

8.1 Diseminación y divulgación de los resultados alcanzados . . 185

8.2 Aplicaciones industriales . 189

8.3 Trabajo futuro . 190

Bibliography 193

Glossary 208

A Capture engines’ usage examples 209

A.1 Getting started . 209

A.2 Setting up capture engines . 213

A.2.1 Default driver . 213

A.2.2 PF_RING DNA . 214

A.2.3 PacketShader . 215

A.2.4 netmap . 215

A.2.5 PFQ . 217

A.2.6 Intel DPDK . 217

A.2.7 HPCAP . 218

B HPCAP manual 221

B.1 Using the HPCAP driver . 221

B.1.1 Installing all the required packages 221

B.1.2 Configure your installation . 221

B.1.3 Interface naming and numbering . 223

B.1.4 Per-interface monitored data . 223

B.1.5 Waking up an interface in standard mode 224

B.1.6 Sample applications . 224

B.2 Working with the RAW file format . 226

B.2.1 File data structures . 226

B.2.2 Example code . 227

B.3 Quick start guide . 229

B.3.1 Launching hpcapdd . 230

B.3.2 Checking traffic storage . 230

B.4 Frequently asked questions . 231

Lists 235

Acknowlegments

The present document is the fruit of the work I’ve been carrying out for some
years, and it could not have been completed without the support of many people
in both professional and personal terms:

First of all, I want to thank my supervisor Francisco J. Gómez Arribas for his
guide since I joined the research group seven years ago. You have always been
a near supervisor and a great partner, and your opinions and annotations have
always proven useful. Your help has played a fundamental role in the successful
accomplishment of this goal, that seemed so far away a couple of years ago.
Thank you for your friendly guide, and for helping me to develop as a researcher
and a professional.

This work would have not been possible without the opportunity that the High
Performance Computing and Networking Group from the Universidad Autónoma
de Madrid offered me: they gave me the chance to prove myself when I was just
an undergraduate student, and kept they support until the present day. Being
part of this research group has also given me the chance to share moments
and learn from highly skilled people such as Javier Aracil, Jorge E. López de
Vergara, Iván González, Sergio López, Gustavo Sutter and Luis de Pedro. I also
had luck of not only learning from but also sharing great times in the C-113 lab
with incredibly valuable people, to whom I owe a special thank and maximum
respect: Javier Ramos, Pedro M. Santiago, José Luis García, David Muelas,
Felipe Mata, Víctor López, Joś Luis Añamuro, Jaime Garnica, Diego Sánchez
and Jaime Fullaondo. I also want to thank the rest of the C113 group for the
good moments shared: Rubén García-Valcárcel, Isabel García, Juan Sidrach,
Rafael Leira, Carlos Vega, Paula Roquero and many others. I can’t less but
thank irenerodriguez.ii.uam.es for her support and great performance
offered along all those years: I hope you get can some rest now!

All my work would also not have been possible without the support of the
Universidad Autónoma de Madrid and the Departamento de Tecnología Elec-
trónica y de las Comunicaciones of the Escuela Politécnica Superior. I also want
emphasize my gratitude to the Universidad Autónoma de Madrid and the Span-
ish Ministry of Education for funding this Ph.D. under the F.P.I. and the F.P.U.
fellowship programs respectively. I hope that this kind programs keep existing in
the future in order to promote the research and talent that so much we need.

I also want to express my gratitude to Dr. Khaled Benkrid for hosting me
along the three months I spent in the University of Edinburgh. This interesting

xiii

stay allowed me to acquire experience with state-of-the-art architectures.

From the personal point of view, let me change to Spanish:

Quiero agradecer a mi familia por el apoyo y confianza que siempre han
mostrado en mí. Esto incluye a mis padres, Teresa y Fernando, cuya edu-
cación y apoyo me ha permitido desarrollarme como persona y como profe-
sional. Además, no puedo más que agradecerles el ejemplo a seguir que siem-
pre han supuesto para mí, y que siguen demostrando ser día a día. También
quiero agradecer a mi hermano Fernando por los buenos momentos que hemos
compartido a lo largo de toda una vida juntos, y dejar por escrito que, aunque
no se lo diga muy a menudo, me siento muy orgulloso de él.

También he de agradecer a mis abuelos Teresa, María, Víctor y José (aunque
no tuviera la suerte de conocerle) la grandísima influencia que han tenido en mi
vida. De ellos pude aprender cómo vivir la vida, y los tengo presentes y echo en
falta cada día.

No puedo evitar tampoco expresar el orgullo que siento de pertenecer a mi
familia, y el cariño que siento hace todos y cada uno de sus miembros: mis
tí@s, prim@s, aquell@s que sin tener vínclulo sanguíneo son tan de la familia
como los demás, e incluso nuestra familia más lejana de Andalucía.

En un lugar tan relevante como el que más, he de agradecer a Merce su
compañía a lo largo de estos años. Además de algún que otro cambio de hu-
mor, ha tenido que sufrir los horarios y restricciones que el llevar a cabo este
trabajo han supuesto, y siempre lo ha hecho con la máxima comprensión y ofre-
ciéndome todo el apoyo y ayuda posible. ¡Gracias por ser cómo eres! También
quiero agradecer mi familia política por haberme acogido como a uno más, y
por los buenos ratos que he podido pasar con ellos.

No me olvido tampoco de todos aquellos amigos que me han acompañado
a lo largo de todos estos años: amigos del barrio de toda la vida, hechos en la
facultad, otros que he tenido la suerte de conocer en el extranjero, ... también a
todos ellos de los que los años me han alejado pero han estado allí. Con todos
ellos he podido compartir momentos excepcionales de chorradas, risas y otros
completamente aleatorios que han amenizado estos largos años. En especial
gracias a Vicky, Roberto, Saray, Josepa, Paula, Sara, Nieves, Edu, Inma y Ana.

Thank you all! ¡Gracias a todos!

xiv

Abstract

Over the past decades, the use of the Internet has rapidly grown due to the
emergence of new services and applications. The amount of them available to
end-users makes it necessary for their providers to deploy quality-assessment
policies in order to distinguish their product among the rest. In this scenario,
network processing and analysis becomes a central task that has to deal with
humongous amounts of data at high-speed rates. Service providers must be
able to accomplish such a challenging task using processing elements capa-
ble of reaching the required rates while keeping the cost as low as possible for
the sake of profitability. This thesis analyses the main problems and provide
viable solutions when applying commodity-hardware for high-performance net-
work processing. Furthermore, diverse systems have been developed in this
line, which have also been validated in industrial environments.

Traditionally, when the requirements were tight an eye was turned to the use
of ASIC designs, reprogrammable FPGAs or network processors. This work is
started with a study and evaluation of diverse architectural solutions for network
processing. Those solutions offer great computational power at the expense of
high levels of specialization. Consequently, they only address the performance
half of the problem but they fail at solving the other half, which is the inexorably
need to perform more diverse, sophisticated and flexible forms of analysis. More-
over, those solutions imply high investments: such hardware’s elevated cost
rises capital expenditures (CAPEX), while operational expenditures (OPEX) are
increased due to the difficulties in terms of operation, maintenance and evolu-
tion. Furthermore, HW life cycles become shorter as technology and services
evolve, which complicates the stabilization of a final product thus reducing prof-
itability and limiting innovation. Those drawbacks turn specialized HW solutions
into a non-adequate option for large-scale network processing. Nevertheless,
this thesis has also evaluated the use of this possibility using FPGA technology.
Specifically, a prototype has been developed for network packet capture with
accurate timestamping, reaching a tenths of nanoseconds precision and GPS
synchronization.

In this light, both industry and academia have paid attention to the use of so-
lutions based on commodity-hardware. The advantages of those systems lay in
the ubiquity of those components, which makes it easy and affordable to acquire
and replace them and consequently reduces CAPEX. Those systems are not
necessarily cheap, but their wide-range of application allows their price to ben-
efit from large-scale economies and makes it possible to achieve great degrees

xv

of experimentation. Additionally, such systems offer extensive and high-quality
support, thus reducing OPEX. Unfortunately, the use of commodity hardware
in high-speed network tasks is not trivial due to limitations on both hardware
capacities and standard operating systems’ performance. Essentially, commod-
ity hardware is limited in terms of memory and internal bus throughputs. From
the software side, limitations come from a general-purpose network stack that
overloads communications due to a prioritization of protocol and hardware com-
patibility over performance.

It is in this context in which the main contribution of this thesis, HPCAP,
is presented. HPCAP is a high-performance capture engine that has been de-
signed to face the problems not yet solved by the state-of-the-art capture engines
while keeping similar performance levels. The literature references capture en-
gines which are capable of capturing 10 Gb/s network traffic, but do not pay
attention to the vital tasks, e.g.: storing this traffic onto non-volatile storage sys-
tems, accurately timestamp the traffic, or feed this traffic to diverse processing
applications. Those are in fact the most relevant contributions of HPCAP to the
field. We have empirically verified that if the network packets are not accurately
timestamped when carrying out network monitoring tasks, the analysis made
can lead to wrong conclusions. Packet timestamping accuracy is not only af-
fected by the accuracy of the time source used, but also by the moment in which
packets are timestamped: the more code is executed between the packet’s ar-
rival and its timestamping moment, the more variability and error appears. On
the other hand, there are many scenarios in which after a high-level analysis
over the network traffic, it is required to access to low-level packet information
to identify problem sources. Consequently, keeping the packets stored for their
subsequent access becomes a relevant issue. In this line, it seem reasonable
to instantiate several network traffic analysis applications while an independent
application is in charge of storing the traffic in non-volatile place. Nevertheless,
this requirement is difficult to reach without paying the performance loss price,
and this is the reason for which HPCAP has been designed taking this into full
consideration. Furthermore, M3Omon has been created: a general-purpose net-
work processing framework built on top of HPCAP, whose performance as also
been exhaustively tested. M3Omon pretends to be a reference point for eas-
ily developing high-performance network applications, which has already been
applied in the development of several projects with a direct industrial application.

Other application domain with undeniable interest is the world of virtualized
platforms. If those solutions based on commodity-hardware are to be applied in
realistic highly-demanding scenarios, the increased demands for network pro-
cessing capacity could be translated into a big number of machines even though
if off-the-shelf systems were used. Such an amount of machines means high
expenses in terms of power consumption and physical space. Moreover, the
presence of commodity servers from different vendors empowers the appear-

xvi

ance of interoperability issues. All those drawbacks damage the profitability that
networked service providers may experience. This situation has pushed towards
the applications of virtualization techniques in network processing environments,
with the aim of unifying existing computing platforms. Techniques such as PCI-
passthrough allow the migration of the results obtained in the physical world to
the virtual one in a very direct way. This work has carried out a study regarding
the impact of this technique on the previously presented systems, concluding
that the performance loss experienced is appealingly low. Another approach
is the one propose by an alliance composed of network operators and service
providers which has introduced in the last years the concept of Network Function
Virtualization (NFV). This new paradigm aims to unify the environments where
network applications shall run by means of adding a virtualization layer on top of
which network applications may run. This novel philosophy also allows merging
independent network applications using unique hardware equipment. However,
in order to make the most of NFV, mechanisms that allow obtaining maximum
network processing throughput in such virtual environments must be developed.
The contribution of this work in the NFV field is the evaluation of performance
bounds when carrying out high-performance network tasks in NFV environment
and the development of HPCAPvf as a NFV counterpart for the formerly pre-
sented HPCAP.

Keywords: High-speed networks, packet capture, packet storage, network
processing, network drivers, network function virtualization, virtual machines,
performance assessment.

xvii

Resumen

En las últimas décadas, el uso de Internet ha crecido vertiginosamente de-
bido a la aparición de nuevos servicios y aplicaciones. La cantidad de los mis-
mos obliga a sus proveedores a llevar a cabo políticas de asesoría y asegu-
ramiento de calidad con el fin de diferenciarse de la competencia. En este con-
texto, el procesamiento y análisis del tráfico de red se convierte en una tarea
primordial, que tiene que hacer frente a enormes cantidades de datos de dife-
rente tipo y a tasas de velocidad muy elevadas. Los proveedores de servicio
deben por tanto, superar este reto utilizando elementos de procesos capaces de
alcanzar las tasas requeridas, a la vez que mantienen un coste tan bajo como
sea posible, con vistas a maximizar los beneficios obtenidos. En esta tesis se
estudia y analiza los principales problemas y se aportan soluciones viables apli-
cando hardware estándar en el procesamiento de red de alto rendimiento. Se
han desarrollado diversos prototipos siguiendo estas líneas y se han validado
en entornos de producción industrial.

Tradicionalmente, cuando los requisitos computacionales eran elevados o
muy estrictos, se venía haciendo uso de diseños basados en Circuitos Inte-
grados de Aplicación Específica (ASICs), hardware reconfigurable (FPGAs) o
procesadores de red. Este estudio comienza haciendo una evaluación de distin-
tas arquitecturas de cómputo aplicadas al problema del procesamiento de red.
Estas soluciones ofrecen una gran potencia de cómputo a cambio de un grado
de especialización muy elevado. Es decir, sólo abordan la mitad del problema
relativa al rendimiento, pero se olvidan de la otra mitad: la inexorable necesi-
dad de llevar a cabo nuevas, diversas y más sofisticadas formas de análisis. Lo
que es más, estas soluciones implican unos niveles de inversión muy elevados:
estos elementos hardware tienen un alto coste que incrementa notablemente
la inversión inicial (CAPEX), y las complicaciones asociadas al mantenimiento,
operación y evolución de estos sistemas disparan también los costes opera-
cionales (OPEX). Además, los ciclos de vida del HW son cada vez más cortos
a medida que la tecnología avanza, lo que complica la estabilización de un pro-
ducto. Estas ventajas hacen de las soluciones basadas en hardware específico
una opción poco factible para procesamiento de red a gran escala. No obstante,
en esta tesis también se ha evaluado el uso de esta aproximación utilizando
tecnología FPGA. Concretamente se ha realizado un prototipo de captura de
red con marcado de tiempo sincronizado por GPS alcanzando una precisión de
decenas de nanosegundos.

A la luz de estos datos, tanto la industria como el mundo académico han

xix

dirigido su mirada hacia el uso de soluciones basadas en hardware estándar.
La ventaja de estos sistemas reside en la omnipresencia de sus componentes,
que hace que su adquisición o reemplazo sea sencilla y asequible, implicando
una reducción en el CAPEX. Estos sistemas no son necesariamente baratos,
pero su amplitud y universalidad de uso permite que su producción se bene-
ficie de políticas económicas a gran escala, así como de elevados grados de
testeo y experimentación. Además, estos sistemas ofrecen soporte extensivo y
de alta calidad, lo cual supone reducciones en el OPEX. Desafortunadamente,
la aplicación del hardware estándar en tareas de red a alta velocidad no es
trivial debido a limitaciones inherentes al hardware y a los sistemas operativos
convencionales. Esencialmente, las limitaciones a nivel hardware son la tasa
de transferencia de memoria y la de los buses del sistema. Por otro lado, a
nivel software los sistemas operativos utilizan una pila de red que sobrecarga
las transferencias porque su diseño está orientado a la compatibilidad con un
gran número de protocolos y dispositivos.

Es en este contexto en el que se presenta la principal contribución de este
trabajo de tesis: el motor de captura HPCAP. Éste ha sido diseñado con el
objetivo de resolver problemas que hasta el momento no resolvían otros man-
teniendo las mismas prestaciones. Actualmente, la bibliografía referencia mo-
tores que son capaces de capturar el tráfico de red entrante a 10 Gb/s, pero
que no consideran hacer un procesamiento más exhaustivo como puede ser:
guardar dicho tráfico en sistemas de almacenamiento no volátiles, asociar mar-
cas de tiempo precisas al tráfico, o permitir que diversas aplicaciones puedan
alimentarse del mismo tráfico con el mínimo sobrecoste posible. Estas son pre-
cisamente las aportaciones más relevantes de HPCAP al área de conocimiento.
Hemos podido comprobar empíricamente que el hecho de no marcar con la pre-
cisión adecuada los paquetes de red entrantes puede llevar fácilmente a realizar
análisis incorrectos. A la precisión del marcado de paquetes no le afecta única-
mente la precisión de la fuente de tiempos utilizada, sino también el momento
en el que se realiza: cuanto más código se ejecute entre la llegada del paquete
y su marcado, mayor variabilidad y error existirá. Por otro lado, son numerosos
los escenarios en los que tras realizar un análisis de alto nivel sobre el tráfico
de red es necesario acceder a bajo nivel al mismo para obtener la causa del
problema, por lo que tener almacenado el tráfico adquiere una gran relevancia.
En esta línea, parece razonable la instanciación de diversas aplicaciones, in-
dependientes o no, de análisis del tráfico de red mientras que una aplicación
diferente se encarga de almacenar el tráfico de forma no-volatil. Sin embargo,
este requisito es dificil de alcanzar sin pagar un alto coste en la tasa de proce-
samiento y es por eso que el diseño de HPCAP ha sido realizado teniéndolo
muy en cuenta. Adicionalmente, se ha creado M3Omon: un marco de trabajo
o framework sobre HPCAP para facilitar el desarrollo de aplicaciones de proce-
samiento de red, cuyo rendimiento ha sido también probado exhaustivamente.

xx

M3Omon pretende ser un punto de referencia para desarrollar de forma ágil y
sencilla aplicaciones de red de altas prestaciones. De hecho, ya ha sido apli-
cado satisfactoriamente para el desarrollo de diversos proyectos con aplicación
industrial directa.

Otro dominio de aplicación que tiene indudable interés es el mundo de las
plataformas virtualizadas. A la hora de aplicar soluciones basadas en hardware
estándar en redes de altas prestaciones complejas, los elevados requisitos de
cómputo pueden llegar a traducirse en un gran número de máquinas. Esta
cantidad de máquinas implica costes elevados en términos tanto de consumo
eléctrico como de espacio físico. Además, la existencia en la misma infraestruc-
tura de elementos hardware estándar de diferentes fabricantes no hace sino
aumentar la probabilidad de aparición de problemas de interoperabilidad. Dicha
situación ha fomentado precisamente la aplicación de técnicas de virtualización
en entornos de procesamiento de red con el objetivo de unificar las platafor-
mas de procesamiento. Técnicas como el baipás-PCI (PCI-passthrough en su
terminología nativa) permiten migrar de forma directa los resultados obtenidos
en el mundo físico a entornos virtuales. En este trabajo se ha llevado a cabo
un estudio sobre el impacto en el rendimiento de estas técnicas a los sistemas
de procesamiento de red previamente presentados, concluyendo que la pér-
dida de rendimiento es atractivamente baja. Otra aproximación es la propuesta
por una alianza formada por diversos proveedores de servicios en red, ope-
radores, e incluso fabricantes de hardware que han introducido el concepto de
Virtualización de Funciones de Red (Network Function Virtualization, NFV). Este
nuevo paradigma pretende unificar los entornos en los que las aplicaciones de
red serían ejecutadas por medio de la inserción de una capa de virtualización.
Esta novedosa filosofía permite consolidar aplicaciones de red independientes
utilizando un único equipamiento hardware. Sin embargo, de cara a sacar el
máximo partido a la filosofía de NFV, se han de desarrollar mecanismos que
permitan obtener la máxima tasa de rendimiento de red en entornos virtuales.
La contribución de este trabajo en este campo, es precisamente la evaluación de
los límites de rendimiento de tareas de red en entornos NFV y el desarrollo de
HPCAPvf como el homólogo en el mundo NFV del motor de captura presentado,
HPCAP.

Palabras clave: Redes de alta velocidad, captura de tráfico de red, almace-
namiento de tráfico de red, procesamiento de red, drivers de red, virtualización
de funciones de red, máquinas virtuales, evaluación de rendimiento.

xxi

1
Introduction

This chapter has the purpose of providing an overview of this Ph.D.
thesis as well as introducing its motivation, presenting its objectives,
and, finally, describing its main contributions and outlining its or-
ganization.

1.1 Overview and motivation

Users’ demands and the capacity of both backbone and access links almost
since the Internet was born, have played a daily game of cat and mouse. On the
one hand, the widespread availability of the Internet is a fact. Moreover, users
tend to use the Net more intensively as new applications gain significant popu-
larity in a matter of weeks [GDFM+12]. In line with such an increase demand,
users’ quality of service expectations have also strengthened turning the Internet
into a truly competitive and mature market.

On the other hand, the operators’ answer has been more investments in
terms of both CAPEX (CAPital EXpenditures) and OPEX (OPErational EXpen-
ditures). That is, backbone links witness continuous upgrades, and probes
have been deployed across operators’ infrastructures to allow them to perform
measurement campaigns and careful monitoring, which helps satisfy quality de-
mands from users but also entails costly management.

Nonetheless, it is not only operators who face the challenge of handling and
monitoring high-speed networks, but also other entities such as banking insti-
tutions, content providers, and networked application developers [LSBG13]. In
these cases, the task may not be only to deliver bytes but also to dig into ap-
plications’ behavior, achieve the best performance, or inspect what traffic looks
like. As an example, in a bank network where security is a key element, net-
work managers must collect and study humongous sets of data often with ag-
gregated rates of several Gb/s to identify anomalous behavior and patterns. In-
deed, things may be even worse as malicious traffic often shows bursty patterns

INTRODUCTION

profiles [KKH+04]. The story is not very different for content providers and net-
worked applications developers. They are certainly also interested in monitoring
traffic and other forensic tasks, but additionally they have to assess that the per-
formance of both their software components and their infrastructures scaling at
least as fast as capacity and demands of Internet links do.

In short, the increase of the user’s demands and subsequent link capacities
have forced the different players in the Internet arena to deal with multi-Gb/s
rates. To put this into perspective, we note that, for instance, packet-traffic moni-
toring at rates ranging from 100 Mb/s to 1 Gb/s was considered very challenging
only a few years ago [MLCN05,PMAO04,FML+03], whereas contemporary com-
mercial routers typically feature 10 Gb/s interfaces, reaching aggregated rates
as high as 100 Tb/s [YZ10].

As a consequence, network operators have entrusted specialized hardware
devices such as FPGA (Field Programmable Gate Array) [DKSL04, AGMM12],
Ternary Content Addressable Memories (TCAMs) [YKL04, MPN+10], or high-
end commercial solutions with their networked tasks [End14b]. These solutions
give answer to high performance needs for a very specific task, e.g., lossless
packet handling in a multi-Gb/s link while routing or classifying traffic [Sys13].

However, the initial investment is high and such specialization, as with any
custom-made development, lacks both extensibility and flexibility, which in turn
also have an indirect cost impact. As an example, in the case of large-scale net-
works featuring numerous Points of Presence (PoP), extensibility and ease of
update are the key. Equivalently, in the case of a smaller network, it is desirable
to have hardware flexible enough to carry out different tasks as specifications
change. Additionally, in any scenario, network managers must prevent their in-
frastructure from being locked in to a particular vendor. As a workaround to
these limitations, some initiatives have provided extra functionalities in network
elements through supported API (Application Program Interface) that allow the
extension of the software part of their products—e.g., OpenFlow [MAB+08].

It has been only recently that the research community has proposed, as a
real alternative, the use of software-based solutions running on top of commod-
ity general-purpose hardware to carry out network tasks [BDKC10, GDMR+13].
The key point is that this provides flexibility and extensibility at a low cost. Ad-
ditionally, leveraging commodity hardware to develop networked services and
applications brings other advantages. All the components a commodity system
is based on are well known and popular hardware. This makes these systems
both more robust, due to extensive validation, easy to replace, and cheaper,
as the development cost per unit is lower thanks to the economies of scale of
large-volume manufacturers.

Unfortunately, the use of commodity hardware in high-speed network tasks

2 Tuning modern architectures for high-performance networking

1.1. OVERVIEW AND MOTIVATION

is not trivial due to limitations on both hardware capacities and standard operat-
ing systems performance. Essentially, commodity hardware is limited in terms of
memory and internal bus throughputs. From the software side, limitations come
from a general-purpose network stack that overloads communications due to a
prioritization of protocol and hardware compatibility over performance. To give
some figures about the size of the challenge, in a fully-saturated 10 Gb/s link the
time gap between consecutive packets assuming an Ethernet link and minimum
IP (Internet Protocol) packet size below 68 ns, while an operating system may
need more than half a microsecond to move each packet from kernel to applica-
tion layer [RDC12]. Therefore, it becomes evident that it is harder to deal with
small-sized packets than with large ones, as there is an inevitable per-packet
cost. Unfortunately, small-sized packets traffic profiles are not uncommon on
the Internet as for example VoIP (Voice over IP) traffic, distributed databases or
even anomalous traffic [KWH06]. This calls for a careful tuning of both hardware
and the operating system stack to improve the figures. Nonetheless, even in
the best hardware and tuned operating system combination, there will be packet
losses if the application layer is not aware of the lower levels’ implementation.
Furthermore, the optimization of a network I/O module must be done taking into
account more things that performance alone, or issues such as packet reorder-
ing [WDC11] or timestamping [MSdRR+12] inaccuracy may arise.

The development of high-performance networked services and applications
over commodity hardware should follow a four-layer model. The first layer com-
prises the NIC (Network Interface Card), that is, the hardware aimed at capturing
the incoming packet stream. There are several major NIC vendors but it is Intel,
and especially its 10 GbE model with chipset 82599 controller, that has received
most attention from the community. This chipset provides performance at com-
petitive prices, and more importantly, it offers novel characteristics that turn out to
be fundamental in order to achieve multi-Gb/s rates at the application layer. The
next layer includes the driver. There are of two kinds: standard or vanilla drivers,
i.e. as provided by Intel; or user customized ones. The third layer moves packets
from the kernel level to the application layer. This includes the standard way op-
erating systems work, i.e. by means of a socket and network stack. In addition to
this, there are different libraries that help application developers to interact with
traffic by means of a framework. Among all these libraries, PCAP is considered
the de facto standard [ALN12]. The combination of a driver and a framework
is known as a packet capture engine and the literature gives several examples
of high-quality engines using commodity hardware [GDMR+13]. These engines
typically feature a new driver and performance-aware frameworks. Finally, we
have the application layer, which encompasses any service or functionality built
on top of a capture engine. As previously mentioned, examples can be found
nowadays in software routers, firewalls, traffic classification, anomaly and intru-
sion detection systems, and many other monitoring applications [LLK14].

Vı́ctor Moreno Martı́nez 3

INTRODUCTION

However, the increased demands for network processing capacity could be
translated into a big number of machines even though if off-the-shelf systems
were used. Such an amount of machines means high expenses in terms of
power consumption and physical space. Moreover, the presence of commod-
ity servers from different vendors empowers the appearance of interoperabil-
ity issues. All those drawbacks damage the profitability that networked service
providers may experience. This issues among others, have motivated an in-
cremental trend in the recent years regarding the use of virtualization for com-
putational purposes. Such trend has been empowered by the inherent advan-
tages provided by virtualization solutions [YHB+11]. In this light, network op-
erators and service providers have been working during the last years on the
development of the concept of Network Function Virtualization (NFV). This new
paradigm aims to unify the environments where network applications shall run by
means of adding a virtualization layer on top of which network applications may
run. This novel philosophy also allows merging independent network applica-
tions using unique hardware equipment. Consequently, the application on NFV
can increase the benefits obtained by network service providers by (i) reduc-
ing their equipment investment by acquiring large-scale manufacturers’ products
and by reducing the amount of physical machines required, which also entails
cuts in power consumption; (ii) speeding up network applications maturation cy-
cle as all applications are developed in an unified environment; (iii) easing main-
tenance procedures and expenditures as testability is radically enhanced; (iv)
opening the network applications’ market for small companies and academia by
minimizing risk and thus encouraging innovation; (v) the possibility to rapidly ad-
just network applications and resources based on specific clients requirements.

The development of this novel NFV philosophy has been favoured by other
trending technologies such as Cloud Computing and Software Defined Network-
ing (SDN). In the case of Cloud Computing, NFV can easily benefit from all
the research carried out on virtualization management [AFG+10]. Furthermore,
NFV is to reside inside Cloud providers’ networks in order to carry out all the
network-related management tasks. On the other hand, NFV is complementary
to SDN but not dependent on it and vice-versa [MRF+13]. NFV enhances SDN
as it provides the infrastructure on top of which SDN software can run. Nev-
ertheless, in order to make the most of NFV, mechanisms that allow obtaining
maximum network processing throughput in such virtual environments must be
developed.

4 Tuning modern architectures for high-performance networking

1.2. OBJECTIVES

1.2 Objectives

The goal of this thesis is the creation and evaluation of a general-purpose
network monitoring system, that users and practitioners in the field may use to
develop their own high-performance network applications. Our proposal, HP-
CAP, has been designed after some preliminary experiences which provided
valuable knowledge that have proven vital along the development of this work.
Consequently, the partial goals established for this work are:

• Evaluating different hardware architecture possibilities for carrying net-
work monitoring tasks. This involves experimentation with the diverse al-
ternatives available, in order to comprehend the pros and cons offered by
each of them.

• Supplying a wide background, knowledge, and both qualitative and quan-
titative reference that practitioners and researchers need to:

◦ develop their own high-performance networked services and appli-
cations on commodity hardware starting from square one, or

◦ to choose the most attractive option between the already existing
ones to meet their specific requirements.

This implies the development of a sate-of-the-art study on the existing so-
lutions based on commodity hardware, which is the hardware architecture
chosen for the main development. This study implies a deep understand-
ing on the hardware and software elements involved in network monitoring
tasks, as well as the main techniques documented to circumvent perfor-
mance issues. Additionally, an extensive functional and performance eval-
uation of the available solutions must be carried out.

• Providing a new high-performance packet capture solution that includes
some important features that other approaches have not taken into ac-
count. Those features are:

◦ accurate packet timestamping,

◦ line-rate packet storage, and

◦ high-performance duplicated packets detection and removal.

HPCAP is our proposal to meet this requirements, and a detailed descrip-
tion of this solution is provided so practitioners and researches can under-
stand the points that differentiate HPCAP among other solutions. HPCAP,
as well as each of its distinguishing features will be extensively tested and
evaluated, both in terms of performance and accuracy when applicable.
Furthermore, in order to favour the generality of our approach, the follow-
ing features are also important to be addressed:

Vı́ctor Moreno Martı́nez 5

INTRODUCTION

◦ supporting the coexistence of network interfaces with dual function-
ality, i.e., one interface working in high-performance mode and the
rest working as standard interfaces,

◦ in order to favour porting to different vendors and drivers, stablish a
clear hierarchy that eases the migration of HPCAP to new devices.

• Creating M3OMon as a general-purpose programming framework built
on top of HPCAP over which users can easily develop their own applica-
tions. This framework allows to instantiate user-level applications feeding
from one or more data granularity levels, namely:

◦ the network packets themselves,

◦ flow records automatically generated by the framework from the in-
coming traffic, or

◦ time-series containing the packets, bits and active flows for each
second the system is running.

This framework must be extensively tested, in order to establish a set of
performance bounds to be taken into account by potential users in order
to develop their applications over it.

Virtualization techniques are being applied to a diverse set of computing
problems in diverse ways. Specifically, in the world of network traffic processing,
virtualization has appeared as an attractive alternative towards the consolidation
of an homogeneous hardware-independent environment. Nevertheless, the mi-
gration if high-performance network tasks to the virtual world implies optimizing
not only the computational part of the task, but even more importantly the I/O.
For this reason, this work also pretends to achieve the following goals:

• evaluating those virtualization techniques available for exporting physical
I/O devices to a virtual environment both in terms of performance and
functional implications, and

• establishing the feasibility of migrating the previously acquired knowledge
and experience to an even more general scenario that includes the instan-
tiation of network monitoring applications from virtual environments.

All the experiments described along this thesis work pretend to be repeat-
able and reproducible for any researcher interested. For this reason, all the code
developments carried have been published following an Open-Source policy. In
order to favour the widest accessibility for researchers and industry professionals
to the systems and tools described, HPCAP, M3OMon or HPCAPvf are available
for download on GitHub.

6 Tuning modern architectures for high-performance networking

1.3. THESIS STRUCTURE

1.3 Thesis structure

The rest of this thesis document is structured as follows:

• Firstly, Chapter 2 presents an overview with diverse architectures which
could be applied to the high-performance network monitoring problem, out-
lining the pros and cons of each possibility.

• Chapter 3 focuses on the use of off-the-shelf systems for network process-
ing. Furthermore, this chapter presents a survey of the current solutions
with the different features and performance obtained by each of them. In
order to ease the use of those solutions to any researcher or practitioner,
a set of guided instructions and code examples is presented in Appendix
A.

• After this state-of-the-art survey, Chapter 4 introduces the design goals
and implementation of HPCAP, which is our proposal for the high-perfor-
mance network monitoring problem. This chapter analyzes the main fea-
tures offered by HPCAP both in terms of performance and accuracy, which
are: packet timestamping, packet storage and duplicated packets removal.

• In Chapter 5, M3OMon, a framework built on top of HPCAP is introduced.
M3OMon has been designed in order to make it as simple as possible for
network applications developers to build and deploy new high-performance
network applications. In conjunction with a detailed description of this
framework, a complete and sound performance evaluation study has been
carried out and presented, as well as a set o sample applications already
built on top of it.

• In Chapter 6, an eye is turned to the Network Function Virtualization ap-
proach. This successful philosophy is widely extended nowadays, but no
effort has been place yet in order to offer high-performance capabilities.
This chapter studies all the possible techniques that could be applied to
translate the performance obtained by physical machines into virtualized
scenarios. In addition to a complete performance evaluation study, two
concepts: Virtual Network Probe and Virtual Network Monitoring Agent
are presented as our proposals for high-performance virtualized network-
ing.

• Finally, Chapters 7 and 8 present the conclusions and fruits of this work,
in english and spanish languages respectively.

Vı́ctor Moreno Martı́nez 7

2
Architectures for network
monitoring

Users’ demands have dramatically increased due to widespread
availability of broadband access and new Internet avenues for ac-
cessing, sharing and working with information. In response, oper-
ators have upgraded their infrastructures to survive in a market as
mature as the current Internet. This has meant that most network
processing tasks (e.g., routing, anomaly detection, monitoring) must
deal with challenging rates, challenges traditionally accomplished
by specialized hardware components. This chapter gives a brief
summary of diverse hardware approaches that have been used in
the network processing field, emphasizing the pros and cons of each
alternative.

Along the past decades, the evolution of society has been characterized by
an increment in the usage of new technologies: users are more connected, in a
more varied amount of ways, and through different services. In order to provide
a proper and profitable service, operators and network services providers must
deploy effective monitoring and quality-assurance policies. Nevertheless, the
network processing tasks involved by these policies have to deal with three main
challenges:

• Huge amount of data: there is a need to keep record of diverse data
records (e.g., connection to servers, session-related data, network perfor-
mance estimators, ...) for an humongous set of network users.

• High data rates: in order to give service to the current existing amount of
users, ISP (Internet Service Provider)s’ infrastructures is populated with
high-speed networks and interconnection systems. Consequently, any
network monitoring policy deployed on those infrastructures must be ca-
pable of acquiring the network data at high-speed rates, i.e., 10 Gb/s and
above.

ARCHITECTURES FOR NETWORK MONITORING

• The speed of the data’s validity: the data that can be extracted from the
network has to be processed as fast as possible, because those data are
only valid if they are obtained and used before their value is expired.

In order to face those challenges, the network data extraction and processing
must be carefully planned. Furthermore, the computational power required to
carry out those tasks claims for very specialized or tuned computing architec-
tures.

In this chapter, some architecture alternatives are analysed in terms of the
computing capacities offered, their programmability, their ease of support and
their interconnection mechanisms. Afterwards, some applications developed us-
ing this kind of equipments are presented, namely the Argos FPGA-based mon-
itoring card, and Twin−1 GPGU (General-Purpose Graphic Processing Unit)-
based duplicate detection and load balancing system.

2.1 Hardware components

Along this section, the main features offered by different computing-capable
hardware components is presented, with their main advantages a disadvantages
highlighted, and summarized in Table 2.1.

ASICs FPGAs GPGUs Commodity
hardware

Performance Maximal Very High Very High Good
Interconnection Custom Custom Co-processor Standard

Programmability
Low Low/Medium Medium/High HighSupport

Extensibility Very Low Medium High Very High

Table 2.1: Pros and cons summary for different hardware com-
puting alternatives

2.1.1 Application-Specific Integrated Circuits

ASIC (Application-Specific Integrated Circuit) are hardware elements that
offer maximum potential of adaptability during their design phase. The com-
puting architecture is completely opened, and designers are free to completely
build it from scratch [KC00]. For example, an ASIC could be designed for op-
timizing decimal floating point operations [DBS06] if it is going to be applied in
a high-frequency banking problem, modular-arithmetic blocks for cryptographic

10 Tuning modern architectures for high-performance networking

2.1. HARDWARE COMPONENTS

processing [WOL02], to simultaneously access as many memory banks as re-
quired, or to obtain a minimum-overhead connection with an external compo-
nent. As a consequence, ASIC-based computing always offer maximum compu-
tational potential.

In terms of interconnection between the data to be processed and the com-
puting element, the flexibility offered by ASIC platforms allows the designer to
choose the most suitable scheme: the ASIC could be a standalone processing
unit, or it could be connected as co-processing unit in a bigger system. How-
ever, if data storage tasks (or other tasks requiring the connection with complex
hardware elements) are required, developing custom connection will greatly in-
crement the design’s complexity and, probably, profitability.

On the other hand, all this performance potential is obtained at the expense
of a very low degree of programmability. ASICs have to be programmed using
a low-level hardware design techniques that, even though the existence of sim-
ulation techniques, imply the use of electronic design tools that must deal with
physical-level details. This turns ASIC design into a task available to a small set
of designed with very specific professional skills. Consequently, ASIC design
has a slow and expensive life cycle.

In terms of expenses, creating an ASIC-based product is a very costly pro-
cess, as it requires producing large sets of chips due to the way ASIC manufac-
turers function. Furthermore, once a product is commercialized, its extensibility
and maintenance has similar problems. If an ASIC device is modified and need
to be re-installed, this version changes implies starting the production and instal-
lation process from scratch.

All those characteristics that ASIC-based solution have, turn them into a very
appealing option for solving very-specific and constrained problems. However,
their application into a general range of network applications becomes unfeasi-
ble.

2.1.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are a special kind of integrated
circuits designed so they can be configured through a set of memory elements
after the chip has been manufactured [HD10]. Once a specific FPGA chip is
set, its programming can be modified from a HDL (Hardware Description Lan-
guage) description through a set of synthesis, component mapping and routing
processes. FPGAs allow digital designers to create almost any digital compo-
nent combination, and as technology evolves they tend to incorporate optimized
block to include the most common digital (and also analogical for some manu-

Vı́ctor Moreno Martı́nez 11

ARCHITECTURES FOR NETWORK MONITORING

facturers) components. For this reason, they offer a trade-off between the rigid
ASIC devices and a standard computing device such as a microprocessor. In
terms of performance, a certain FPGA design might be below an ASIC equiv-
alent only in terms of clock frequency supported, so their offered performance
level is near to optimal.

The interconnection possibilities between the data and the FPGA as com-
puting element are as wide as the amount of commercial products in the mar-
ket: the FPGA could run as a standalone element, be used as a co-processor
connected to a CPU (Central Processing Unit) socket [Xtr,DMLB+13], or be con-
nected via a expansion slot as in [Com14]. As with ASICs, the more complex the
systems to be directly connected to the FPGA are, the more complex the design
and peripheral control process will become.

From the programmability point of view, FPGAs are typically programmed
from a description created using HDL languages. That opened FPGAs to a
larger set of professionals than ASICs, but the design’s life cycle is still long and
expensive. Nevertheless, in the last decade there has been a important increase
in the use of HLL (High-Level Language)s [PT05, CCA+11] for FPGA program-
ming. This novel possibility for FPGA, although still in development and with
the need of support from the chip manufacturer, has turned the task of FPGA
programming into a more productive and effective task [EAMEG11,EAMEG13].
However, FPGA designers still need to have a deep knowledge on the FPGA
technology in order to obtain reasonable results.

On the other hand, although a single FPGA chip raises the final price com-
pared to a more standard solution, their price is still lower than the one from a
tailored ASIC. The benefits of buying the same chip for diverse purposes, allows
to deploy effective replacement policies.

Consequently, FPGAs provide an attractive trade-off between performance
and programmability. Nevertheless, the long time-to-market cycles associated
to FPGA development, even though the existence of HLLs approaches, compli-
cates their application applied in a generalistic way. This thesis has evaluated
the development of a FPGA-based network monitoring system with an emphasis
on having an accurate packet timestamping mechanism, which was distributed
and integrated in a European-level testbed.

2.1.3 General-Purpose Graphical Processing Units

Graphic Processing Units have been used for years as co-processors with
the aim of accelerating the most common computations required for graphical
processing. Due to the success of this approach, the main manufacturers of

12 Tuning modern architectures for high-performance networking

2.1. HARDWARE COMPONENTS

those devices decided to go one step further and generalize their usage, so
their computing capabilities could be used by any generic applications [OHL+08,
ND10a]. The traditionally language used for programming GPU devices, OpenCL,
proved useful for this new approach, and even manufacturers such as nVidia cre-
ated their own approach, CUDA (Compute Unified Device Architecture) [SE10].

The most extended usage of GPGU computing elements is by connecting
them to a CPU via an PCI (Peripheral Component Interconnect) expansion port.
When using a GPGU, users must be aware of the resource sharing constraints
or implement some resource allocation layer as in [GLBS+12], although some
manufacturers are evolving their tools to circumvent this problem. Nevertheless,
there has been recent efforts made, in which electronic designers haver merged
CPU and GPGU computing functionalities in a single chip [DAF11,CGS14], with
the aim of generalizing and increasing the amount of work done by the GPGU
co-processors. Importantly, GPGUs can not run as a standalone computing
element.

GPGUs offer a massively parallel computing approach, with a high amount
of simple processors or Texture Processors (TP) grouped in Streaming Multipro-
cessors (SM). They also have a characteristic memory hierarchy, with diverse
memory devices with diverse features depending on the volatility of the data to
be stored. Although the programming approach is simple and provides a high-
level abstraction, users still need to be aware of the peculiarities of the underlying
hardware in order to exploit the performance possibilities.

In economical terms, GPGUs offer a very attractive performance-power ra-
tio, which is one of the reasons for which they are being introduced in con-
temporary supercomputing systems [FQKYS04]. Manufacturers stablish several
ranges GPGUs differentiated based on their features, so users can adjust their
device to their own budget. Through being standardized devices, availability and
component replacement issues are mitigated.

The use of GPGUs has proven a highly efficient solution for computational
tasks fitting their programming paradigm. However, in the network processing
field, although possible, leaving the GPGU the task independently fetch each in-
coming packet, processing it and moving the result elsewhere would be highly in-
efficient, as GPUs benefit from processing huge amounts of regular data units at
the same time. A workaround to this problem is using the GPGU as an auxiliary
processing element, so the CPU fetches the incoming traffic and pre-processes
it so that it has a GPU-friendly format, which is the approach that has been
followed along the development of Twin−1 (see section 2.2.2).

Vı́ctor Moreno Martı́nez 13

ARCHITECTURES FOR NETWORK MONITORING

2.1.4 Commodity hardware

The term commodity hardware was forged to refer to those hardware equip-
ments which are easily and rapidly available for their purchase. That is, hardware
that is easy to for being sold by ubiquitous retailers, or by a big manufacturer with
a well developed delivery infrastructure. Note that the term affordable is usually
used too when describing commodity hardware, but we deliberatively not include
it in our definition, because it may create confusion, as commodity hardware sys-
tems may not be cheap in absolute terms although they are compared to their
alternatives.

Chapters 3 and afterwards of this thesis dissertation focus on the usage and
optimization of commodity hardware for network monitoring tasks, so no further
discussion is included in the present chapter.

14 Tuning modern architectures for high-performance networking

2.2. BACKGROUND EXPERIENCE

2.2 Background experience

This section presents Argos and Twin−1, which are two real-application
implementations based on FPGA and GPGU respectively. Both prototypes were
developed during the architecture-evaluation phase of this thesis.

2.2.1 ARGOS

Argos is a FPGA-based network monitoring card which was developed us-
ing Stanford’s NetFPGA 1G platform [Com14], and completely developed using
HDLs. This platform allows the programming of a Xilinx Virtex-II Pro 50 FPGA
device, which is connected to four Gigabit Ethernet ports, and to another FPGA
whose program is fixed and manages a simple PCI interface between the Vir-
tex device and the system’s PCI port. The design goal was the instrumentation
of the ETOMIC experimentation testbed [CFH+10] with accurately-synchronized
network monitoring equipment, in order to allow the testbed’s researched to ob-
tain fine-grain network measurements. This action was carried out under the
European Union OneLab2 FP7 Project (No. 224263).

More specifically, the design had to be synchronized via GPS, no all the de-
vices geographically distributed along the testbed were globally synchronized.
As the goal of this time synchronization was the timestamping of the processed
network traffic, a local timing correction algorithm was developed. In order to
simplify the interaction between the GPS antenna module and the network de-
vice, a MicroBlaze soft-processor was instantiated, with a simple peripheral to
receive the GPS signal and global time messages. That MicroBlaze run a time-
correction algorithm in order to correct the board’s internal oscillator. The cor-
rected timestamp value was made accessible to other design modules via a sim-
plified peripheral connected to the processor’s bus. The modular design scheme
of the prototype is shown in Fig. 2.1. Importantly, the accuracy obtained by this
time correction mechanism was in the order of tens of nanoseconds.

Once the accurate time source was established, it had two main purposes.
First, all the incoming packets are assigned a timestamp at the moment in which
the first byte of data was received through the MAC chip. Note that this guaran-
tees a timestamping accuracy in two ways: (i) the accurate time source, (ii) the
timestamp is not affected by processing delay. After their reception, packets are
stored in a dual-port memory following a single-producer single-consumer pol-
icy with a custom header containing, among other fields, their arrival timestamp.
Once packets are left in the memory device, they stay there until a custom kernel
driver carried out a data request transaction and exports the packets’ data to the
CPU via the PCI bus. This custom driver translates the custom header informa-

Vı́ctor Moreno Martı́nez 15

ARCHITECTURES FOR NETWORK MONITORING

tion and lifts the data to the Linux’s network stack so any upper-level application
feeding from this NIC would have access to the accurately timestamped traffic.

Ethernet 1G
MAC

Ethernet
RX

Ethernet
TX

PLB bus 1

PLB bus 2

Dual Port
MemoryBus bridge

µBlaze
processor

timestamp
export module

GPS UARTbus2PCI

Timing-related modules

Export-related modules

Network-related modules

Internal modules

Modules connected to
external elements

Figure 2.1: Argos’ block scheme

Second, the timestamp value was also used to accurately control the trans-
mission of traffic with a certain interarrival profile. Specifically, the Argos pro-
gramming interface allowed creating a train of packets, which is composed by a
configurable number of bursts of packets with a configurable amount of packets
per batch, as in Fig. 2.2. More interestingly, the configuration allowed defin-
ing the interdeparture time of packets belonging to the same burst, and the
time elapsed between the transmission of different bursts belonging to the same
packet train (interburst time). The packets sent in a train are all UDP (User Data-
gram Protocol) packets sent with a configurable quadruple, so users may adapt
them to their network configuration. Furthermore, inside each packet’s UDP data
field, the transmission module includes the timestamp in which the first byte of

16 Tuning modern architectures for high-performance networking

2.2. BACKGROUND EXPERIENCE

the packet is transmitted through the network. Note that this implies an on-the-fly
recalculation and modification of the Ethernet CRC value, but this can be easily
done using a state machine inside the FPGA module.

Figure 2.2: Packet burst train structure

Users may find this packet train feature useful by itself, but note that if the
packets of a train sent with an Argos card are received by another Argos
card, the receive side will have both the departure and arrival timestamps for
each packet belonging to a train. This opens a venue for diverse network ex-
perimentation, in which final users may obtain very accurate information about
their networks’ behaviour. Fig. 2.3 shows an example of experiment, using two
ETOMIC nodes one placed in Madrid and the other one in Budapest. The plot
shows the one-way delay experienced by packets sent in each of the two pos-
sible directions. Results show latency differences between the two paths, that
would be difficult to obtain with standard equipment.

0 1 2 3 4 5 6
0.0235

0.024

0.0245

0.025

0.0255

0.026

0.0265

Packet arrival time (s)

O
n
e

w
ay

 d
el

ay
 (

s)

Madrid − Budapest

Budapest − Madrid

Figure 2.3: One-way delay measurements for a Madrid-
Budapest connection

Vı́ctor Moreno Martı́nez 17

ARCHITECTURES FOR NETWORK MONITORING

2.2.2 Twin−1

Twin−1 was developed as a solution for a problem of high rates of packet
duplication that a service provider was experience in its high-speed network in-
frastructure. The appearance of duplicated packets was a problem inherent to
their network configuration [UMMI13] that could not be modified without damag-
ing some important services. However, DPI analysis was required to be carried
out over this network’s traffic, and their analysis’ was greatly disrupted due to
the duplicity problem. Furthermore, the system was required to distribute the
traffic between the servers carrying out the DPI analysis based on a set of IP
and port numbering rules. The final architecture diagram of the Twin−1 system
is showed in Fig. 2.4.

Traffic
distribution

Duplicate
removal

Enlace óptico Enlace eléctrico
Redundant

optical network

Supervision
systems

Optical link Electrical link

Figure 2.4: Twin−1’s architecture

A deeper analysis over the network showed that the duplicated packets were
near in time to the original packet, and a statistical analysis provided an estimator
for the window size required for inspecting for possible duplicates, which was
600. Given this particular characteristic, it seemed rational to consider several
hardware configurations for solving the problem. Specifically, a study taking into
consideration solutions based on FPGA, GPGU and a multi-core processor were
developed [MGAG+11]. The FPGA in use was a Altera’s Stratix III inside an in-
socket accelerator [Xtr], while the GPGU was a nVidia Tesla C1060, and the
multi-core processor was Intel Quad-Core L5408. Importantly, the prototyping
phase was carried out using HLLs for all hardware alternatives: Impulse-C for
FPGA, CUDA for GPGU and OpenMP for multi-core. Although the use of a
HLL for GPGU and multi-core programming does not make a difference, it has a
remarkable impact on development time for FPGA programming.

The problem size made that the use of advanced data structures such as
Hash tables had a negative impact on performance for the GPGU and multi-core

18 Tuning modern architectures for high-performance networking

2.2. BACKGROUND EXPERIENCE

versions, as it generated computation imbalance and the overall throughput was
limited by the slowest computing instance. However, the inherent nature of the
FPGA makes it very favourable to the use of such structures, as the amount of
accesses to memory elements is limited and access latency effects are mini-
mized. Fig. 2.5 shows the throughput obtained for the duplicate removal part
of the problem by each approach when working over real traffic obtained from
the operator’s network. It is worth remarking that both the GPGU and multi-core
approaches suffered performance oscillations depending on the network traffic’s
characteristics while the FPGA doesn’t, which is why an objective performance
comparison could be done using real traffic.

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

6

Number of packets per transaction

T
h
ro

u
g
p
u
t

(p
p
s)

Impulse−C

Impulse−C HASH

GPU

OpenMP

Figure 2.5: Throughput obtained by different hardware alterna-
tives for duplicate removal over real traffic

After some practical considerations, the final version was designed choosing
the GPGU hardware, as although it showed similar performance to the FPGA for
the duplicate removal part of the problem, the maintainability, interconnection
and packet shuffling problems were easier to address. Importantly, Twin−1 was
installed in the operator’s core network in 2011, and has been working there
since.

Vı́ctor Moreno Martı́nez 19

ARCHITECTURES FOR NETWORK MONITORING

2.3 Conclusions

Along this chapter, several hardware alternatives for network processing
tasks have ben presented, together with their majors pros and cons. Further-
more, two network processing example developments have been presented,
each which have involved the use of different hardware devices for their solu-
tion. The experience acquired along those two projects have been useful in order
to realize several important requirements when carrying out a general-purpose
network monitoring task:

• Timestamping accuracy: having a as accurate as possible way of assign-
ing each packet their arrival time is a fundamental requirement in order
to carry out network performance and QoS (Quality of Service) analysis.
This requirement becomes even more critical when moving towards higher
speed networks, i.e., 10 Gb/s and beyond. Sources of inaccuracy are not
only derived from the time source used, but also the moment in which
packets are assigned their timestamp. A good-quality network processing
solution should take this into account.

• Network duplicates: the appearance of duplicated packets in a core net-
work is a real problem which, if not taken into consideration, may damage
all analysis carried out over their traffic. Although there are hardware ele-
ments such GPGUs that have proven useful for solving this problem, the
duplicated have to be pre-processed and transferred to those computing
elements, with the subsequent resource consumption. An optimal net-
work monitoring system should try to detect duplicates in a level as low
as possible in order to avoid those undesired packets to prevent useful
computations.

• Network stack limitations: the development of Argos implied the devel-
opment of a Linux network driver that fetched the packets from the FPGA
and transferred them into the operating system’s network stack. Although
the packet capture throughput sustained by the FPGA-to-driver connec-
tion was high, the throughput obtained when packets traversed the net-
work stack was significantly damages. Consequently, a line-rate network
fetching mechanism will have to circumvent the standard network stack.

All those lessons learnt, amongst others, motivated the development of HP-
CAP, which is detailed in Chapter 4. The hardware architecture chosen to carry
out this development is commodity hardware. Commodity hardware offers a
trade-off between the high-performance offered by other hardware approaches,
while keeping a high degree of flexibility as our general-purpose goals required.

20 Tuning modern architectures for high-performance networking

3
Packet capture using
commodity hardware

The present evolution of the Internet, plus the appearance of a num-
ber of network services force network managers to operate with
huge amount of data at challenging speeds. The high demands of
network monitoring tasks (e.g., routing, anomaly detection, mon-
itoring) required the use of specialized hardware for solving the
problem. However, such approaches lack either flexibility or ex-
tensibility —or both. As an alternative, the research community
has proposed the utilization of commodity hardware providing flex-
ible and extensible cost-aware solutions, thus entailing lower op-
erational and capital expenditure investments. In this scenario, we
explain how the arrival of commodity packet engines has revolu-
tionized the development of traffic processing tasks. Thanks to the
optimization of both NIC drivers and standard network stacks and
by exploiting concepts such as parallelism and memory affinity, im-
pressive packet capture rates can be achieved in hardware valued
at a few thousand dollars. This chapter explains the foundation of
this new paradigm, i.e., the knowledge required to capture packets
at multi-Gb/s rates on commodity hardware. Furthermore, we thor-
oughly explain and empirically compare current proposals, and im-
portantly explain how apply such proposals with a number of code
examples. Finally, we review successful use cases of applications
developed over these novel engines.

In this chapter we present, in a tutorial-like fashion, all the knowledge re-
quired to build high-performance network services and applications over novel
capture engines running on commodity hardware. Furthermore, we will show
shortcuts to speed-up the development of such services and applications, by ex-
plaining the hardware and software keys to implement a custom packet capture
engine, by detailing and illustrating with command prompt instructions how the
capture engines proposed in the literature work, as well as by carrying out a per-
formance comparison that allows users to select the capture engine best fitting

PACKET CAPTURE USING COMMODITY HARDWARE

their needs. In addition to this, we present a state-of-the-art overview of current
services and applications already benefiting from this new network paradigm.

The rest of this chapter is organized as follows. The next section explores
the characteristics of the hardware referred to as commodity hardware as well
as how current operating systems’ network stacks work. Then Section 3.2 gives
a strong background on the limitations of commodity hardware, necessary to un-
derstand the keys to overcome them. This knowledge would suffice for users to
develop their own high-performance network drivers starting from vanilla ones.
However, there is the option of using one of the high performance packet cap-
ture engines proposed in the literature. This is discussed in Section 3.3, thus
enabling practitioners not interested in low-level details but in developing appli-
cations on commodity hardware, to skip much of the effort to master low-level
interactions. Section 3.4 is devoted to evaluate the performance of capture en-
gines. First, we explain how to evaluate capture engines and then we present a
fair comparison between the engines in the literature in terms of packet losses
and computational resource consumption to allow potential users to choose the
most suitable engine for their ultimate aims. After all the theoretical knowledge
has been introduced, Section A gives a cookbook on how to know the system’s
architecture, load a driver (customized or not), modify the driver’s characteristics,
optimize performance, essentially a practical tutorial on how to get started with
packet capture engines. After that, in Section 3.5, we survey applications that
have leveraged packet capture engines successfully since this novel paradigm
emerged. This may awaken new ideas but the reader can also view this as
the current state-of-the-art bounds to beat. Finally Section 3.6 provides a list of
lessons learned and some conclusions.

We believe that all this background, know-how, comparisons and practi-
cal lessons are what practitioners and researchers need to develop high-per-
formance network services and applications on commodity hardware. In ad-
dition, advanced readers may find enriching unknown details, benefit from the
comparison of the different capture engines currently in the literature, which
itself is of great interest, and also find the applications other researchers are
developing.

3.1 Commodity Hardware

The computational power required to cope with network data is always in-
creasing. Traditionally, when the requirements were tight an eye was turned to
the use of ASIC designs, reprogrammable FPGAs or network processors. Those
solution offer great computational power at the expense of high levels of special-
ization. Consequently, they only address the performance half of the problem

22 Tuning modern architectures for high-performance networking

3.1. COMMODITY HARDWARE

but they fail at solving the other half, which is the inexorably need to perform
more diverse, sophisticated and flexible forms of analysis.

Commodity hardware systems are computers that combine hardware with
a common instruction set and architecture (memory, I/O and expansion capa-
bilities) and open-source software. Such computers contain industry-standard
PCI slots that allow expansion and mechanical compatibility to provide a wide
range of configurations at minimal cost. Such characteristics position commod-
ity hardware as a strong option in terms of economies of scale with reduced
manufacturing costs per unit. Moreover, the widespread use of commodity NICs
and multi-core CPUs enables computers to capture and process network traffic
at wire-speed reducing packet losses in 10 GbE networks [HJPM10].

Lately the number of CPU cores per processor has been increasing and
nowadays quad-core processors are likely to be found in home computers and
even eight-core processors in commodity servers. Along with this step-up, mod-
ern NICs have significantly evolved both in terms of hardware design and cap-
ture paradigms. An example of this evolution is the technology developed by In-
tel [Int12] and Microsoft [Mic] known as RSS (Receive Side Scaling). The main
role of RSS is to distribute network traffic load among the different cores of a
multi-core system and optimize cache utilization. Such a distribution overcomes
the processing bottleneck produced by single-core approaches. RSS traffic dis-
tribution among different receive queues is achieved by using an indirection table
and a hash value calculated over a configurable set of fields of received packets.
Each receive queue must be bound to a different core in order to balance the
load efficiently across the system resources.

As can be observed in Fig. 3.1, once the hash value has been calculated, its
Least Significant Bits (LSB) are used as index for the indirection table. Based on
the values contained in the indirection table the received data can be assigned to
a specific processing core. The default hash function used by RSS is a Toeplitz
hash. Algorithm 3.1 shows the pseudocode of such a function. The algorithm
takes an array with the data to hash and a 40-byte bitmask called secret key (K)
as input. This hash uses the IPv4/IPv6 source and destination addresses and
protocol field; TCP (Transmission Control Protocol)/UDP source and destination
ports; and, optionally, IPv6 extension headers. Applying the default secret key,
the resulting hash assigns traffic to queues maintaining unidirectional flow-level
coherency, that is, packets containing the same 5-tuple will be delivered to the
same processing core. Changing the secret key enables different traffic distri-
butions focusing on other features. For instance an approach for maintaining
bidirectional flow-level (session-level) coherency is presented in [WP12].

In addition to RSS technology, extra features are present on modern NICs.
For example, Intel 10 GbE cards allow the programming of advanced hardware
filters to distribute traffic to different cores based on simple rules. This feature

Vı́ctor Moreno Martı́nez 23

PACKET CAPTURE USING COMMODITY HARDWARE

RX
RING

RX
RING

RX
RING

RSS
QUEUE 0

RSS
QUEUE 1

RSS
QUEUE N

Incoming Packet

Hash
module

Hash
value

LSB
Indirection

Table

queue x

Packet
dispatcher

5-tuple

Figure 3.1: RSS architecture

input : A 32-bit state key K and a bit stream input[]
output: A 32-bit result

result← 0
for each bit b in input[] do

/* bits are processed from left to right */
if b == 1 then

result← result xor Lowest32bits(K)
end
K← K << 1

end
return result

Algorithm 3.1: Toeplitz hashing algorithm

24 Tuning modern architectures for high-performance networking

3.1. COMMODITY HARDWARE

is known as Flow Director and provides filters based on: source/destination ad-
dresses and ports; Type Of Service value from IP header; Level 3 and 4 proto-
cols; VLAN ID and Ethertype.

3.1.1 NUMA architectures

Besides new hardware improvements, the interaction between the software
and the hardware is an aspect of paramount importance in commodity hardware
systems. For instance, NUMA (Non Uniform Memory Access) has become the
de facto standard for multiprocessor architectures and has been exploited for
high-speed traffic capture and processing. Briefly, NUMA architecture divides
all available system memory into chunks and assigns each chunk to a differ-
ent SMP (Symmetric Multi Processor). The combination of a processor and a
memory chunk is known as a NUMA node. Some topology examples of NUMA
architectures are shown in Fig. 3.2.

In NUMA architectures, each processor may access its own chunk of mem-
ory in parallel, boosting system performance and reducing the CPU data starva-
tion problem. Notwithstanding that NUMA architecture increases performance in
terms of both memory accesses and cache misses [DAR12], a careful process
placement must be performed in order to avoid accessing memory located on
another NUMA node.

Basically, access between a processing core and its corresponding memory
chunk reduces the data fetching latency while accessing memory chunks located
on another NUMA node increases it. To get the most out of NUMA architectures
the distribution topology of NUMA nodes must be known in advance since it may
vary depending on the hardware platform. To obtain the NUMA node distance
matrix the numactl1 command can be used. This matrix describes the distance
from each NUMA node memory chunk to the others. As expected, the lower the
distance the lower the access latency to other NUMA nodes.

Another aspect of paramount importance is the location and interconnec-
tion of devices. Typically in commodity hardware network capture systems,
NICs make use of PCIe (Peripheral Component Interconnect Express) buses
to connect to the processors. Connection may vary depending on the moth-
erboard used in the commodity hardware capture system. Fig. 3.2 shows the
most common interconnection patterns on current motherboards. In more de-
tail, Fig. 3.2(a) shows an asymmetric architecture with all PCIe lines directly
connected to a processor in contrast to Fig. 3.2(b) showing a symmetric scheme
with PCIe lines distributed between two processors.

1linux.die.net/man/8/numactl

Vı́ctor Moreno Martı́nez 25

linux.die.net/man/8/numactl

PACKET CAPTURE USING COMMODITY HARDWARE

Figs. 3.3(c) and 3.3(d) show two topologies on which IO-hubs are used. The
main difference between them is the existence of PCIe lines connected to one
or more IO-hubs. Such IO-hubs interconnect PCIe buses as well as USB, stan-
dard PCI buses and other devices. Due to this architecture the bus between
the IO-hub and the processor is shared with the subsequent performance prob-
lems. All these architectural issues must be considered when building a capture
system. For instance, if a NIC is attached to a PCIe slot assigned to a NUMA
node, all capturing threads should be executed on the corresponding cores of
the NUMA node. If this is not done, data transmission between processors using
the Processor Interconnection Bus may occur, degrading system performance.

To obtain the processor to which a PCIe device is assigned the following
command may be executed on Linux systems: cat /sys/bus/pci/devi-
ces/PCI ID/local cpulist. Note that PCI_ID is the device identifier ob-
tained by executing the lspci2 command.

For all the above reasons, modern commodity systems are highly attractive
to accomplish the demanding task of network traffic monitoring at high speeds as
their performance is on par with today’s specialized hardware, such as network
processors [Luc14,LSI14,Int14c], FPGAs [Com14], Endace DAG cards [End14a]
or commercial solutions provided by router vendors [Sys14] while keeping down
the expense. Furthermore, due to the development of monitoring functionality at
user level, commodity hardware-based appliances are flexible as well as scal-
able and extensible due to their inherent mechanical compatibility.

3.1.2 Current and past operating system network
stacks

While network hardware has been rapidly evolving focusing on high-speed
packet capture, software has not followed the same trend. In the case of soft-
ware, modern operating systems are nowadays designed to provide compatibil-
ity rather than performance. Such operating systems present a general-purpose
network stack that provides a simple socket user-level interface for data ex-
change and handles different hardware and network protocols. Nevertheless,
such an interface is not optimal in terms of high-speed traffic capture.

Particularly, Linux kernels prior to 2.6 presented an interrupt-driven approach
in the network stack. Focusing on behavior: whenever a packet arrives at the
corresponding NIC, a descriptor in a NIC’s receive (RX) queue is allocated and
assigned to that packet. These queues are also known as rings due to their
circular topology. Each packet descriptor contains a pointer to the memory re-

2linux.die.net/man/8/lspci

26 Tuning modern architectures for high-performance networking

linux.die.net/man/8/lspci

3.1. COMMODITY HARDWARE

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry
C

h
u

n
k

 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines

(a) PCIe lines connected to one processor

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry
C

h
u

n
k

 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1
CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines PCIe Lines

(b) PCIe lines connected to two processors

Figure 3.2: NUMA architectures topology examples

Vı́ctor Moreno Martı́nez 27

PACKET CAPTURE USING COMMODITY HARDWARE

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry
C

h
u

n
k

 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines

IOHUB PCIe Lines

(c) PCIe lines connected to one IOHUB

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry
C

h
u

n
k

 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines

IOHUB

PCIe Lines

IOHUB

(d) PCIe lines connected to two IOHUBs

Figure 3.2: NUMA architectures topology examples

28 Tuning modern architectures for high-performance networking

3.1. COMMODITY HARDWARE

gion needed to perform the incoming packet transfer via DMA (Direct Memory
Access). In the case of packet transmission, DMA transfers are performed in
the opposite direction and an interrupt line is raised upon completion to allow
the transmission of new packets. This mechanism is common to all the different
packet I/O commodity hardware solutions.

Fig. 3.3 shows the traditional Linux network stack behavior. When an incom-
ing packet DMA transfer from the NIC to the host’s memory (DMA-able memory
region) is finished, an interrupt is signaled. Then, the software interrupt routine
copies the packet’s data into a local kernel sk buff structure. This structure
is typically called a kernel packet buffer. Once the packet has been copied, the
packet descriptor is released so the NIC can reuse it to receive new packets. The
sk buff structure with the received packet data traverses the system’s network
stack until delivered to a user application. Following this I/O scheme, an interrupt
must be raised each time a packet is received or transferred. This mechanism
overcrowds the host system when the network load is high [ZFP12].

To avoid such behavior, current network drivers implement the NAPI (New
API) approach [Lin14] to increase performance. NAPI was included in Linux
kernel 2.6 to boost packet processing in high-speed scenarios. To speed up the
packet capture, NAPI is based on two ideas:

1. Interrupt mitigation: following the traditional receive scheme many inter-
rupts per second are generated when high-speed traffic is present. Han-
dling such interrupts requires processor time and in the presence of a high
interrupt rate, processors may be overloaded and performance degrada-
tion will ensue. To solve this issue, the NAPI-aware driver interrupt routine
is launched when RX/TX interrupts arrive. Unlike the traditional approach,
the interrupt routine schedules the execution of a poll() function and dis-
ables interrupts instead of copying and queuing the packet. The poll()
function checks if new packets are received, and copies and queues them
into the network stack when available in an interrupt-less way. The func-
tion reschedules itself to be executed in the near future (without waiting
for interruptions). If no packets are available in this time period, packet
interrupts are activated again. Note that polling mode demands more CPU
time than interrupt-driven mode when network load is low but it becomes
worthwhile as speed grows. Depending on the network load, NAPI com-
pliant drivers adapt themselves to increase the performance as shown in
Fig. 3.4.

Vı́ctor Moreno Martı́nez 29

P
A

C
K

E
T

C
A

P
T

U
R

E
U

S
IN

G
C

O
M

M
O

D
IT

Y
H

A
R

D
W

A
R

E

Physical link

NIC RX
RING

Packet
arrival

DMA-able memory
DMA write

transfer

Network Stack

DMA
complete

IRQ

time

push into
buffer

User Application

pop from buffer

sock_recv()
memcpy()

Figure 3.3: Linux Network Stack RX scheme in kernels previous to 2.6

30
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

3.1. COMMODITY HARDWARE

2. Packet throttling: Traditionally, when high-speed traffic surpassed sys-
tem capacity, packets were dropped at kernel-level rendering the previous
communication and copying between drivers and kernel useless. NAPI
compliant drivers drop traffic at network adapter level using flow control
mechanisms thus preventing unnecessary work.

In what follows, the GNU Linux NAPI mechanism will be used to illustrate
performance problems and limitations. This choice has been made as Linux is a
widely used open-source operating system that allows full code modification for
instrumentation and performance analysis purposes. Although the vast majority
of the proposals in the literature have been developed for different flavors of
the GNU Linux distribution, some of them are also available for other operating
systems such as FreeBSD [Riz12a].

Vı́ctor Moreno Martı́nez 31

P
A

C
K

E
T

C
A

P
T

U
R

E
U

S
IN

G
C

O
M

M
O

D
IT

Y
H

A
R

D
W

A
R

E

Physical link

NIC RX
RING

Packet
arrival

DMA-able memory
DMA write

transfer

Network Stack

DMA
complete

IRQ

time

push into
buffer

User Application

pop from
buffer

sock_
recv()

memcpy()
napi_

schedule()

IRQ

push into
buffer

allocate new
memory

Figure 3.4: Linux NAPI RX scheme

32
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

3.2. PACKET CAPTURING

3.2 Packet capturing

3.2.1 Limitations: wasting the potential performance

Although the way operating systems’ network stacks has evolved, their ro-
bustness and flexibility remains a burden in terms of packet processing rates.
The NAPI technique by itself is not enough to overcome the challenging task
of very high-speed traffic capturing since other inherent architectural problems
degrade the performance. After extensive code analysis and performance tests,
several problems have been identified [HJPM10,Riz12a,LXB11,PVA+12]:

1. Per-packet allocation and deallocation of resources: Whenever a new
packet arrives at a NIC, an sk buff data structure is allocated by the
kernel to store the packet’s information. Once the packet has been deliv-
ered to user-level, its descriptor is released. This resource allocation and
deallocation process generates a significant overhead, especially when
receiving at high packet rates —as high as 14.88 million packets per sec-
ond (Mp/s) in 10 GbE. Additionally, this sk buff data structure is large
because it may comprise information from many protocols on multiple lay-
ers, but most of this information is not necessary for numerous networking
tasks. Modern drivers tend to group this structure allocation requests as a
workaround in order to reduce the impact on performance of this process.
As shown in [LXB11], sk buff conversion and allocation consume nearly
1200 CPU cycles per packet, while buffer release needs 1100 cycles. In-
deed, sk buff-related operations consume 63% of the CPU usage in the
reception process of a single 64-byte sized packet [HJPM10].

2. Serialized access to traffic: Modern NICs include multiple hardware RSS
queues which are intended to distribute the incoming traffic using a hash
function whose value is calculated at hardware-level based on the incom-
ing packet’s 5-tuple (Section 3.1). By exploiting this feature the capture
process can be parallelized, since different NAPI threads could be bound
to different CPU cores so each thread gathers the packets from a specific
RSS queue. However, once packets are fetched, the GNU Linux network
stack merges all packets at a single point on network and transport layers
for analysis. Fig. 3.5 shows the architecture of the standard GNU Linux
network stack. As a result, two problems arise from the use of this philoso-
phy: first, all traffic is merged in a single point, which creates a processing
bottleneck thus limiting overall throughput; second, user processes are ca-
pable of receiving the traffic from a certain RSS queue. Consequently, we
cannot make the most of parallel capabilities of modern NICs delivered to a

Vı́ctor Moreno Martı́nez 33

PACKET CAPTURE USING COMMODITY HARDWARE

specific queue associated with a socket descriptor. This serialization pro-
cess degrades the system’s performance regardless of any optimizations
a particular network driver might implement. Furthermore, merging traffic
from different receive queues may entail packet disordering [WDC11] and
affect upper-layer packet processing policies.

3. Multiple data copies from driver to user-level: Packets are transferred to
system memory through a DMA transaction. Until those packets are re-
ceived from a user-level application they are copied several times, at least
twice: from the DMA-able memory region in the driver to a packet buffer
sk buff structure at kernel-level, and from the kernel packet buffer to
the user level. Each additional copy will obviously damage overall perfor-
mance: a single data copy consumes between 500 and 2000 cycles de-
pending on the packet length [LXB11]. Another important idea related to
data copying is the fact that copying data packet-by-packet is not efficient,
and deteriorates when packets are small. This is caused by the constant
overhead inserted in each copy operation, which favors large data copies.

Modern drivers reduce in one the amount of data copies required by re-
using the same memory area containing the packet along the multiple lay-
ers traversed. However, this policy has collateral effects: buffers can not
be released until all the upper layers are finished with them, and thus the
driver must allocate new buffers or wait until some become available, which
may turn into performance losses. Note that, by applying this policy, mod-
ern drivers do not need copying the data from the DMA buffer to kernel
memory, but one more copy is still needed when transferring the packet’s
data (o a subset of its original data) to user-space applications.

4. Kernel-to-userspace context switching: Every time a user-level network
application is to receive one packet, a system call must be performed.
Each of these system calls will entail a user-level to kernel-level context
switch and vice versa, with the consequent CPU time consumption. Such
system calls and context switches may consume up to 1000 CPU cycles
per packet [LXB11].

5. No exploitation of memory locality: The first access to a recently written
DMA-able memory region entails cache misses, as DMA transactions in-
validate cache lines. Such cache misses represent 13.8% out of the total
CPU cycles consumed in the reception of a single 64 byte packet [HJPM10].
Additionally, in a NUMA-based system the latency of memory access de-
pends on the memory node accessed. Thus, inefficient memory place-
ment may entail performance degradation due to greater memory access
latencies each time a cache miss is triggered.

34 Tuning modern architectures for high-performance networking

3.2. PACKET CAPTURING

Kernel SpaceKernel Space
NIC (HW)

RX
RING

RX
RING

N RSS
queues

Driver

DMA-able
memory
regions

Kernel
packet
buffers

User Space

copy
1 packet

copy
1 packet

copy
1 packet

OS

DM
A

tra
ns

fe
r

Figure 3.5: Legacy Linux Network Stack (serialized paths)

Vı́ctor Moreno Martı́nez 35

PACKET CAPTURE USING COMMODITY HARDWARE

3.2.2 How to overcome limitations

In the previous sections, we have shown that modern NICs are a great alter-
native to specialized hardware for network traffic processing tasks at high speed.
However, both the networking stack of current operating systems and applica-
tions at user-level do not properly exploit their new features. Here we present
several proposed techniques to overcome limitations described above in default
operating system network stacks.

Such techniques may be applied either at driver level, kernel level or be-
tween kernel level and user level, and are specifically applied to the data they
exchange, as will be explained below.

1. Pre-allocation and re-use of memory resources: This technique consists
in allocating all memory resources required to store incoming packets, i.e.,
data and metadata (packet descriptors), before starting the packet recep-
tion process. Specifically, N rings of descriptors (one for each rdware RSS
queue on each device) are allocated when the network driver is loaded.
Note that this means that the driver loading process will take some ex-
tra time, but once the reception process begins the per-packet allocation
overhead is suppressed. Likewise, once each packet has been processed
and transferred to userspace, its corresponding data structure will not be
released, but it will be marked as available so it can be re-used to store a
new incoming packet. This policy eradicates the bottleneck produced by
per-packet allocation/deallocation. Additionally, the sk buff data struc-
tures in use may be simplified to reduce memory requirements. These
techniques must be applied at driver level.

2. Exploiting queue parallelism: This technique pretends to solve serializa-
tion in the access to traffic, by creating direct parallel paths between the
RSS queues and the network applications as shown in Fig. 3.6. In order
to achieve the best performance, specific and independent cores must be
assigned for taking packets from each RSS queue and forwarding them to
the user level. This technique supports the creation of new new parallel
paths as the number of cores and RSS queues grow, which is an advan-
tage in terms of scalability. In order to obtain such parallel direct paths, we
have to modify the data exchange mechanism between kernel and user
levels.

On the downside, the use of this technique has two main limitations: First,
each parallel path will make use of a CPU core, which reduces the num-
ber of cores available for different tasks. Second, RSS distributes traffic
to each receive queue by means of a hash function. If our process does
not analyze packet interaction, we can maximize parallelism by creating

36 Tuning modern architectures for high-performance networking

3.2. PACKET CAPTURING

Kernel Space

NIC (HW)

RX
RING

RX
RING

N RSS
queues

Driver

DMA-able
memory
regions

Kernel
packet
buffers

User Space

copy
1 packet k packets

(mmap, one-copy)

k packets
(mmap, zero-copy)

D
M

A
tra

ns
fe

r

Figure 3.6: Optimized Linux Network Stack (independant par-
allel paths)

Vı́ctor Moreno Martı́nez 37

PACKET CAPTURE USING COMMODITY HARDWARE

and linking one or more instances of this process to each capture core.
However, if our networking tasks require the analysis of related packets,
flows or sessions, it will need to fetch packets from different queues. For
example, a VoIP monitoring system, assuming that such a system is based
on the SIP (Session Initiation Protocol) protocol, needs to monitor not only
the signaling traffic (i.e., SIP packets) but also calls themselves —typically,
RTP (Real-time Transport Protocol) traffic. Obviously, SIP and RTP flows
may not share either level 3 or 4 header fields that the hash function uses
to distribute packets to each queue, hence they might be assigned to dif-
ferent queues and cores. The approach to circumvent this latter problem is
that the capture system performs itself some aggregation tasks. The idea
is that before packets are forwarded to userspace (for example to a socket
queue), a block of the capture system aggregates the traffic according to
a given metric. However, this is of course at the expense of performance.

3. Memory mapping: This feature supported by Linux’s memory manage-
ment model allows user-level applications to map kernel memory regions.
Thus, applications are capable of directly reading and writing those mem-
ory areas without intermediate copies. This technique can be used to map
from user-space those memory areas containing the data from the incom-
ing packets and thus saving one kernel-to-user copy operation. Note that,
if the memory areas mapped at user level are not those DMA-able re-
gions where the NIC copies the packet data into, a copy is sill required
so will refer to this configuration as one-copy. This approach is imple-
mented on current GNU Linux as a standard raw socket when opened with
the RX RING/TX RING socket options. Conversely, if the memory areas
mapped by user applications are the DMA-able regions, no data copies
are needed to access the packets’ data, and thus the term zero-copy is
used. As an inconvenient, a zero-copy driver can not re-use the DMA-able
buffers until user applications are done with them. Additionally, exposing
NIC rings and register memory areas to user-level access may entail risks
for the system’s stability [Riz12a], which must be properly handled. How-
ever, this is considered a minor issue as the APIs provided typically protect
the critical regions from incorrect access. In fact, graphic cards make use
of memory mapping techniques without major concerns.

Fig. 3.6 illustrates two different approaches in which memory mapping
techniques is used to achieve packet reception with one-copy or zero-
copy. Applying these methods requires either driver-level or kernel-level
modifications as well as in the data exchange mechanism between kernel
and user levels. The use of memory mapping techniques to share data
between kernel and user spaces allows reducing the amount of context
switches in the packet capture process and thus improve overall perfor-
mance. That is the case of modern versions of the libpcap library.

38 Tuning modern architectures for high-performance networking

3.2. PACKET CAPTURING

4. Batch processing: This technique is based on processing several packets
at the same time, in order to reduce the overhead of per-packet operations.
Packets are grouped into a buffer and copied to the target memory region
in groups called batches. This technique reduces the number of system
calls made by network applications, with their related context switches.
This minimizes the overhead of processing and copying packets individ-
ually. In the NAPI architecture, there are two points where batches can
be intuitively used. First, if packets are fetched via polling requests, more
than one packet can be processed per poll request. Alternatively, if the
packet fetcher works on an interrupt-driven basis, an intermediate buffer
can be used to collect traffic until upper layers ask for it. However, the use
of batching techniques may entail issues such as an increase in latency
and jitter, and timestamp inaccuracy on received packets because packets
have to wait until a batch is full or a timer expires [MSdRR+12]. In order to
implement batch processing, we must modify the data exchange between
kernel and user levels.

5. Byte-stream oriented: One step further than packet capture lies packet
storage in non-volatile devices. In order to accomplish such task, a packet-
by-packet policy issues many write operations and may not perform opti-
mally. To mitigate this effect, some packet capture engines offer access to
a byte-stream for user-level applications so they can work in terms of big
blocks of bytes.

6. Affinity issues: In NUMA architectures, in order to increase performance
and exploit memory locality, processes must allocate their memory in such
a way that it is assigned to the processor (or NUMA node) in which it is
being executed. This is known as memory affinity, but CPU and interrupt
affinities must also be considered by software designers. CPU affinity al-
lows control of the processors and cores where a given process (process
affinity) or thread (thread affinity) is to be executed. Process affinity may
be performed using Linux taskset3 utility, and the thread affinity can be
managed by means of the pthread setaffinity np4 function inside
the POSIX (Portable Operating System Interface) pthread library. On the
other hand, software and hardware interrupts can also be bound for han-
dling by specific cores or processors using a similar approach, whis is
referred as interrupt affinity. This can be done by writing a binary mask to
the file /proc/irq/IRQ#/smp affinity. The importance of setting
capture threads and interrupts to the same core lies in the exploitation of
cached data and load distribution. Whenever a thread accesses the in-
coming packets, finding them in the local cache will be more likely if they
have been received by an interrupt handler assigned to the same core.

3linux.die.net/man/1/taskset
4linux.die.net/man/3/pthread_setaffinity_np

Vı́ctor Moreno Martı́nez 39

linux.die.net/man/1/taskset
linux.die.net/man/3/pthread_setaffinity_np

PACKET CAPTURE USING COMMODITY HARDWARE

Another affinity issue that must be taken into account is to map the cap-
ture threads to the NUMA node attached to the PCIe slot the NIC has been
plugged into. This PCI affinity allows maximum throughput to be obtained
in DMA transfer operations. To accomplish this, the system information
provided by the sysctl interface (shown in Section 3.1) may be useful.

7. Prefetching: Additionally, in order to eliminate inherent cache misses, the
driver may prefetch the next packet (both packet data and packet descrip-
tor) while the current packet is being processed. The idea behind prefetch-
ing is to load the memory locations that will be potentially used in the near
future in the processor cache in order to access them faster when required.
Some drivers, such as Intel’s ixgbe, apply several prefetching strategies
to improve performance. Thus, any capture engine making use of such
a vanilla driver, will see its performance benefit from the use of prefetch-
ing. Further studies such as [HJPM10,SZTG12] have shown that more ag-
gressive prefetching and caching strategies may boost network throughput
performance.

8. Capture and process isolation: although we restrict this tutorial to the
packet capture process, it is important to remark that any network process-
ing task carried out on top of any of the explained packet capture engines
will likely require additional per-packet computation, e.g., packet filtering,
protocol classification, flow record extraction, ... Importantly, depending on
the packet capture engine in use, this computation may have to be added
into the packet capture process and thus increment per-packet process-
ing latency and potentially damage capture performance. However, if the
packet capture and processing processes are isolated one from the other
and properly pipelined, this performance loss effect can be mitigated.

40 Tuning modern architectures for high-performance networking

3.3. CAPTURE ENGINE IMPLEMENTATIONS

3.3 Capture Engine implementations

In this section, we present five proposed capture engines, namely: PF_RING
DNA [Der04,Der05,RDC12], PacketShader [HJPM10], netmap [Riz12a,Riz12b,
Riz14], PFQ [BDPGP12], Intel DPDK [Int14b], all of which have achieved signif-
icant performance levels. For each engine, we describe the system architecture
(noting differences from the other proposals), which of the optimization tech-
niques mentioned above have been applied, the API provided for client appli-
cations to develop network applications, and what additional functionality it may
offer, while the following section will evaluate their performance. Table 3.1 shows
a summarized qualitative comparison between the proposals under study. Note
that this table also takes HPCAP [Mor12, MSdRR+14b] into account for com-
parative reasons, but, although briefly mentioned in this section, this capture
engine will be deeply described in Chapter 4. We have not included some cap-
ture engines, previously proposed in the literature, because they are obsolete
or unable to be installed in current kernel versions (Routebricks [DEA+09], UIO-
IXGBE [Kra12]) or where a newer version of these proposals has been released
(PF_RING TNAPI [FD10]). In Section 3.4 we discuss how to evaluate the ex-
isting packet capture engines. Finally, Subsection 3.4.2 shows the results from
those tests and highlights the advantages and drawbacks of each capture en-
gine, giving guidelines to the research community in order to choose the most
suitable capture system.

3.3.1 PF_RING DNA

PF_RING DNA (Direct NIC Access) [RDC12] is a framework and engine to
capture packets based on Intel 1/10 Gb/s cards. This engine implements pre-
allocation and re-use of memory in all its processes. PF_RING DNA (Direct
NIC Access) also allows building parallel paths from hardware receive queues
to user processes, i.e., it allows a CPU core to be assigned to each receive
queue whose memory can be allocated observing NUMA nodes, thus permitting
the exploitation of memory affinity techniques.

PF_RING implements full zero-copy, i.e., PF_RING maps userspace mem-
ory into the DMA-able memory region of the driver allowing users’ applications
to access to card registers and data directly in a DNA fashion. This avoids the
intermediation of the kernel packet buffer and reduces the number of copies.
As previously noted, however, this is at the expense of a slight weakness to
errors from user applications not following the PF_RING DNA API (which explic-
itly does not allow incorrect memory accesses) and this may potentially cause
system crashes. In the rest of the proposals, direct accesses to the NIC are pro-

Vı́ctor Moreno Martı́nez 41

PACKET CAPTURE USING COMMODITY HARDWARE

Characteristics/ PF RING PacketShader netmap PFQ Intel HPCAPTechniques DNA DPDK
Memory pre-allocation

X X X X X X
and re-use

Parallel direct paths X X X X X X

Memory mapping X X X X X X

Zero-copy X × X × X ×

One-copy × X × X × X

Batch processing × X X X X ×

Byte-stream × × × × × X
processing

Capture & process × × × X × X
isolation

CPU and interrupt
X X X X X X

affinity

Memory affinity X X × X X X

Aggressive prefetching × X × × X X

Multiple listeners × × × X X X

Accurate × × × × × X
timestamping

Level D,K, D, D,K, D (minimal), D, D,
modifications K-U K-U K-U K,K-U K-U K-U

API libpcap custom
standard socket-like/C, C++,

custom libpcap-like
libc Haskell, pcap

Supported
Intel Intel

Intel,
Any

Intel, Emulex
Intel

10Gb NICs Mellanox Cisco, Mellanox

Supported
Intel Intel

Intel, Realtek,
Any Intel ×

1Gb NICs nVidia

Table 3.1: Comparison of the diverse proposals (D=Driver,
K=Kernel, K-U=Kernel-User interaction)

42 Tuning modern architectures for high-performance networking

3.3. CAPTURE ENGINE IMPLEMENTATIONS

tected. PF_RING DNA behavior is shown in Fig. 3.7, where it can be observed
that some of the steps that the NAPI approach follows disappear due to the use
of the zero-copy technique.

PF_RING’s API provides a set of functions for managing network devices
and capturing incoming traffic. It works as follows: first, the network application
must be registered with pfring set application name(). Before starting
the capture process, the socket descriptor can be configured via several func-
tions, such as pfring set {direction|mode|duration}(). Once the
socket is properly configured, traffic reception is enabled using the pfring en-
able ring() call. After this initialization process, user applications can re-
ceive new packets by calling the pfring recv() function. Finally, when the
user finishes capturing traffic pfring shutdown() and pfring close()
functions are called. This process has to be replicated for each receive queue,
as each user application will only receive the traffic corresponding to the RX
queue the socket was configured for.

As one of the major advantages of this solution, PF_RING’s API comes with
a set of wrappers for the above-mentioned functions providing extensive flexi-
bility and ease of use, essentially following the de facto standard of the libpcap
library. Additionally, the API provides a set of functions for applying filtering rules
(for example, BPF filters), network bridging, and IP reassembly. Both PF_RING
DNA and a user-level packet processing library are freely available for the re-
search community [nto14].

Vı́ctor Moreno Martı́nez 43

P
A

C
K

E
T

C
A

P
T

U
R

E
U

S
IN

G
C

O
M

M
O

D
IT

Y
H

A
R

D
W

A
R

E

Physical link

NIC RX
RING

Packet
arrival

DMA-able memory
DMA write

transfer

DMA
complete

time

User Application

pfring_
recv()

packets
available?

memory mapping
(no copy)

Figure 3.7: PF RING DNA’s RX scheme

44
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

3.3. CAPTURE ENGINE IMPLEMENTATIONS

3.3.2 PacketShader

The authors of PacketShader (PS) [HJPM10] developed their own packet
capture engine to highly optimize the traffic capture module as a first step in the
process of developing a software router based on GPGU able to work at multi-
10 Gb/s rates. However, their efforts are applicable to any generic task that
involves capturing and processing packets. They apply memory pre-allocation
and re-use: specifically, two consecutive large memory regions are allocated:
one for the packet data, and another for its metadata. Each buffer has fixed-size
cells corresponding to the data and metadata for one packet. The size for each
cell of packet data is set to 2048 bytes, which corresponds to the next highest
power of two for the standard Ethernet MTU. Metadata structures are compacted
from 208 bytes (as used by Linux’s kernel) to only 8 bytes (96%) unnecessary or
redundant fields.

Additionally, PS implements memory mapping to those data and metadata
buffers, thus allowing users to avoid additional copies when accessing the in-
formation. In this regard, the authors highlight the importance of NUMA-aware
data placement in the performance of its engine. Similarly, it provides parallelism
between different RX queues, as their data may be independently processed at
user level.

To reduce the per-packet processing overhead, batching techniques are
used when a user-level application asks for new packets. For each batch re-
quested, the driver copies data from the hardware descriptors to the above-
mentioned packet data region and completes the corresponding metadata in-
formation. Once those copies are finished, the driver returns control to the
user-level application which can now process the new packets without additional
copies. In order to eliminate inherent cache misses, the modified device driver
tries to prefetch the next packet’s associated memory while still processing the
previous one.

PS’s API works as follows: (i) a user application opens a character device
to communicate with the driver using the ps init handle() function, (ii) the
application is attached to a given reception device (queue) using an ioctl()
call, namely ps attach rx device(), and (iii) kernel memory is allocated
and mapped to userspace, in order to exchange data with the driver, using
ps alloc chunk(). Then, when the user application requests new packets
by means of an ioctl(), ps recv chunk(), PS driver copies a batch of
them, if available, to the kernel packet buffer. PS kernel-user interaction during
the reception process is summarized in Fig. 3.8.

Vı́ctor Moreno Martı́nez 45

P
A

C
K

E
T

C
A

P
T

U
R

E
U

S
IN

G
C

O
M

M
O

D
IT

Y
H

A
R

D
W

A
R

E

Physical link

NIC RX
RING

Packet
arrival

DMA-able memory
DMA write

transfer

DMA
complete

time

User Application

ps_
recv()

packets
available?

memory mapping
(no copy)

Kernel driver

copy_rx_
packets()

memcpy()

Figure 3.8: PacketShader’s RX scheme

46
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

3.3. CAPTURE ENGINE IMPLEMENTATIONS

PS capture engine is available for the community [Pac12] under an open-
source license. Along with the modified Linux driver for Intel 82598/82599-based
network interface cards, a user library has been released to facilitate the usage
of the driver. The release also includes several sample applications, namely a
simplified version of tcpdump6, an echo application which sends back all traffic
received by one interface, and a packet generator which is able to generate UDP
packets with different 5-tuple combinations at maximum speed.

3.3.3 netmap

The netmap [Riz12a] proposal shares most of the characteristics of Packet-
Shader’s architecture, i.e. it applies memory pre-allocation during the initializa-
tion phase, buffers of fixed sizes (also 2048 bytes), batch processing and parallel
direct paths. It also implements memory mapping techniques to allow users’ ap-
plications to access kernel packet buffers (direct access to NIC is protected)
with a simple and optimized data structure. Its similarities with PacketShader
also apply to the user-kernel interaction policy (see Fig. 3.8), except that netmap
implements zero-copy from the NIC to buffers that will later be mapped from user
level. Differently from other zero-copy solutions, netmap makes an emphasis on
system’s security and scalability by making sure no critical kernel structure is
mapped by user applications and thus entail a potential threat.

This simple data structure is referred to as a netmap memory ring and con-
tains information such as the ring size, a pointer to the current position of the
buffer (cur), the number of received packets in the buffer or the number of empty
slots for each reception or transmission buffer (avail), a set of flags related to the
status, the memory offset of the packet buffer, and the array with the metadata
information; it has also one slot per packet that includes the length of the packet,
the index in the packet buffer and some flags. Note that there is a netmap ring
for each RSS queue, for both reception and transmission directions, to allow
exploiting parallel direct paths.

Netmap’s API usage is intuitive: first, a user process opens a netmap device
and maps kernel buffers with an ioctl() call. To receive packets, the process
polls the driver about the number of available packets with another ioctl()
and, when the system call is over, the lengths and payloads of the packets are
available for reading in the slots of the netmap ring data structure. Note that
this operation mode makes a batch of packets accessible for reading in each
operation. Additionally, netmap supports blocking mode through standard sys-
tem calls, such as poll() or select(), using the corresponding netmap file
descriptors as arguments for those standard system calls. In addition, netmap

6www.tcpdump.org

Vı́ctor Moreno Martı́nez 47

www.tcpdump.org

PACKET CAPTURE USING COMMODITY HARDWARE

comes with a library that maps libpcap functions to their netmap equivalents,
thus allowing user applications to exploit netmap features without needing to be
recompiled. A distinctive feature of netmap is that it works in an extensive set of
hardware solutions: Intel 10 Gb/s adapters and several 1 Gb/s adapters (Intel,
RealTek and nVidia), and even Mellanox’s infiniband adapters. Netmap presents
other additional functionalities as, for example, packet forwarding.

Netmap framework is available for FreeBSD (HEAD, stable/9 and stable/8)
and for Linux [net14a]. The current netmap version consists of 2000 lines for
driver modifications and system calls, as well as a C header file of 200 lines to
help developers use netmap’s framework from user applications.

3.3.4 PFQ

PFQ [BDPGP12] is a novel packet capture engine that enables packet sniff-
ing in user applications with a tunable degree of parallelism. The approach of
PFQ is different from the previous ones studied. Instead of carrying out ma-
jor modifications to the driver in order to skip the interrupt scheme of NAPI or
mapping DMA-able memory and kernel packet buffers to user space, PFQ im-
plements a general architecture supporting any NIC driver.

PFQ has been designed so that it benefits from the vanilla network driver
managing the NIC’s hardware details. Those drivers connect with PFQ by re-
defining those functions that previously connected them with the operating sys-
tem’s network stack. In the latest version, those redefinitions are automatically
made by a set of scripts, so users are isolated from those low-level details.

PFQ’s kernel module implements a new layer, named Functional Engine,
where packets are delivered by the NIC’s driver. This layer distributes the traffic
across different active receive sockets, without limits on the number of queues
than can receive a given packet. The distribution tasks are carried out by inde-
pendent packet fetcher threads. Importantly, those fetcher threads are executed
in parallel and push the incoming packets’ data in the Functional Engine with
minimal overhead due to lockless access control policy. PFQ’s architecture al-
lows several fetcher threads to push the same packet to different sockets, which
may imply more that one packet copy. However, those additional packet copies
have low impact due to the use of caching mechanisms. Note that, as each
receive socket has an independent lock-free queue, the packet capture perfor-
mance is not limited by the slowest application fetching traffic from a common
source. This functionality circumvents one of the drawbacks of using the parallel
paths technique, namely scenarios where packets of different flows or sessions
must be analyzed by different applications as explained in Subsection 3.2.2.
Fig. 3.9 shows a temporal scheme of the process of requesting a packet in this

48 Tuning modern architectures for high-performance networking

3.3. CAPTURE ENGINE IMPLEMENTATIONS

engine.

PFQ is an open-source package consisting of a Linux kernel module and a
user-level library written in C++,available under GPL license in [PFQ15]. PFQ’s
API defines a pfq class which contains methods for device initialization and
packet reception. Whenever a user wants to capture traffic: (i) a pfq object
must be created using the provided C++ constructor, (ii) devices must be added
to the object by calling its add device() method, (iii) timestamping can be
enabled using the toggle time stamp() method, and (iv) packet capture
must be enabled using the enable() method. After initialization, each time a
user wants to read a batch of packets, the read() method must be invoked.
Using a custom C++ iterator provided by PFQ, users can read each packet in
the received batch. When a user-level application has finished working with the
pfq object, it is destroyed by means of its defined C++ destructor. A stats()
method is also provided in order to obtain statistics about the received network
traffic.

Moreover, PFQ supports high-level programming via functional program-
ming languages, PFQ-Lang [BGPA14]. By using PFQ-Lang, developers can
rapidly develop network processing applications in a flexible way while coping
with high-speed rates.

Vı́ctor Moreno Martı́nez 49

P
A

C
K

E
T

C
A

P
T

U
R

E
U

S
IN

G
C

O
M

M
O

D
IT

Y
H

A
R

D
W

A
R

E

Physical link

NIC RX
RING

Packet
arrival

DMA-able memory
DMA write

transfer

NIC driver

DMA
complete

IRQ

time

push into
buffer

PFQ module

napi_
schedule()

User Application

recv()

push into
buffer

IF(sk_buff not used)
release(sk_buff)

memcpy()

Figure 3.9: PFQ’s RX scheme

50
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

3.3. CAPTURE ENGINE IMPLEMENTATIONS

3.3.5 Intel DPDK

Intel’s Data Plane Development Kit (DPDK) [Int14b, DPD15] was created
with the goal of providing a simple and complete framework for fast packet pro-
cessing network application operating on the data plane. DPDK implements a
new model for packet processing, following a modular approach. This way, users
instantiate a set of worker threads, or listeners as previously called them, which
will be able to receive and send packet from/to a certain distributor, as shown
in Fig. 3.10. Users will place their logic inside the worker modules, and will be
able to configure the distributor thread connected to each worker for RX and TX
purposes. Those connections are made by means of packet rings, and they are
managed automatically by the library provided.

RX
RING

distributor
thread

TX
RING

worker
thread 0

worker
thread 1

worker
thread N

RX
TX

Figure 3.10: Intel DPDK’s architecture

Intel’s DPDK optimizes communications between the NIC and the distributor
cores by pre-allocating and reusing data structures. These data structures are
mapped from the user-level distributor threads and both memory and CPU affin-
ity is carefully planned. Moreover, the multi-producer multi-consumer packet
rings used to communicate the different threads in a DPDK-based application
are generated using hugepages, which ensures these rings are always available
on main memory and reduces the page fault overhead when accessing such
regions. Note that each distributor thread will be in charge of dispatching the
packets corresponding to a certain RSS queue from a certain NIC. Intel’s DPDK
architecture allows several worker threads to fetch packets from the same dis-
tributor, but each thread will only receive the set of packets previously requested.
Additionally, a single worker thread may receive packets from different distribu-
tors.

An application making use of Intel DPDK has to initialize its resources by
calling the rte eal init() function. Distributor threads will call the rte dis-

Vı́ctor Moreno Martı́nez 51

PACKET CAPTURE USING COMMODITY HARDWARE

tributor process() function to begin capturing packets from the NIC. Mean-
while, worker threads make use of the rte distributor get pkt()() call
to request a new packet once it has finished processing the previous one, as
decribed in [Int14a]. These library calls isolate users from operating with the
intermediate packet rings used to communicate with the different modules. In
order to optimize packet-transfer operations, local cache lines are shared be-
tween the distributor and worker threads. This feature makes it impossible for
two worker threads to process the same packet simultaneously. Thus, every
time a worker thread is done with a packet, it must notify the distributor via the
final parameter of the rte distributor get pkt()() function, so the dis-
tributor knows this packet can be sent to another worker if requested. Note that
the packets are distributed to the diverse worker threads using meta-structures
pointing to the corresponding NIC’s packet descriptor, which are the ones cloned
when several workers ask for the same packet. This allows sharing packet data
without additional copies at the expense of potentially locking the descriptors for
a longer period.

In order to keep packets ordered they are identified via a tag (the 5-tuple
hash calculated by the NIC), thus packets with the same tag will be orderly pro-
cessed by all worker threads processing them. Note that this policy may include
latency in the processing of some packets and packet order is only guaranteed
between packets with the same tag. Additionally, workers can temporally stop
processing packets by using the rte distributor return pkt() function
and resume their execution afterwards, which may be interesting in order to save
CPU power depending on network load.

Finally, Intel DPDK comes with a set of libraries to ease the user’s work
with packets at the different network layers. They help managing issues such
as IP fragmentation, TCP re-assembly, etc. Nevertheless, there is no reference
regarding those libraries’ performance.

3.3.6 HPCAP

HPCAP is another packet capture engine that has been designed along the
work of this thesis with the aim of addressing a set of features that has been
ignored by the rest of packet capture engines: accurate timestamping, high-
performance packet storage, duplicate packet removal and capture and packet
processing overlapping. Due to the relevance of HPCAP in the context of this
thesis, Chapter 4 has been devoted to give a detailed description of HPCAP and
its features.

52 Tuning modern architectures for high-performance networking

3.4. TESTING YOUR TRAFFIC CAPTURE PERFORMANCE

3.4 Testing your traffic capture
performance

A quantitative comparison between capture engines based on the literature
is not possible for two reasons: first, the hardware used by the different studies
is not equivalent —in terms of type and clock speed of the CPU, amount and
clock speed of main memory, server architecture and number of network cards.
Second, the performance metrics used in the different studies are not the same
—with differences in the type of traffic and in the measurement of the burden on
CPU or memory.

Consequently, let us first elaborate a fair basis for comparison of capture
engines at 10 Gb/s rates. And, then, let us carry out our own quantitative com-
parison based on such a common basis using the same hardware.

3.4.1 General concerns

The first metric to be considered is the amount of traffic that an engine may
process. We assume a fully-saturated link of 10 Gb/s, and both constant-sized
packets and real trace with variable packet sizes are injected. The constant-size
oriented tests aim at evaluate worst case scenarios. As the effort to capture
a packet is almost constant but small packets have smaller time gap between
consecutive packets and consequently less time to carry out any subsequent
task, those scenarios with small-size packets are the most challenging. Unfortu-
nately, small-sized packet traffic profiles are not uncommon on the Internet as for
example VoIP traffic, distributed databases or even anomalous traffic [KWH06].

According to 10GbE standard, 60-byte packets in a 10 Gb/s fully-saturated
link gives a throughput in Mp/s of 14.88: 1010 / ((60 + 4 (CRC) + 8 (Preamble) +
12 (Inter-Frame Gap)) · 8), and an effective throughput of 7.14 Gb/s (due to the
preamble and inter-frame gap overheads). Equivalently, if packet sizes grow to
64 bytes, the throughput in Mp/s decreases to 14.22 and the effective throughput
rises to 7.27 Gb/s. Table 4.3 shows how those values evolve for the packet sizes
used in our test experiments. In order to avoid dealing with these values that
depend on packet sizes, we find it more intuitive to evaluate this metric in terms
of the percentage of packets received for each scenario.

Similarly, it is important to agree if the four Ethernet CRC bytes are con-
sidered in the packet size or not. In the following analysis, when referring to
X-byte packets, those X bytes will not take Ethernet’s CRC into account. In
order to avoid Ethernet management mechanisms to contaminate network mea-
surements, pause frame negotiation and hardware offload capabilities must be

Vı́ctor Moreno Martı́nez 53

PACKET CAPTURE USING COMMODITY HARDWARE

disabled as shown in Section A. If pause frame negotiation is enabled the re-
ceiver side could send a pause frame when it is congested and prevent the
sender from transmitting new frames. On the other hand, offload mechanisms
allow NICs to merge small packets belonging to the same flow into bigger ones
and may affect network diagnosis algorithms.

Max. Packet size (bytes, CRC excluded)
throughput 60 64 128 256 512 750 1024 1250 1514

Gb/s 7.14 7.27 8.42 9.14 9.55 9.69 9.77 9.81 9.84
Mp/s 14.88 14.21 8.22 4.46 2.33 1.62 1.19 0.98 0.82

Table 3.2: Maximum throughput in terms of packets and bits for
different packet sizes in a full-saturated 10GbE link

It is worth remarking that extremely positive results may arise in short dura-
tion experiments due to caching effects. Thus experiments regarding packet
capture performance must be carried out for a period of time such that the
amount of traffic processed does not fit in system memory. Thus, all the ex-
periments carried out in this section have been obtained by replaying the corre-
sponding traffic over a period of 30 minutes.

In order to provide a comparison as fair as possible, capture performance
results refer only to a simple packet receive and update counters application de-
veloped for each engine, without any additional characteristic except from times-
tamping when it was possible (see Table 3.1). In all cases, we have paid attention
to NUMA affinity by executing capture threads in the processor the NIC is con-
nected to, which is only possible when there are less concurrent threads than
cores available in the target NUMA node. In fact, ignoring NUMA affinity entails
extremely significant performance losses, especially in the case of the smallest
packet size where performance may be halved.

Another metric that must be considered is the number of CPUs and usage
made by a solution. More computational power is available for additional tasks if
the number of CPUs and usage are low. However using more than a couple of
CPU and RSS queue may cause collateral effects such as packets belonging to
the same session or flow to be processed by different CPUs. This may be a vital
drawback for certain monitoring applications. Instant CPU usage measurements
are obtained using the pidstat7 command, instead of ps8 command that pro-
vides the amount of time that the process has been using the processor since it
started.

The amount of system memory used is the third main metric to take into
account. High memory requirements may increment the cost of the monitoring

7http://linux.die.net/man/1/pidstat
8http://linux.die.net/man/1/ps

54 Tuning modern architectures for high-performance networking

3.4. TESTING YOUR TRAFFIC CAPTURE PERFORMANCE

system, and limit the number of additional processes that can be simultaneously
executed. Memory usage for a certain process can be obtained by means of the
Linux ps command.

Additional non-performance-related features should also be taken into ac-
count. For example, the accuracy of packet timestamping is a vital factor for QoS
monitoring systems. As not all the capture engines evaluated support packet
timestamping, this factor has not been included in the evaluation and readers
are encouraged to take a look at [MSdRR+12]. Importantly, the ease of use
of each capture system, together with their related APIs, is an important fac-
tor which won’t be evaluated here due to its subjectivity. For a quick qualitative
comparison between the packet capture engines see Table 3.1.

3.4.2 Captures engines performance evaluation

After detailing the main characteristics of the most prominent capture en-
gines in the literature, we turn our focus to their performance in terms of per-
centage of packets correctly received. It should be noted that a quantitative
comparison between them based on the literature is not an easy task for two
reasons: first, the hardware used by the different studies is not equivalent (in
terms of type and clock speed of the CPU, amount and clock speed of main
memory, server architecture and number of network cards); second, the perfor-
mance metrics used in the different studies are not the same, with differences in
the type of traffic and in the measurement of the burden on CPU or memory.

For this reason, we have stress-tested the engines described in the previous
section using the same architecture. Specifically, our testbed setup consists
of two machines (one for traffic generation purposes and another for receiving
traffic and evaluation) directly connected through a 10 Gb/s fiber optic link. The
receiver side is based on Intel Xeon with two 6-core processors each running at
2.30 GHz, with 128 GB of DDR3 RAM at 1,333 MHz and fitted with a 10 GbE Intel
NIC based on the 82599 chip. The server motherboard model is Supermicro
X9DR3-F with two processor sockets and three PCIe 3.0 slots per processor,
directly connected to each processor, following a scheme similar to that depicted
in Fig. 3.2(b). The NIC is connected to a slot corresponding to the first processor
or NUMA node. The system runs an Ubuntu server 12.10 with a 3.8.0.29-generic
kernel.

The sender uses a HitechGlobal HTG-V5TXT-PCIe card with a Xilinx Virtex-
5 FPGA (XC5VTX240) and four 10 GbE SFP+ ports. Using such a hardware-
based sender guarantees accurate packet interarrivals and 10 Gb/s throughput
regardless of packet size. The sender server also has an Intel 82599 NIC and a
software traffic generator, which has been developed as a tool on top of Packet-

Vı́ctor Moreno Martı́nez 55

PACKET CAPTURE USING COMMODITY HARDWARE

Shader’s [HJPM10] API capable of replaying PCAP (Packet Capture API) traces
at variable rates.

For our experiments, we have used both synthetic and real traffic. Synthetic
traffic is sent using the FPGA generator and consists of TCP segments encap-
sulated into fixed-sized Ethernet frames, forged with incremental IP addresses
and TCP ports. Note that synthetic traffic allows us to test worst-case scenarios
in terms of byte and packet throughput, but they are not useful for testing the
flow-related modules. Real traffic is generated using a software generator re-
playing a trace consisting of a packet-level trace sniffed on an OC192 backbone
link of a Tier-1 ISP located between San Jose and Los Angeles (both directions),
available from CAIDA [WAcAa]. Replaying the backbone trace at line-rate leads
to a throughput of 9.59 Gb/s9, and 1.65 Mp/s. Our packet capture experiments
have taken into account two factors: the number of available queues/cores and
packet sizes, and their influence on the percentage of correctly received packets.

In addition to the capture engines presented in this chapter, we have con-
sidered it interesting to evaluate the packet capture performance offered by the
traditional solution, i.e. the ixgbe driver following a NAPI approach plus the
use of the PCAP library. It is worth pointing out that the behavior of the Linux
version of netmap is to set the number of RSS queues to match the number of
cores. Thus, we have had to modify the number of queues used in netmap by
writing a 1 or a 0 in the /sys/devices/system/cpu/cpuX/online file to
respectively enable or disable CPUs. Regarding netmap and PFQ, we evaluated
their performance by respectively installing the netmap-aware ixgbe driver and
the ixgbe vanilla driver compiled with a script shipped with PFQ. We wanted
to evaluate each capture engine using a number of queues ranging from 1 to 12
(as our system has 12 CPUs). It is worth noting that in the case of Intel DPDK 11
is the maximum amount of queues reached, because the capture system needs
one core to be reserved for management purposes, reducing by 1 the number of
cores eligible for packet capture. Note that performance comparison also takes
HPCAP [Mor12,MSdRR+14b] into account, but this capture engine’s results will
be further discussed in Chapter 4.

First, Fig. 3.11 aims to show both the worst-case scenario of a fully-saturated
10 GbE link (packets with a constant size of 60 bytes) and an average scenario.
Note that the worst case represents an extremely demanding scenario, 14.88
Mp/s, but probably not very realistic given that the average Internet packet size
is clearly larger [CAI].

9This is the maximum achievable speed due to the preamble and inter-frame gaps that the Ether-
net protocol requires.

56 Tuning modern architectures for high-performance networking

3.4.
T

E
S

T
IN

G
Y

O
U

R
T

R
A

FFIC
C

A
P

T
U

R
E

P
E

R
F

O
R

M
A

N
C

E

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

#Queues

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

Worst−case scenario (60+4 bytes sized packets)

ixgbe+libpcap

PF_RING

PS

netmap

PFQ

DPDK

HPCAP

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

#Queues

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

Average scenario (CAIDA trace)

Figure 3.11: Engines’ performance for worst and average scenarios

V
ı́ctorM

oreno
M

artı́nez
57

PACKET CAPTURE USING COMMODITY HARDWARE

In the worst-case scenario (left-hand side of Fig. 3.11) the traditional solution
(ixgbe + PCAP library) reaches peak performance with 5 queues, capturing
over 24.4% of the incoming packets. PF_RING DNA and Intel DPDK are the
only capture engines that achieve line rate if fewer than 4 receive queues are
used. PacketShader is also able to handle nearly the total throughput when the
number of queues ranges between 1 and 4, after which point the performance
declines. Netmap has a performance level similar to PacketShader with one
queue, but capture performance worsens as more receive queues are used.
Conversely, PFQ increases its performance while the number of queues rises to
a maximum with four queues, when improvement stalls. Finally, HPCAP shows
peak performance, capturing 97.6% of the traffic, when using two queues but
this figure reduces as the number of queues increases.

In the average scenario shown on the left-hand side of Fig.3.11, capture
with ixgbe shows the best performance using four or five queues, with 0.1%
of incoming packets lost. In that same scenario, PF_RING, PacketShader, PFQ
(with two or more queues), Intel DPDK and HPCAP are capable of working with
0% packet loss. Netmap suffers a slight packet loss ranging from 1% to 0.1%
(reached with four queues).

In conclusion, our tests have confirmed that all capture engines suffer from
scalability issues in the worst-case scenario. This effect becomes more relevant
when the number of cores in use needs more than one NUMA node. To further
investigate this phenomenon, Fig. 3.12 depicts the results for the packet sizes
shown in Table 4.3 using one, six and twelve queues respectively.

PF_RING DNA shows the best results with one and six queues. It does not
show packet losses for any scenarios except for those with packet sizes of 64
bytes and, even in this case, the figure is very low (about 4% with six queues
and lower than 0.5% with one). Surprisingly, increasing packet sizes from 60
to 64 bytes entails a degradation in the PF_RING DNA performance, although
the performance recovers 0% loss rates beyond these packet sizes. Note that,
as stated before, larger packet sizes imply lower throughputs in terms of Mp/s.
According to [Riz12a], investigation in this regard has shown that this behavior
is due to the design of NICs and I/O bridges that make certain packet sizes fit
better with their architectures.

In a scenario where one single user-level application is unable to handle all
received traffic, it may be of interest to use more than one receive queue (with
one user-level application per queue). With the maximum number of queues,
PacketShader and HPCAP have shown comparatively the best result, although,
like PF_RING DNA, they perform better with a smaller number of queues. Specif-
ically, for packet sizes larger or equal to 128 bytes, they achieve full packet re-
ceived rates regardless of the number of queues. Conversely, Intel DPDK shows
the worst results for the maximum number of queues, showing packet losses for

58 Tuning modern architectures for high-performance networking

3.4. TESTING YOUR TRAFFIC CAPTURE PERFORMANCE

packets below 750 bytes.

Analyzing PFQ’s results, we note that this engine also achieves 100% re-
ceived packet rates but, conversely to the other approaches, works better with
several queues. It requires at least six to achieve no losses with packets of
128 bytes or more, whereas with one queue, packets must be larger or equal
to 256 bytes to achieve full rates. This behavior was not unexpected due to the
importance of parallelism in the implementation of PFQ.

Vı́ctor Moreno Martı́nez 59

P
A

C
K

E
T

C
A

P
T

U
R

E
U

S
IN

G
C

O
M

M
O

D
IT

Y
H

A
R

D
W

A
R

E

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

ixgbe 1 queue

ixgbe 6 queues

ixgbe 12 queues

(a) NAPI scheme

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

PF_RING 1 queue

PF_RING 6 queues

PF_RING 12 queues

(b) PF RING DNA

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

PS 1 queue

PS 6 queues

PS 12 queues

(c) PacketShader

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

netmap 1 queue

netmap 6 queues

netmap 12 queues

(d) Netmap

Figure 3.12: (a), (b), (c), (d) Packets received for different numbers of queues and constant packet sizes in a full-
saturated 10 Gb/s link

60
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

3.4.
T

E
S

T
IN

G
Y

O
U

R
T

R
A

FFIC
C

A
P

T
U

R
E

P
E

R
F

O
R

M
A

N
C

E

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

PFQ 1 queue

PFQ 6 queues

PFQ 12 queues

(e) PFQ

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

DPDK 1 queue

DPDK 6 queues

DPDK 11 queues

(f) Intel DPDK

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

HPCAP 1 queue

HPCAP 6 queues

HPCAP 12 queues

(g) HPCAP

Figure 3.12: (e), (f), (g) Packets received for different numbers of queues and constant packet sizes in a full-saturated
10 Gb/s link

V
ı́ctorM

oreno
M

artı́nez
61

PACKET CAPTURE USING COMMODITY HARDWARE

We have found that these engines may cover different scenarios, even the
most demanding ones, distinguishing them on the basis of two criteria: whether
or not we may assume the availability of multiple cores, and whether or not the
traffic intensity (in Mp/s) is extremely high (for example, packet size averages
smaller than 128 bytes, which is not very common). In other words, if the num-
ber of queues is not relevant, given that the capture machine has many cores
available, or no other process is executing except for the capture process itself
and the traffic is not maximal, PFQ seems to be a suitable option. On the other
hand, if traffic intensity is near to maximum, PF_RING, PacketShader, netmap,
Intel DPDK and HPCAP present a good compromise between the number of
queues used and the performance offered.

Nonetheless, multi-queue scenarios are often not adequate. For example,
accurate timestamps may be necessary [MSdRR+12], packet disorder may be
a significant drawback (depending on the application running on top of the en-
gine) [WDC11], or it may simply be of interest to save cores for other tasks.
In such a scenario, PF_RING DNA and Intel DPDK are great options, as they
show (almost) full rates regardless of packet size even with only one queue (thus,
avoiding any objections due to parallel paths).

Capture Number of Memory Number of Average CPU usage
engine RSS queues in use (MB) cores used (per active core)
ixgbe 5 9.2 6 5×3.4% (kernel) + 82.7% (user)

PF RING 1 110.3 1 75.8% (user)

PS 1 12.6 1 77.4% (user)

netmap 1 351.8 1 66.2 (user)

PFQ 1 425.2 1 99.9% (user)

DPDK 1 2192.4 2 99.2 (distributor) + 99.3 (worker)

HPCAP 1 1054.9 2 99.7 (kernel) + 99.8 (user)

Table 3.3: Memory and CPU usage in a 10 Gb/s average scenario

In addition to the packet capture performance figures that each capture en-
gine offers, users may also need to decide which solution they can use in terms
of resource consumption. Table 3.3 shows the results for each capture engine in
terms of CPU and memory usage. The table shows the resource consumption
of each capture engine with the least resource-consuming configuration capable
of capturing all packets (99.9% of the packets for ixgbe) mentioned previously:
a CAIDA trace replayed at line-rate. Note that PF_RING, PacketShader, netmap
and PFQ use as many cores as there are RSS queues. On the other hand,
the default usage of ixgbe and Intel DPDK use one more core than the num-
ber of CPUs used. In the case of ixgbe the reason is that the kernel fetches
packets from each queue into a different core, and a user-level application in a

62 Tuning modern architectures for high-performance networking

3.4. TESTING YOUR TRAFFIC CAPTURE PERFORMANCE

different core aggregates the traffic received by each queue. Intel DPDK uses
one core to receive traffic from each RSS queue, where the distributor cores
will be executed, and one additional core for each worker thread instantiated.
HPCAP, on the other hand, uses two cores per RSS queue, as it instantiates
one kernel-level thread to fetch the packets from the network and copy them to
the intermediate buffer, and a user-level thread to process the packets already
stored in that buffer.

Vı́ctor Moreno Martı́nez 63

PACKET CAPTURE USING COMMODITY HARDWARE

3.5 Use cases of novel capture engines

Thus far, we have reviewed the first three layers of commodity high-per-
formance network systems, NIC, driver and framework, paying special attention
to the combination of the last two in a capture engine. In this section, we turn
our attention to the upper layer: the final services or applications that are built
on top of such engines. We first provide some advice on how to translate the
new paradigm ushered in by the packet engines studied into the development
of these services. We now turn our attention to both performance and cost of
an extensive set of different systems, which may serve as the state-of-the-art
bounds that any novel application should overcome to be of interest. Moreover,
we believe the service examples reviewed may awaken new ideas and utilities
in both the research community and practitioners.

3.5.1 Creating a high-performance network appli-
cation

In these paragraphs, we highlight the main principles to apply when de-
signing and developing high-performance network applications in contrast with
traditional approaches. Then, we illustrate the implementing of such principles
with success cases of real implementations of high-performance network appli-
cations.

Although the optimization of network drivers and capture engines is required
to reach high performance, it has been shown to be insufficient in a final sys-
tem [KMC+00]. In other words, if the high-level application is not capable of
processing all traffic captured and provided by the capture engine, then we will
only have shifted the bottleneck to the upper layer and we will not have solved
the problem. Thus, regardless of the capture engine chosen to capture pack-
ets, application developers must follow ideas equivalent to those presented in
Section 3.2.2:

• Avoiding (as far as possible) per-packet operations: Due to the challeng-
ing packet rates to which we have to face, we must reduce per-packet oper-
ations. In order to do this, we may implement different approaches (the de-
cision will depend on our specific application): (i) byte-stream oriented: to
access packet buffers as a stream of consecutive bytes instead of packet-
by-packet, which is useful when storing packets to hard drive (we do not
need to parse packet headers), e.g., hpcapdd [MSdRR+14b] implements
such a technique; (ii) batch processing: to access packet buffers when
there are several packets to process (or a timeout has expired), e.g., the

64 Tuning modern architectures for high-performance networking

3.5. USE CASES OF NOVEL CAPTURE ENGINES

traffic classifier proposed in [SdRRG+12] implements such an approach.

• Using smarter memory structures: In the case of packet capture engines
too, memory management (allocations, transfers, deallocations...) is a
paramount task in terms of performance. We should pre-allocate and re-
use memory resources instead of allocating and freeing memory for each
packet (e.g., the router software implemented in [RCC12] is accelerated by
up to 3x-4x thanks to recycling memory). Most network applications ag-
gregate packets at other levels (such as flows, connections, sub-networks)
and then deal with such aggregations. Generally, this aggregation process
is done by using hash tables. To optimize this aggregation process and
efficiently distribute packets in bins, we should tune hash functions. For
instance, authors in [SGV+10] propose to use the Zobrist hashing algo-
rithm, thus reducing memory requirements. In general, we must pay at-
tention to memory management operations to achieve high performance,
VoIPCallMon [GDSdRR+14], for example, uses tailored data structures
to optimize call insertion, export and deletion.

• Taking advantage of parallelism at user-level: The parallelism achieved in
the low-level capture process is useless unless further exploited in the ap-
plication layer. This parallelism must be implemented to make the most of
multi-core architectures by both processing traffic for each receive queue
in a different core and carrying out each system task in a different core,
e.g., [MSdRR+14b, SdRRG+12]. Furthermore, parallelism can be increa-
sed by making use of GPGUs as in [ND10b], multiplying the capacity
with the number of concurrent threads in each GPGU (normally, hun-
dreds of them). For instance, the software router proposed in Packet-
Shader [HJPM10], MIDeA [VPI11] and the classification system proposed
in [SGV+10], take advantage of parallelism provided by GPGUs.

• Designing efficient inter-module communication and to properly set affin-
ity: Although parallelism may potentially increase the processing capac-
ity of our application, we have to be careful with communication between
the system’s different modules so they do not cause bottlenecks due to
locking or other issues. Thus, we have to use shared memory structures
that avoid, or at least reduce, locking issues (as used in [MSdRR+14a,
SdRRG+12]) and to optimize the way applications transfer data from main
memory to GPGU and vice versa, e.g. by adjusting transaction size to a
given optimal fixed size [VPI11]. Additionally, to make the most of paral-
lelism and memory locality it is necessary to set CPU affinity properly, i.e.
to tie each thread/process to an appropriate NUMA node.

• Achieve flexible solutions: Beyond performance, thanks to the use of com-
modity hardware and software-only solutions, we can cut capital expendi-
ture. However, if these solutions are not flexible enough to adapt to new
requirements and demands, then we will need to redesign the applications,

Vı́ctor Moreno Martı́nez 65

PACKET CAPTURE USING COMMODITY HARDWARE

thus pushing up their cost, even to the point of exceeding commercial so-
lutions’ costs. Thus, we must design our network applications bearing in
mind flexibility and re-usability, without losing sight of high performance.
Blockmon [DdH+12, DPHB+13a] is a good example of this where each
block represents a different subtask of a given application. For instance,
we have a block for packet capturing and, as long as the system is well de-
signed and implemented, we can replace one packet capture engine with
another depending on system requirements.

3.5.2 Application examples

We have found in the literature a number of final systems whose high perfor-
mance deserve attention, but these results are even more remarkable because
of their limited costs. Through being based on commodity hardware, their costs
are less than a few thousand dollars, apart from the cost of the common 10 Gb/s
NICs.

The implementation of software routers, network intrusion detection sys-
tems, traffic classifiers , in particular and other specific monitoring tasks have
been the leading examples. Table 3.4 summarizes the performance and char-
acteristics of some of these applications. Importantly, we note that some ap-
proaches are based on systems whose first step lies in the distribution of the
load between several subsystems or clusters [SWF07]. These subsystems may
also work in isolation but at a lower rate. Thus, in order to show a fair perfor-
mance comparison, we include the results for isolated systems instead of sets
of distributed ones. Note that, in all cases leveraging an external traffic splitter
(at higher cost) or with ad-hoc traffic balancing schemes, the load could be dis-
tributed over different machines to increase overall performance nearly linearly.

66 Tuning modern architectures for high-performance networking

3.5.
U

S
E

C
A

S
E

S
O

F
N

O
V

E
L

C
A

P
T

U
R

E
E

N
G

IN
E

S

System Name Category Capture Engine Application Throughput Comments

PacketShader [HJPM10] PacketShader

IPv4 forwarding 39 Gb/s

Packets of 64B
Software IPv6 forwarding 38 Gb/s
Routers OpenFlow Switch 32 Gb/s

IPSec gateway 10.2 Gb/s

Ad-hoc version Software
netmap IPv4 forwarding 6-8 Gb/s Packets of 64B

Click router [RCC12] Routers

MIDeA [VPI11] NID Snort NID
7.2 Gb/s Packets of 1500B

PF RING Below 2 Gb/s Packets of 200B
5.7 Gb/s Real traces

Szabó et al. [SGV+10] Traffic classification
DPI

6.7 Gb/s Real tracesPF RING Connection pattern
Port based

Santiago et al. [SdRRG+12] Traffic classification PacketShader Statistical classification 10 Gb/s Packets of 64B

hpcapdd [MSdRR+14b] Monitoring HPCAP Packet storage 10 Gb/s Packets of 64B

ffProbe [DDDS11] Monitoring PF RING DNA Netflow construction
10 Gb/s Packets of 500B
7 Gb/s Packets of 60B

VoIPCallMon [GDSdRR+14] Monitoring HPCAP VoIP tracker 10 Gb/s Codec G.711

Blockmon [DPHB+13a] Monitoring PFQ
Heavy hitters 3.8 Gb/s
SYN flooding 5.5 Gb/s
VoIP anomaly 10 Gb/s Codec G.711

Table 3.4: Summary of the performance and characteristics of a set of typical high-performance network applications
using commodity hardware

V
ı́ctorM

oreno
M

artı́nez
67

PACKET CAPTURE USING COMMODITY HARDWARE

Software Routers

The use of commodity hardware to perform high-speed tasks started with
the significant increase in popularity achieved by software routers in recent years.
Software routers present some interesting advantages with respect to hardware-
designed ones, essentially cost and flexibility. This increase has been strength-
ened by multiple examples of successful implementations and by the appear-
ance of GPGUs [ND10b] which multiply the parallelism between processes while
the cost remains low.

The authors of PacketShader [HJPM10], as stated in Section 3.3, developed
their own network application with both novel and optimized packet capture char-
acteristics, but, in fact, their final target was to develop a software router able to
work at multi-10 Gb/s rates. To this end, they proposed to move the routing pro-
cess from the CPU to GPGUs, where hundreds of threads can be executed in
parallel. As most software routers operate on packet headers, the use of GPGUs
and parallel threads fits perfectly. Therefore, it is intuitive to bind each received
packet to a thread in a GPGU, multiplying the capacity of the router by the num-
ber of concurrent threads in each GPGU. The results are astonishing given the
use of commodity hardware and software solutions. Specifically the cost of the
testbed server is roughly $ 7000. IPv4 forwarding service achieves a throughput
of 39 Gb/s with 64 byte packets, and even better results for larger packet sizes
in a unique machine. The results for IPv6 forwarding are only slightly lower: 38
Gb/s. In addition to IP routing, the authors also evaluated the performance of
their approach working as an OpenFlow Switch and an IPSec (Internet Proto-
col security) gateway. The results show that they are able to switch at 32 Gb/s,
and they obtained a throughput of 10.2 Gb/s for IPSec overcoming commercial
solutions.

Similarly to PacketShader’s approach, the authors that proposed netmap il-
lustrated their engine’s functionality with a router software application [RCC12],
specifically, a Click Modular Router developed about fifteen years ago [KMC+00].
Conversely to PacketShader system, they neither use GPGUs to parallelize
tasks nor any further code optimization, thus the performance at application-
level was lower, about 2 Gb/s witht 64 byte packets although the capture engine
worked at much higher rates. However thanks to this road block in the study
of capture engines, they found that the capacities these novel devices achieved
was far over the capacities of many of the application developed decades ago.
The previous section explained what advice a network-software developer must
follow in this task. In the specific case of Click, the authors pinpointed that the
process of allocating memory in the C++ code was not ideal. In the original
version, two blocks of memory were reserved per packet: one for the payload
and another for its descriptor. However, this was not necessary as the memory
can be recycled inside the code to avoid the allocation of new blocks and us-

68 Tuning modern architectures for high-performance networking

3.5. USE CASES OF NOVEL CAPTURE ENGINES

ing fixed-size objects. The improvement ranges between 3x and 4x depending
on the size of the batches, which represents a significant gain. The cost of the
system is estimated to be about $ 2000.

Network Intrusion Detection Systems

Network Intrusion Detection (NID) has become one of the most active re-
search topics in the field of monitoring given its importance in network security.
There are essentially two approaches to implement NID systems: those based
on identifying (anomalous) characteristics of the traffic (for example, the distri-
bution of port numbers’ popularity) and those related to Deep Packet Inspection
(DPI), which basically consists in searching for a given signature in the traffic
payload. While the former typically results in faster speeds, the use of DPI ap-
proaches tends to be more accurate.

The authors in [VPI11] evaluated this latter option proposing a full software
implementation (called MIDeA) based on the PF_RING as capture engine. As
application, they present a prototype implementation of a NID system based on
Snort, the de facto standard software for this purpose, which includes more than
8,192 rules and 193,000 strings for string matching purposes. Similar to the
previously explained PacketShader application, the key to its implementation is
the use of GPGUs. Especially, the optimized the way the application loaded
data from/to the GPGU by adjusting data transfers to multiples of the minimum
size for memory transaction on the GPGU used. The results show that their
system, currently valued at roughly $ 2,500, is able to achieve 7.22 Gb/s for
synthetic traces in the ideal scenario of 1500 byte packets. This represented
an improvement of more than 250% over traditional multi-core implementations.
However, the performance remains below 2 Gb/s in the case of packet sizes of
200 bytes. While this presents a significant reduction, it is worth noting that the
average Internet packet size is clearly larger than such 200 bytes. In fact, when
the system is evaluated with real traces, it achieves rates of 5.7 Gb/s.

Traffic Classification Technology

Traffic classification technology has gained in importance in recent years, as
it has proved useful in tasks such as accounting, security, service differentiation
policies, network design and research [CKS+09]. Since its inception to date, the
research community has paid special attention to improving the accuracy of this
technology, but it has not been until recently that the evaluation of their perfor-
mance has gained relevance. Thus, some of the most accurate mechanisms
have seen that their execution on high-speed networks is hardly likely. This has
increased the interest in mechanisms to reduce the application burden required

Vı́ctor Moreno Martı́nez 69

PACKET CAPTURE USING COMMODITY HARDWARE

by classification. These mechanisms are essentially DPI and Machine Learning
(ML) tools [NA08], once port-based classification has been ruled out because
of the widespread use of random port numbers by P2P (Peer-to-peer) and VoIP
applications.

In this regard, the authors in [SGV+10] show a system to classify traffic by
leveraging both DPI and connection patterns (i.e., analyzing the interaction in
terms of number of connections or ports involved in inter-host communications).
The capture engine is implemented as a part of the system, but its foundations
are equivalent to PF_RING. To deal with PF_RING’s packet rates, the authors
also exploit the parallelism provided by GPGUs. In this case, the authors pay
attention to the fact that GPGUs’ fast cache memory tends to be too small to
allocate the state machines that their traffic classification system requires. Thus,
the authors propose to implement such state machines using the Zobrist hash-
ing algorithm. Basically, this reduces memory requirements of state machines,
which enables their allocation in cached memory. The throughput achieves a
rate of 6.7 Gb/s with real traces (packet sizes of approximately 500 bytes) while
the system may currently cost $ 2,500 in total. Again, this example shows that
adapting applications to the capacities of novel hardware, in this case GPGUs,
is an essential step in obtaining the best performance.

The authors in [SdRRG+12] present a software-based statistical traffic clas-
sification engine that exploits the size of the first few packets of every observed
flow. The application uses PacketShader as packet engine. Unlike the previ-
ously explained application proposed in [SGV+10], this classification engine is
not based on the utilization of GPGUs, but runs only on commodity multi-core
hardware. In addition to the use of PacketShader as capture engine and the
lightweight statistical technique as classifier, the remarkable classification rates
achieved are made possible by a careful tuning of critical parameters of both
the hardware environment and the software application itself. In particular, the
proposed system properly sets memory and CPU affinity of different threads
composing it, processes packets in a batch-oriented fashion (replicating batch
processing ideas from PacketShader at user level), reuses memory structures
for flow storing, exploits multi-core parallelism overlapping the different tasks
(namely, reception, flow-handling and classification) while asynchronously com-
municating them by means of intermediate buffers (chunk and job rings). The
system, currently valued at $ 6,000, achieves wire-speed classification in the
worst-case scenario of 64 byte packets (10 Gb/s and even reaches 20 Gb/s
when using two 10 GbE NICs and real traces (average packet size about 750
bytes).

70 Tuning modern architectures for high-performance networking

3.5. USE CASES OF NOVEL CAPTURE ENGINES

Other monitoring tasks

The authors in [MSdRR+14b] dig into the most intuitive service to build over
a packet capture engine, packet storage in non-volatile drives. They present an
application named hpcapdd, that running on the HPCAP engine that is able to
store packets in commodity hard-drives at 10 Gb/s rates for all packet sizes. The
testbed value is about $ 3,000, to which should be added 12 hard drives with a
total cost of about $ 2,500 as of today. The contributions of this application are
to exploit affinity by automatically executing threads in the same NUMA node,
accessing hard drives to store packets as a stream of consecutive bytes instead
of following a packet-by-packet fashion and using a huge intermediate buffer to
handle the irregular throughput of mechanical hard drives.

ffProbe [DDDS11] is an implementation of a NetFlow probe [Sys12], i.e. a
probe that constructs a flow register for any consecutive set of packets sharing
header information, e.g. same IP addresses, port numbers and layer-4 protocol.
These registers typically comprise the number of packets and bytes. NetFlow
has become a fundamental tool for any network manager. ffProbe runs over the
PF_RING DNA engine and has proven to sustain 10 Gb/s rates with packets of
about 500 bytes and rates over 7 Gb/s in the worst-case scenario of minimal
packet size. The server and total hardware used on the performance evaluation
should value roughly $ 3,000 as of today. The keys of the implementation of
ffProbe is to leverage the concurrence capacity that PF_RING DNA provides by
applying a hash function to packet headers and forwarding each of them to dif-
ferent concurrent processes. Note that this is possible as all packets comprising
a flow share header fields used to construct flows. Additionally, ffProbe divides
the work of constructing flows, looking for expired ones and the work of exporting
to different processes. Due to the use of prefetching flow and memory caches
the total latency is reduced.

The authors in [GDSdRR+14] focus their attention on how HPCAP engine
may turn out useful to monitor VoIP networks. They proposed the system, VoIP-
CallMon, which is able to track IP calls at aggregate rates of 10 Gb/s assuming
codec G.711 with a packet size of 200 bytes. The testbed server costs would be
around $ 3,000. The heart of this proposal is dealing with the high rates served
by bottom layers as well as the fast construction of flow records. To this end, the
authors designed several tailored data-structures so that after any flow insertion
and exportation, the active-flow list remained sorted.

Finally, we mention Blockmon [DdH+12,DPHB+13a] which is neither an ap-
plication nor a system by itself but a framework to implement monitoring appli-
cations. For example, reading packets, applying a level-4 filter and exporting
a NetFlow registers. The authors leveraged PFQ as capture engine, and pro-
vided several sample applications running on it. Specifically, heavy hitter statis-

Vı́ctor Moreno Martı́nez 71

PACKET CAPTURE USING COMMODITY HARDWARE

tics (flows whose number of packets or bytes are over given thresholds), SYN
flooding detection and VoIP anomaly detection. As of today, the server used for
testing has an estimated price of below $ 2,000. The authors do not provide
further details of the implementations but report rates ranging between 3.8 and
10 Gb/s. These figures represent a 15% cut in performance compared to PFQ’s
capture process.

Importantly, this whole section highlights that, despite these novel packets
engines’ set-ups, the bottleneck may have risen through the network stack. This
result alerts us that some old implementations of popular networking applica-
tions have been overtaken by the novel capture engines, which call for a review
and subsequent optimization of the software.

72 Tuning modern architectures for high-performance networking

3.6. CONCLUSIONS

3.6 Conclusions

The use of commodity hardware on high-performance network tasks has
opened an exciting scenario where even the hardest task can be carried out
by a flexible, extensible, adaptable and even inexpensive system. Examples of
these tasks that have been enriched by this novel paradigm are applications
such as software routers, anomaly and intrusion detection, traffic classification,
and VoIP monitoring.

Unfortunately, the process of developing a high-performance networking
task on commodity hardware from scratch may turn out to be a non-trivial pro-
cess composed of a set of thorny sub-tasks, each of which presents fine-tuned
configuration details. In this light, this work has aimed at providing practitioners
and researchers with a road-map to the exploration of this useful paradigm.

Such road-map can be summarized by means of the following lessons learned
and pieces of advice sprinkled throughout this chapter:

• Both default NIC drivers and network stack are shown to be insufficient to
provide application layer with packets at multi-Gb/s rates. Depending on
the scenario, bounds can be as low as 1 Gb/s.

• We have reviewed the main driver and stack limitations, and explained
their respective countermeasures a capture engine should follow:

◦ Dramatic cost of performing any operation at packet level:
→ Preallocating at driver load-time and reuse of memory during ex-
ecution time.
→ Increasing packet data’s access time by prefetching its contents
while predecessor packets are still being processed.
→ Carrying out any task over a group of packets, not one-by-one,
when possible.

◦ Serialized access to traffic:
→ Exploiting parallel capacities of modern NICs by assigning a core
to each RSS queue.

◦ Multiple data copies from the wire to the user-level:
→ Mapping memory kernel regions at user-level.

◦ Random placement of threads (or processes) across the available
processors, leading to higher memory access latencies and cache
inefficiency:
→ Carefully planning the thread-processor pair —threads must allo-
cate memory in a chunk assigned to the NUMA node on top of which
it is being executed.
→ Leveraging CPU and Interrupt affinity by setting both capture and

Vı́ctor Moreno Martı́nez 73

PACKET CAPTURE USING COMMODITY HARDWARE

interrupt threads to the same processor —thus exploiting cached
data and load distribution.

◦ Heavy kernel-to-userspace context switches:
→ Accessing as many packets as possible in a single system call:
batches, streams.

• The industry and academia have applied most of these solutions giving
rise to different and prominent off-the-shelf capture engines:

◦ PF_RING DNA, PacketShader, netmap, PFQ, Intel DPDK and HP-
CAP.

• Practitioners and researchers interested in running applications over com-
modity hardware may base their development on one of these engines
and skip most of the low-level details. They may make a decision based
on both the additional features and the performance level offered by each
engine.
In terms of features we have identified:

◦ Different APIs, some of them are similar to de facto standard, libp-
cap, and socket-alike.

◦ Different level of timestamping precision and concurrent application
support.

◦ Different levels of compatibility with 1Gb NICs or NICs different from
the Intel’s 82598/82599 —which has become the de facto reference
for all approaches.

In terms of performance:

◦ We have assessed that all engines surpass default NIC drivers and
networking stacks’ performance by far.

◦ A certain scenario’s defiance depends on both the available ma-
chine’s topology and the traffic intensity in terms of Mp/s —essentially,
the smallest packets are the most challenging ones.

As take-away messages:

◦ We have found that PFQ spans several advantages such as flexibility
and ease of use.

◦ PF_RING DNA, PacketShader, and netmap achieve full rates re-
gardless of packet size and low resource utilization even with only
one queue.

◦ HPCAP provides accurate timestamping and enhanced packet stor-
age.

◦ Intel DPDK stands out given its extensive compatibility with NICs
from several manufacturers.

74 Tuning modern architectures for high-performance networking

3.6. CONCLUSIONS

• We remark the success of the explained capture engines by means of
real-world applications, and state their significant state-of-the-art bounds.
To illustrate this, we highlight that contemporary software routers based
on commodity achieve rates above 30 Gb/s in tasks such as IP forwarding
and OpenFlow switching. Moreover, flow construction, VoIP monitoring
and packet storage applications achieve rates of 10 Gb/s, and even DPI
and Snort-based applications can operate at rates higher than 5 Gb/s.

To conclude, we believe these lessons learned and pieces of advice may
serve as a catalyst for the arrival of new high-performance network applications
based on the pair of commodity-hardware and open software. We hope this also
serves to stimulate further ideas and proposals to face the near and demanding
future, paving the way for 40 Gb/s or even 100 Gb/s interfaces.

Vı́ctor Moreno Martı́nez 75

4
HPCAP implementation
details and features

This chapter describes the developement process of HPCAP. Specif-
ically, it focuses on the key aspects that guided and motivated HP-
CAP’s design as a new high-performance packet capture engine.
Those aspects are manifold: accurately timestamping the incom-
ing traffic, optimizing the packet storage proccess, and the ability
of removing duplicated packets that may consume unnecessary re-
sources.

In this chapter we describe the implementation details of HPCAP: our packet
capture proposal. HPCAP is designed with the aim of meeting a set of features
that, according to our experience, an ideal packet capture engine should meet,
namely:

• it should achieve maximum packet capture performance using just one RX
queue in order to avoid collateral effects,

• it should associate incoming packets with an as accurate as possible times-
tamp,

• it should be oriented to optimize packet storage into non-volatile volumes,

• it should minimize the employment of computational resources with irrele-
vant traffic. Specifically, our first proposal is to detect and reject duplicated
traffic.

Importantly, those features HPCAP has been focused on were ignored by
other proposals. The rest of this chapter begins with a description of the design
of HPCAP, followed by an extensive evaluation of each of its previously men-
tioned distinguishing features.

HPCAP IMPLEMENTATION DETAILS AND FEATURES

4.1 HPCAP’s design

Even though our goal is a capture solution working with just one RX queue,
the system architecture has been designed so that more than one queue can be
used. Although the use of multiple queues may entail collateral issues such as
packet reordering or timestamping drifts, if the traffic distributed amongst differ-
ent queues is independent from the rest, supporting multiple queues becomes a
valuable feature. Furthermore, ir order to make HPCAP as general-purpose as
possible, the possibility of instantiating more than one application feeding from
the same RX queue has been supported. HPCAP’s architecture is depicted in
Fig. 4.1. In this figure, three main blocks can be distinguished:

• the Intel 82599 NIC interface: this block enables the communication be-
tween the HPCAP driver, and the NIC. It is comprised by the source C
code files from the opensource ixgbe (Intel’s 10 Gigabit Ethernet Linux
driver).

• the HPCAP driver: this block consists on a set of C source code files that
are compiled together with the ixgbe driver files to generate a new driver.

• user level applications: a user-level application using the HPCAP API,
which consumes the incoming packets.

Importantly, although the development of HPCAP has been tied to the Intel’s
82599 NIC, the source code has been structured so that the NIC-independent
code is separated in different source code files, and the NIC-dependent code
has been explicitly labelled. That is, HPCAP has been developed so that it could
be easily extended to support new network interface cards and vendors.

4.1.1 Kernel polling thread

A basic technique when trying to exploit your system’s performance is the
ability to overlap data copies and processing. With the aim of maximizing, we
instantiate a kernel-level buffer in which incoming packets will be copied once
they have been transferred to host memory via DMA (see Fig. 4.1).

Other capture engines, such as PacketShader [HJPM10] or Netmap [Riz12c],
copy incoming packets to an intermediate buffer. Nevertheless, this copy is made
when the user-level application asks for new packets. This philosophy has two
main drawbacks:

• as the incoming packets are copied to the intermediate buffer when the ap-
plication asks for them, there is no copy and process overlap, thus limiting

78 Tuning modern architectures for high-performance networking

4.1. HPCAP’S DESIGN

Host system

User-level

Kernel-level

Intel 82599 NIC

RX
RING

0

RX
RING

1

RX
RING
n-1

RSS dispatcher / Flow
Director

Incoming packets

Host Memory Host Memory Host Memory

Listener
0,0

DMA DMA DMA

Poll thread
n-1

Poll thread
1

Poll thread
0

Buffer 0 Buffer 1 Buffer n-1

Listener
0,m0

Listener
1,0

Listener
1,m1

Listener
n-1,0

Listener
n-1, mn-1

Figure 4.1: HPCAP kernel packet buffer

Vı́ctor Moreno Martı́nez 79

HPCAP IMPLEMENTATION DETAILS AND FEATURES

the capture performance,

• if the capture engine was to timestamp incoming packets, it could only
be done when they are copied from RX ring memory to the intermediate
buffer. As packets are not copied until the user asks for them, its timestamp
accuracy is damaged. Furthermore, packets copied due to the same user-
level request would have a nearly equal timestamp value. A full discussion
about that matter is included in section 4.2.

In order to overcome such problems, HPCAP instantiates a KPT (Kernel-
level Polling Thread) per each RX queue. Those threads are constantly polling
their corresponding RX descriptor rings, reading the first descriptor in the queue’s
flags to check whether it has already been copied into host memory via DMA. If
the poll thread detects that there are any packets available at the RX ring, they
will be copied to the poll thread’s attached circular buffer. Just before this packet
copy is made, the poll thread will obtain the system time by means of the Linux
kernel getnstimeofday() function.

All the incoming packets are copied into the buffer in a raw data format (see
Fig. 4.2): first, the packet timestamp is copied (32-bit for the seconds field and
other 32-bit field for the nanoseconds), after it, the packet’s length and captured
length (as two 16-bit fields), and in the last place the packet data (with a variable
length).

Raw data file

Packet K Packet K+1

...

...

Packet data (Caplen bytes)Seconds

(4B)
Nanosecs

(4B)
Caplen

(2B)
Len
(2B)

Packet 1

Padding pseudo-packet

Padding invalid data (Padlen bytes)0x00000000
(4B)

0x00000000
(4B)

Padlen
(2B)

Padlen
(2B)

Figure 4.2: HPCAP kernel packet buffer

This raw buffer format gives a higher level of abstraction than the typical
packet structure used by PCAP-lib or other approaches, so upper level applica-
tions can efficiently access the data in both a packet oriented or a byte-stream

80 Tuning modern architectures for high-performance networking

4.1. HPCAP’S DESIGN

basis. In order to make sure the data files are not cut in the middle of the packet
stream, the last packet of each file (whose size was fixed at HPCAP’s load time)
is a false packet or padding packet, whose header contains a zero-valued times-
tamp and the size of the padded data. This byte-stream oriented access to
the network data allows upper-level applications to efficiently store the captured
data, by carrying out block-level operations over the storage device and thus
maximizing performance.

4.1.2 Multiple listeners

As shown in Fig. 4.1, HPCAP supports multiple applications, referred as
listeners, to fetch packets from the same RX queue in a SPMC (Single Producer,
Multiple Consumer) model. This is achieved by keeping an array of structures
(one for each listener thread/application plus a ”global listener”) keeping track
of how much data has each listener fetched from the common buffer. In order
to keep data consistency, the packet read throughput will be set by the slowest
listener.

Each listener structure consists of four fields, namely:

• a listener identifier: a field used to identify the different active listeners for
each RX queue. This field is needed to keep consistency between different
packet requests coming from the same listener. The listener identifier field
is filled when a new listener opens an HPCAP session, and cleared when
this session is closed.

• a read pointer: this field is used to know the beginning of the buffer mem-
ory where the copy to user space transfer must be made when a user
application issues a read request. When a new listener is registered for
an HPCAP queue, this field is set to value set in the global listener field,
guaranteeing that all the data residing in the buffer from this moment on
will be accessible by this listener. After that, this field is only read and up-
dated by the listener application when it reads a new block of bytes, so no
concurrency-proven mechanism must be applied to that field.

• a write pointer: this field tells the kernel-level poll thread, where a new
incoming packet must be copied. Thus, this field is only read and updated
by the kernel poll thread and again no concurrency-proven mechanism
needs to be applied.

• an available-bytes counter: this counter indicates the amount of data(in
terms of bytes) currently available in each RX queue buffer. This value is
increased by the kernel poll thread, and decreased by the slowest listener
thread. Thus, concurrency-proven techniques must be applied to avoid

Vı́ctor Moreno Martı́nez 81

HPCAP IMPLEMENTATION DETAILS AND FEATURES

inconsistency in this data field [Lov02]. We have chosen to use the Linux
atomic API.

This feature allows monitoring application to focus on packet processing,
while a different application stores them into non-volatile volumes, thus overlap-
ping data storing and processing and exploiting maximum performance.

4.1.3 User-level API

The everything is a file Linux’s philosophy, provides a simple way to commu-
nicate user-level applications with the HPCAP driver. Following that philosophy,
HPCAP instantiates a different character device [CRKH05] node in the /dev/
filesystem for each of the different RX queues belonging to each of the different
available interfaces. This way, a system holding N network interfaces with M RX
queues each would see the following devices in its /dev/ directory:

...
/dev/hpcap_0_0
/dev/hpcap_0_1

...
/dev/hpcap_0_<M−1>
/dev/hpcap_1_0
/dev/hpcap_1_1

...
/dev/hpcap_1_<M−1>
...
/dev/hpcap_<N−1>_0
/dev/hpcap_<N−1>_1

...
/dev/hpcap_<N−1>_<M−1>
...

Code 4.1: Contents of the /dev/ directory in a
system running HPCAP

A user level application that wants to capture the packets arriving to queue X
of interface xgeY does only need to execute an operating system open() call
over the character device file /dev/hpcap xgeY X. Once the application has
opened such file, two approaches can be used by those user level applications
to process the traffic that is stored inside the driver’s buffers:

• it can read the incoming packets by performing a standard read() call
over the previously opened file. This way, the data will be copied from the
driver’s buffers to the system’s internal buffers. Although this additional

82 Tuning modern architectures for high-performance networking

4.1. HPCAP’S DESIGN

copy imposes an overhead over the application’s throughput, the raw data
format inside the buffers allows to directly perform a write() system call
targeted to a storage device.

• the user level application can directly map the kernel buffers’ memory via
a set of library functions that make use of the standard mmap() system
call. Applications using the memory mapping techniques must use a set
of library functions that provides custom commands via the ioctl() call
to synchronize with the driver. This mechanism allows user applications
to access the captured data without additional copies and consequently
improve overall performance. Additionally, the use of the memory map-
ping mechanism allow several applications to access a single buffer’s data
without additional copies.

When the application wants to stop reading from the kernel buffer, it just has
to execute a close() call over the character device file, and its corresponding
listener will be untied from the listeners pool.

Such an interface, allows the execution of programs over HPCAP that will
read the incoming packets from the corresponding buffer, but it also allows using
standard tools such as Linux’s dd to massively and efficiently move the data to
non-volatile storage volumes.

4.1.4 HPCAP packet reception scheme

Fig. 4.3 shows HPCAP’s packet reception scheme, in contrast with those
representing the packet capture engine of a traditional NIC and other high-perfor-
mance packet capture engines already shown in Chapter 3.

Similarly to other packet capture engines, the packet reception process no
longer depends on the use of interrupts as the mechanism to communicate the
hardware and the network driver. Instead, the kernel poll thread will constantly
copy (and timestamp) the available packets into its corresponding buffer. Note
that, differently from other packet capture engines, the packet copies are not
made when a user application asks for more packets, but always there are avail-
able packets.

Importantly, the buffer-oriented approach followed by HPCAP isolates the
process made over the incoming packets at kernel level from the process car-
ried out by upper-level applications. If properly managed, this isolation allows
to create a pipelined process chain that increments the total amount of compu-
tation that can be carried out over each incoming packet. This increments is
because the time constraints existing for each packet’s computation will apply to
the slowest stage in the computational pipeline.

Vı́ctor Moreno Martı́nez 83

HPCAP IMPLEMENTATION DETAILS AND FEATURES

Note that, just as mentioned in previous chapters, in order to achieve peak
performance both the kernel poll thread and its associated listeners must be
mapped to be executed in the same NUMA node. HPCAP kernel poll threads’
core affinity is set via a driver load time parameter. Regarding listener applica-
tions, a single-threaded application can be easily mapped to a core by means
of the Linux taskset tool 1. Multithreaded applications can make use of the
pthread (POSIX Threads) library in order to map each thread to its corre-
sponding core 2.

1http://linux.die.net/man/1/taskset
2http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.

html

84 Tuning modern architectures for high-performance networking

http://linux.die.net/man/1/taskset
http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
http://man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html

4.1.
H

P
C

A
P

’S
D

E
S

IG
N

Physical link

NIC RX
RING

Packet
arrival

DMA-able memory
DMA write

transfer

DMA
complete

time

User Application

packets
available?

memory mapping
(no copy)

Kernel driver

hpcap_
poll() memcpy()

hpcap_read_packet()

hpcap_
poll()

Figure 4.3: HPCAP packet reception scheme

V
ı́ctorM

oreno
M

artı́nez
85

HPCAP IMPLEMENTATION DETAILS AND FEATURES

4.2 Packet timestamping

Novel packet I/O engines allow capturing traffic at multi-10Gb/s using only-
software and commodity-hardware systems. This is achieved thanks to the ap-
plication of optimization techniques such as batch processing. Nevertheless,
no attention has been paid on the fact of timestamping those packets captured
at high-rates, and even more in the quality that a potential timestamping policy
developed as an extension of those packet capture engines would experience.
We want to emphasize the relevance of this fact, as packet timestamping has
proven vital when carrying out analysis tasks over network traffic [MSD+08].
Importantly, some of the techniques and inherent packet capture architectures
presented by most packet capture engine involve degradation in the timestamp
accuracy. This section pretends to evidence, via empirical results, the times-
tamping accuracy problem and present a discussion on the impact of packet
timestamping over the final system’s packet capture performance.

4.2.1 Accuracy issues

Dealing with high-speed networks claims for advanced timing mechanisms.
For instance, at 10 Gb/s a 60-byte sized packet is transferred in 67.2 ns (see
Eq. 4.1 and 4.2), whereas a 1514-byte packet in 1230.4 ns. In the light of such
demanding figures, packet capture engines should implement timestamping poli-
cies as accurately as possible.

TXtime =
(Preamble+ Packetsize + CRC + Inter_Frame_Gap)

Linkrate
(4.1)

TXtime =
(8 + 60 + 4 + 12) bytes

packet
× 8 bits

byte

1010 bits
second

= 67.2× 10−9 seconds

packet
(4.2)

In an ideal scenario, the timestamp would be done by a hardware agent
which is synchronized with a time source using a sub-microsecond synchroniza-
tion protocol [LCSR11]. Although a hardware timestamping policy would offer
best accuracy and minimal performance interference, such as in [MGGA+11],
this feature is not implemented by commodity NICs and would thus entail chang-
ing to non-standard solutions. Importantly, some NICs such as Intel’s 82599
offer features that allow defining a set of rules to identify a subset of packet that

86 Tuning modern architectures for high-performance networking

4.2. PACKET TIMESTAMPING

would be timestamped with a PTP (Precision Time Protocol)-synchronized in-
ternal clock (see Section 8.2.3.26 in [MGGA+11]). However, this only allows to
timestamp a reduced set of the incoming packets as the timestamp for a packet
matching the filter requirements is stored in an internal register until released.
For this reason, hardware timestamping is not a realistic option in commodity
NICs yet.

Conversely, if the incoming traffic is to be timestamped by the capture soft-
ware, regardless this software is executed at driver or user level, it will suffer
from timestamp inaccuracy due to time synchronization and kernel scheduling
policies [BRE+15]. Although Linux can timestamp packets with sub-microsecond
precision by means of kernel getnstimeofday function, drift correction mech-
anisms must be used in order to guarantee long-term synchronization. This is
out of the scope of this work as it has already been treated by methods like
NTP (Network Time Protocol), LinuxPPS or PTP [LCSR11]. Via a fine tune
on the capture processes schedule priorities this effect could be slightly mit-
igated. Only a real-time operating system [Bar97, BY96] could grant a con-
strained schedule time. However, although very interesting, those issues are out
of the scope of this work. We will focus on the impact of the packet timestamping
policy on the timestamp accuracy, as we consider this fact have a heavier impact
than the previously mentioned low-level operating-system-related details.

The timestamp accuracy problem becomes more dramatic when some of the
reception steps taken before a packet is timestamped is carried out in a batch-
oriented fashion, which is not uncommon as explained in Chapter 3.3. In that
case, even though the incoming packets were copied into kernel memory and
timestamped in a 1-by-1 fashion, this copy-and-timestamp process is scheduled
in time quanta whose length is proportional to the batch size. Thus, packets
received within the same batch will have an equal or very similar timestamp. In
Fig. 4.4 this effect is exposed for a 100%-loaded 10 Gb/s link in which 60-byte
packets are being received using PacketShader [HJPM10], i.e., a new packet
arrives every 67.2 ns (black dashed line). As shown, packets received within the
same batch do have very little interarrival time (corresponding to the copy-and-
timestamp duration), whereas there is a huge interarrival time between packets
from different batches. Therefore, the measured interarrival times are far from
the real values.

Figure 4.5 shows the standard deviation of the observed timestamp error
after receiving 1514-byte sized packets for one second at maximum rate. The
timestamp accuracy is degraded with batch size. Note that when the batch size
is beyond 16 packets, the error tends to stall because the effective batch size
remains almost constant —although a given batch size is requested to the driver,
user applications will be only provided with the minimum between the batch size
and the number of available packets.

Vı́ctor Moreno Martı́nez 87

HPCAP IMPLEMENTATION DETAILS AND FEATURES

0 20 40 60 80 100 120
0

500

1000

1500

In
te

r−
p
a
c
k
e
t
ti
m

e
 (

n
s
)

Packet number

Theoretical Inter−packet TS

Measured Inter−packet TS

Chunk number

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Figure 4.4: Batch timestamping effect on inter-arrival times

At the same time, other sources of inaccuracy appear when using more
than one hardware queue and trying to correlate the traffic dispatched by differ-
ent queues. On the one hand, interarrival times may even be negative due to
packet reordering as shown in [WDC11]. On the other hand, the lack of low-level
synchronism among different queues must be taken into account as different
cores of the same machine cannot concurrently read the timestamp counter
register [BRV09]. As a consequence, a capture engine using more than one
reception queue would suffer from those inaccuracy sources.

Timestamping policies and accuracy

To overcome the problem of batch timestamping, we proposed three ap-
proaches. The first two ones are based on distributing the inter-batch time
among the different packets composing a batch. The third approach adopts a
packet-oriented paradigm in order to remove batch processing without degrading
the capture performance.

88 Tuning modern architectures for high-performance networking

4.2. PACKET TIMESTAMPING

1 2 4 8 16 32 64
1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Batch size (Packets)

S
ta

n
d
a

rd
 d

e
v
ia

ti
o

n
 (

n
s
)

Figure 4.5: Degradation on timestamping accuracy with batch
size

UDTS: Uniform Distribution of TimeStamp

The simplest technique to reduce the huge time gap between batches is to
uniformly distribute inter-batch time among the packets of a batch. Equation 4.3
shows the timestamp estimation of the i-th packet in the (k+ 1)-th batch, where
t
(j)
m is the timestamp of the m-th packet in the j-th batch and nj is the number of

packets in batch j.

τ
(k+1)
i = t(k)

nk
+
(
t(k+1)
nk+1

− t(k)
nk

)
· i

nk+1

∀i ∈ {1, . . . , nk+1} (4.3)

As shown in Fig. 4.6(a), this algorithm would perform correctly when all the
incoming packets of a given batch have the same size. The drawback of this
solution is that all packets of such batch would show have the same inter-arrival
times regardless their size. This would lead to the appearance of timestamping
errors in realistic scenarios, even though they are fully-saturated, as shown de-
picted in Fig. 4.6(b). Note that the inter-packet gap is proportional to the packet
size when transmitting packets at maximum rate.

Vı́ctor Moreno Martı́nez 89

HPCAP IMPLEMENTATION DETAILS AND FEATURES

nk(k) 1(k+1) 2(k+1) 3(k+1) 4(k+1) 1(k+2)

UDTS
𝜏1(k+1) t4(k+1)

UDTS
𝜏2(k+1)

UDTS
𝜏3(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

WDTS
𝜏3(k+1)

(a) Fully-saturated link with constant packet size.

nk(k) 1(k+1) 2(k+1) 3(k+1) 4(k+1) 1(k+2)

UDTS
𝜏1(k+1) t4(k+1)

UDTS
𝜏2(k+1)

UDTS
𝜏3(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

WDTS
𝜏3(k+1)

(b) Fully-saturated link with variable packet size.

nk(k) 1(k+1) 2(k+1) 3(k+1) 1(k+2)

UDTS
𝜏1(k+1) t3(k+1)

UDTS
𝜏2(k+1)tnk

(k)

WDTS
𝜏1(k+1)

WDTS
𝜏2(k+1)

(c) Non fully-saturated link with variable packet size.

Figure 4.6: Inter-packet gap distribution

90 Tuning modern architectures for high-performance networking

4.2. PACKET TIMESTAMPING

WDTS: Weighted Distribution of TimeStamp

To overcome the disadvantage of previous solution, we propose to distribute
time among packets proportionally to the packet size. Equation 4.4 shows the
timestamp estimation using this approach, where s

(k+1)
j is the size of the j-th

packet in the (k + 1)-th batch.

τ
(k+1)
i = t(k)

nk
+
(
t(k+1)
nk+1

− t(k)
nk

)
·
∑i

j=1 s
(k+1)
j∑nk+1

j=1 s
(k+1)
j

∀i ∈ {1, . . . , nk+1} (4.4)

WDTS is especially accurate when the link is completely loaded because
there are no inter-packet gaps (excluding transmission time), regardless the
packet size is variable, as shown in Fig. 4.6b. However, when the link load is
lower, both UDTS and WDTS present poorer results as they distribute real inter-
packet gaps among all the packets in the batch (see Fig. 4.6c). That is, the lower
the inter-packet gap is, the higher the accuracy is.

KPT: Kernel-level Polling Thread

Towards a timestamping approach that performs properly regardless the link
load, we proposed a redesign of the network driver architecture. Novel packet
capture engines fetch packets from the NIC rings only when a high-level layer
polls for packets, then they build a new batch of packets and forward it to the
requestor. This architecture does not guarantee when will the fetcher thread be
scheduled and consequently, a source of uncertainty is added to the timestamp-
ing mechanism.

As explained, HPCAP implements a kernel-level thread which constantly
polls the NIC rings for new incoming packets and then timestamps and copies
them into a kernel buffer. A high-level application using HPCAP for packet cap-
ture will request the packets stored in the kernel buffer, but the timestamping
process will no longer be dependent on when applications poll for new packets.
This approach reduces the scheduling uncertainty as the thread will only leave
execution when there are no new incoming packets or a higher priority kernel
task needs to be executed. KPT causes a higher CPU load due to its active
waiting approach. However, subsection 4.2.2 will show that it is not the active
wait what may cause packet capture performance degradation, but the system
call required to obtain the system’s timestamp.

Our setup consists of two servers (one for traffic generation and the other for
receiving traffic) directly connected through a 10 Gb/s fiber-based link. The re-
ceiver has two six-core Intel Xeon E52630 processors running at 2.30 GHz with
124 GB of DDR3 RAM. The server is equipped with a 10GbE Intel NIC based

Vı́ctor Moreno Martı́nez 91

HPCAP IMPLEMENTATION DETAILS AND FEATURES

on 82599 chip, which is configured with a single RSS queue to avoid multi-
queue side-effects, such as reordering or parallel timestamping. The sender
uses a HitechGlobal HTG-V5TXT-PCIe card which contains a Xilinx Virtex-5
FPGA (XC5VTX240) and four 10GbE SFP+ ports [Glo]. Using a hardware-
based sender guarantees accurate timestamping in the source. For traffic gen-
eration, two custom designs have been loaded allowing: (i) the generation of
tunable-size Ethernet packets at a given rate, and, (ii) the replay of PCAP traces
at variable rates.

As first experiment, we assess the timestamp accuracy sending traffic at
maximum constant rate. Particularly, we send 1514-byte sized packets at 10 Gb/s,
i.e., 812,744 packets per second and measure the interarrival times in the re-
ceiver side. Table 4.1 shows the error of the measured timestamp (i.e., the
difference between the original and the observed interarrival times), in terms of
mean and standard deviation, for a 1-second experiment (to make sure no pack-
ets are lost) for the different reviewed methods. Note that the lower the standard
deviation is, the more accurate the timestamping technique is. The first two rows
show the results for PacketShader, chosen as a representative of batch-based
capture engines. We tested with different batch sizes and different timestamping
points: at user-level or at driver-level. PFQ results are shown in the following
row whereas the three last ones show the results of our proposed solutions. It
can be observed that timestamping error grows with batch size. Even using one-
packet batches, the error is greater than the one observed using our proposals.
UDTS and WDTS methods enhance the accuracy, decreasing the standard devi-
ation of the timestamp error below 200 ns. Both methods present similar results
because all packets have the same size in this experiment. KPT technique re-
duces the standard deviation of the error up to ∼600 ns. Despite timestamping
packet-by-packet, PFQ shows a timestamp standard error greater than 13 µs.

Solution Batch size Error
µ̄[ns] σ̄ [ns]

User-level batch TS
1 2 1765

32 2 3719

Driver-level batch TS
1 2 1742

32 2 3400
PFQ - 2 13558

UDTS 32 2 167
WDTS 32 2 170
KPT - 2 612

Table 4.1: Experimental timestamp error (mean and standard de-
viation). Synthetic traffic: 1514-bytes packets

In the next experiments, we evaluate the different techniques using real traf-
fic from a Tier-1 link (i.e., a CAIDA OC192 trace [WAcAa]). We perform two

92 Tuning modern architectures for high-performance networking

4.2. PACKET TIMESTAMPING

experiments: in the first one, the trace is replayed at wire speed (that is, at 10
Gb/s), and then, we replay the trace at the original speed (i.e., at 564 Mb/s, re-
specting inter-packet gaps). Due to storage limitations in the FPGA sender, we
are able to send only the first 5,500 packets of the trace. Table 4.2 shows the
comparison of the results for our proposals and the driver-level batch timestamp-
ing. We have used a batch size of 32 packets because 1-packet batches do not
allow achieving line-rate performance for all packet sizes. In wire-speed exper-
iments, WDTS obtains better results than UDTS due to different sized packets
in a given batch. When packets are sent at original speed, WDTS is worse than
KPT because WDTS distributes inter-packet gap among all packets. This effect
does not appear at wire-speed because there is no inter-packet gap (excluding
transmission time). In any case, driver-level batch timestamping presents the
worst results, even in one order of magnitude.

Solution
Error

Wire-Speed Original Speed
µ̄[ns] σ̄ [ns] µ̄[ns] σ̄ [ns]

Driver-level batch TS 13 3171 -26 19399
UDTS 12 608 -40 13671
WDTS 5 111 -42 14893
KPT -1 418 -43 1093

Table 4.2: Experimental timestamp error (mean and standard de-
viation). Real traffic: Wire-speed and Original speed

4.2.2 Performance evaluation

As already mentioned, HPCAP implements a KPT policy for processing the
incoming packets. This way, each incoming packet is processed independently
from the rest, which has positive effects on its timestamp accuracy, but may imply
a performance degradation in terms of packet capture performance. Importantly,
Eq. 4.2 stated the time available for processing each incoming packet in the
worst-case scenario for a 10GbE link, which is 67.2 ns. This fixes a time bound
for the things that can be done per incoming packet if a zero-loss rate is to be
reached. Precisely, this temporal constraint is what inspired the buffer-oriented
architecture of HPCAP, as it allows to pipeline the process carried out over each
packet, so that part of the process is carried out at kernel level and the rest is
made at user-level.

Consequently, the amount of work made at driver level must be minimized
in order to sustain maximum packet processing throughput, but there are always
two tasks that can not be moved to upper layers:

Vı́ctor Moreno Martı́nez 93

HPCAP IMPLEMENTATION DETAILS AND FEATURES

• Copying the packet’s data: in order to allow the memory area assigned to
the incoming packet’s receive descriptor to be re-used for future incoming
packets, this memory must be released as soon as possible. This implies
copying the packet’s data into the previously mentioned packet buffer.

• Timestamping the packet: as there are no guarantees about when the
packet will be processed by upper layers, its timestamp must be assigned
as near to its physical arrival to the NIC as possible. This implies a sys-
tem call to the getnstimeofday() function for each incoming packet.
Importantly, there are lighter functions that provide a local-CPU time and
have minimal overhead, but they do not guarantee inter-CPU synchroniza-
tion nor monotonically increasing time stamps so their usage has been
discarded for our purposes.

At this point, we will evaluate the packet capture performance of HPCAP us-
ing the same test framework as the one presented in Section 3.4.1 when com-
paring the performance of the diverse packet capture engines. Furthermore,
the impact over capture performance of timestamping every incoming packet
will be evidenced by comparing the default behaviour—i.e., timestamping every
packet— with the performance obtained when timestamping one out of two, four
or eight packets, and the performance obtained when no packet is timestamped
at all.

The left-hand side part of Fig. 4.7 shows the packet capture performance
when processing 14.88 Mpps with a constant size of 60 bytes (CRC not in-
cluded) when varying the amount of receive queues used. As it could be ex-
pected, the amount of packets captured rises from 69.37%, when all packets
are timestamped, up to 82.85%, when no packet is timestamped at all, with
the amount of packets captured increasing when then amount of packets times-
tamped decreases. When increasing the amount of queues in use, the impact
on the amount of packets timestamped of performance becomes more irrele-
vant, and thus the performance losses experienced are due to a reduction in the
amount of descriptors available for each queue or the overall CPU consumption
when the amount of queues is high, rather than then in the time available for
processing each packet. When the packet size is increased to an average size,
the processing time is big enough so no packet losses are experienced in any
case, as shown in the right half of Fig. 4.7.

On the other hand, subfigures in Fig. 4.8 show the packet capture perfor-
mance for each of the timestamping policies mentioned when capturing from a
fully-saturated 10GbE link with different constant-sized packets. Results show a
performance improvement in the worst-scenarios when reducing the amount of
packets timestamped, but when the packet size is greater or equal to 64 bytes
(CRC not included) then all packets are captured if one queue is used. When
the number of queues is greater, maximum performance is reached when the

94 Tuning modern architectures for high-performance networking

4.2. PACKET TIMESTAMPING

packet size is greater or equal to 128 bytes.

The results shown here prove the existence of an impact over packet capture
performance on the timestamping policy implemented by HPCAP. This perfor-
mance results in conjunction with the accuracy results exposed in the previous
subsection should give a potential user of a high-performance packet capture
engine an idea about which engine would be more convenient according to his
performance-accuracy constraints. In line with the future work previously men-
tioned, we propose the use of a dynamic policy capable of deciding the amount
of packets to be timestamped depending on the network load (and thus minimize
potential packet loses), and then applying a WDTS algorithm to re-construct the
timestamp of those packet which where not assigned a temporal mark.

Vı́ctor Moreno Martı́nez 95

H
P

C
A

P
IM

P
L

E
M

E
N

TA
T

IO
N

D
E

TA
IL

S
A

N
D

F
E

A
T

U
R

E
S

2 4 6 8 10 12
50

55

60

65

70

75

80

85

90

95

100

105

#Queues

P
ac

k
et

s
re

ce
iv

ed
 (

%
)

Worst−case scenario (60+4 bytes sized packets)

2 4 6 8 10 12
50

55

60

65

70

75

80

85

90

95

100

105

#Queues

P
ac

k
et

s
re

ce
iv

ed
 (

%
)

Average scenario (CAIDA trace)

Percentage of
timestamped packets

100.0%

50.0%

25.0%

12.5%

0.0%

Figure 4.7: Packet capture performance for different timestamping policies in a worst-case and average scenarios when
varying the number of receive queues

96
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

4.2.
P

A
C

K
E

T
T

IM
E

S
TA

M
P

IN
G

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

100.0% of packets timestampled

1 queue

6 queues

12 queues

(a) All packets are timestamped

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

50.0% of packets timestampled

1 queue

6 queues

12 queues

(b) Half of the packets are timestamped

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

25.0% of packets timestampled

1 queue

6 queues

12 queues

(c) One out every four packets are timestamped

Figure 4.8: (a), (b), (c) Effect of packet timestamping on performance for variable constant-sized packets in a full-
saturated 10 Gb/s link when varying the number of receive queues

V
ı́ctorM

oreno
M

artı́nez
97

H
P

C
A

P
IM

P
L

E
M

E
N

TA
T

IO
N

D
E

TA
IL

S
A

N
D

F
E

A
T

U
R

E
S

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

12.5% of packets timestampled

1 queue

6 queues

12 queues

(d) One out every eight packets are timestamped

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

0.0% of packets timestampled

1 queue

6 queues

12 queues

(e) No packets are timestamped

Figure 4.8: (d), (e) Effect of packet timestamping on performance for variable constant-sized packets in a full-saturated
10 Gb/s link when varying the number of receive queues

98
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

4.3. PACKET STORAGE

4.3 Packet storage

Nowadays, the increase in users’ bandwidth demand caused by the deploy-
ment of new services and technologies has become of paramount importance for
Internet Service Providers. Similarly, fashionable multimedia services such as
VoIP or Video on Demand (VoD) call for the tightest SLA (Service Level Agree-
ment) that take into account not only bandwidth but also other QoS parameters.
The cherry on this cake is that the wide range of network operators available has
placed Internet customers in a strong position in the telecommunication market,
thus leading operators to enter into strong competition. In such a demanding
scenario, operators are deploying novel network architectures and equipment
with bandwidth capabilities of multi-gigabit rates and beyond. Testing the per-
formance and correct operation of such deployments is a challenging task that
operators must face in order to minimize unexpected problems when production
traffic is placed on their infrastructure. This problem applies not only to operators
but also to other players in the Internet arena, such as third-party enterprises and
banks that deploy new services for their customers and employees.

The most simple and efficient way of testing such infrastructures and ser-
vices is sniffing and storing all the traversing test traffic for its subsequent anal-
ysis [MSD+08]. Such an analysis may focus not only on searching malformed
or unexpected packets (e.g., erroneous VLAN or MPLS headers, or duplicated
frames) but also on the network performance and QoS parameters’ value —
bandwidth, packet loss, delay or jitter. Additionally, stored traffic may be used
not only passively but actively when replaying the content of the stored traces
to test the performance and behavior of a deployed network [LLC+12]. We will
refer to systems that sniff and store traffic as NTSS (Network Traffic Storage
Solution).

Even an intuitively simple task such as sniffing and storing the traversing
traffic is a challenge when dealing with 10 Gb/s speeds or higher due to the
great amount of resources and computational power needed. Traditionally, spe-
cialized hardware devices such as FPGA-based solutions, network processors
or high-end closed commercial solutions have been applied to tackle the traffic
sniffing and storage problem. Although such solutions show remarkable levels
of performance, they lack flexibility and extensibility in addition to their high ex-
penditures [Nap10].

As an alternative, the research community has recently focused on off-the-
shelf solutions to accomplish high-performance tasks [BDKC10]. Off-the-shelf
systems have emerged as the combination of commodity hardware and open
source software. Such systems provide flexibility, availability and scalability while
handling multi-gigabit rates and cutting expenditures both in terms of deploy-
ment and maintenance [GDMR+13]. With this in mind, this study explains the

Vı́ctor Moreno Martı́nez 99

HPCAP IMPLEMENTATION DETAILS AND FEATURES

key aspects for off-the-shelf systems to sniff and store packets at multi-gigabit
rates. The key aspects involved comprise fine low-level tuning at NIC driver,
hard drives, RAID configuration, and final application level. Subsequently, we
provide an extensive performance evaluation of state-of-the-art NTSS systems
that have successfully reached such a goal. The performance evaluation carried
out covers an extensive set of scenarios, including both the most demanding
and realistic ones.

4.3.1 Motivation

Traffic storage has become a challenging task, as a full-saturated 10 GbE
link in the worst-case scenario (minimal size packets, i.e., 64 Bytes on Ethernet
with CRC included) carries more than 14 million packets per second. In this de-
manding scenario, we first must ask ourselves how much traffic may be sniffed in
an out-of-the-box configuration—i.e., standard software running on a commodity
server. Specifically, our commodity server is a Supermicro X9DR3-F commod-
ity server and two 6-core Xeon E52630 processors running at 2.30 GHz and
hyper-threading disabled, with 96 GB of DDR3 RAM at 1333 MHz. The server
is equipped with an Intel 82599 10GbE NIC plugged into a PCIe 3.0 slot. On
the other hand, the software side is composed by an Ubuntu Server 14.04 con-
figured with a 3.14 kernel and the default network stack, the vanilla Intel ixgbe
NIC driver, and the de-facto standard traffic sniffer tcpdump.

The results are shown on the leftmost 2-column group of Fig. 4.9, which
show the percentage of stored packets with this configuration (named tcpdump
vanilla). These columns show two traffic injection cases: namely, synthetic 64-
byte packets with CRC included and a real backbone trace [WACAb], both re-
played at wire-speed. We can observe that this out-of-the-box scenario is only
able to sniff and store less than 10% and 38% out of the total sent packets,
for synthetic and real traffic respectively. As a consequence, the out-of-the-box
configuration has shown to be insufficient to capture full-rate 10 GbE traffic.

The research community’s answer to those results has been first to improve
the NIC vanilla driver to boost up its performance, as the following section ex-
plains. After traffic is sniffed, the storage process must be carried out. Unfor-
tunately, there is scarce knowledge about writing at multi-gigabit rates in com-
modity hard drives. Consequently, this work studies how to tune such drives to
increase their performance, a question which is dealt with in Section 4.3.2. Fi-
nally, Section 4.3.3 further explains how to make the most of the interaction of
these two issues, and provides a performance evaluation of the state-of-the-art
NTSS in 10 GbE networks.

100 Tuning modern architectures for high-performance networking

4.3. PACKET STORAGE

tcpdump vanilla tcpdump optimal
0

20

40

60

80

100

NTSS

S
to

re
d

 P
ac

k
et

s
(%

)

64−byte packets

CAIDA trace

Figure 4.9: Percentage of stored packets (into a RAID-0 volume
with 9 disks) for a full-saturated 10 GbE link for NTSS based on
tcpdump for a 30-minute experiment

4.3.2 Storing data on hard-drives

Nowadays, a high-end SATA-3 mechanical disk allows theoretical rates up
to 4.8 Gb/s for sequential reads and 1.2 Gb/s for sequential writes. A SATA-
3 SSD (Solid-Sate Drive) may achieve speeds close to 3.2 Gb/s for both read
and write operations, but its price per GB is 10 times greater. Consequently, no
matter if the hard drive is SSD or conventional, a single disk is not enough to
comply with the line rate of 10GbE networks and a RAID array is in order.

Chapter 3 took an in-depth look at the capacities of the modern sniffing en-
gines. In terms of packet sniffing the worst case scenario is where packets are
of minimal size and, therefore, the amount of packets per second to be pro-
cessed is maximized. Specifically, 14.88 Mp/s is such a worst case in 10 GbE
networks using 64 byte (CRC included) packets. However, we note that the
worst case is the opposite for storing traffic, as shown in Table 4.3. It turns out
that the disc load increases with packet size and, to complicate matters further,
an additional header is aggregated to the packet with the timestamp, and both
packet and capture lengths. For instance, de-facto standard PCAP, stores a
16-byte header per packet—4 bytes for caplen, 4 bytes for len and 8 bytes for
timestamp. This header may be reduced using 16-bit instead of 32-bit fields for
caplen and len as the maximum frame size in 10 GbE is 9216 bytes for jumbo
frames. Table 4.3 shows the storage overhead using both approaches — PCAP
and reduced PCAP labeled as RAW.

Vı́ctor Moreno Martı́nez 101

HPCAP IMPLEMENTATION DETAILS AND FEATURES

Paying attention to the last row of Table 4.3, we note that disk capacities
have to be over 9 Gb/s with a worst case of 9.95 Gb/s assuming PCAP head-
ers. It is worth remarking that even for the typical packet mean of Internet, i.e.,
ranging between 256 and 512 bytes according to CAIDA, the demand for store
throughput is 9.71 and 9.85 Gb/s respectively. As a conclusion, once the sniffing
engines proved capable of dealing fairly with all packet sizes, now the goal is
for the RAID array to attain rates of fairly 10 Gb/s to cope with common realistic
scenarios.

Max. throughput Packet size (bytes, CRC included)
60 64 128 256 512 750 1024 1250 1518

Mp/s 14.88 14.21 8.22 4.46 2.33 1.62 1.19 0.98 0.81
Gb/s 7.14 7.27 8.38 9.13 9.55 9.69 9.77 9.81 9.84

Gb/s (PCAP
9.05 9.09 9.46 9.71 9.85 9.90 9.92 9.94 9.95

header included)
Gb/s (RAW

8.57 8.64 9.19 9.57 9.77 9.84 9.89 9.91 9.92
header included)

Table 4.3: Maximum throughput in terms of packets and bits for
different packet and header sizes in a fully-saturated 10GbE link

Unfortunately, RAID configuration parameters are manifold and a wrong
choice of values leads to severe performance degradation. Our tests have been
carried out using the out-of-the-box Linux server described in Section 4.3.1.
Specifically, we have conducted thorough testing with the following configura-
tion parameters:

• Disk technology: We have evaluated the actual write throughput of a
RAID-0 volume composed of both high-end mechanical and solid-state
drives. The mechanical disks used are Hitachi HUA723030ALA640 and 3
TB of capacity, whereas the solid-state drives are Samsung SSD 840 EVO
with 250 GB of capacity, both of them with SATA-3 interface.

• Number of disks: We have assessed how performance differs with a vary-
ing number of disks from 1 to 12 in RAID-0 (we used an Intel RS25DB080
RAID controller).

• Strip size: The strip size is the amount of data per basic write operation.
Thus, small strip sizes will be translated into a higher number of write oper-
ations into the RAID volume and may degrade the overall write throughput
due to per-operation overheads. We have tested strip sizes of 64 KB, 256
KB and 1MB.

• RAID write cache policy: this parameter refers to the use of the RAID con-
troller’s cache memory. The D irect policy disables the cache and performs
poorly. The WTC (Write-Through Cache) policy writes the cache content
to disk, and then, a new cache write operation proceeds. Thus, when using

102 Tuning modern architectures for high-performance networking

4.3. PACKET STORAGE

WTC the data has to be stored both into the disks and their caches before
a new write operation is started. Finally, the WBC (Write-Back Cache) pol-
icy is less conservative and does not require the cache to be flushed to the
hard disks before a new write operation is performed.

• Disk cache: Some hard drives feature a cache that performs bundling of
write operations to a given sector, thus saving disk head movements and
minimizing the number of times disks have to stop and start spinning again.
We have considered this option in our experiments as a binary feature.

• Filesystem: We have evaluated the ext4 filesystem, which is the de-facto
standard for Linux systems. Additionally, we have tested the xfs and jfs
filesystems, as a previous analysis highlighted them as promising candi-
dates for storing a number of large files. We have additionally tested the
RAID’s write throughput when no filesystem is instantiated for reference.

The experiments have been carried out by taking all possible combinations
of the parameters. For each combination, one hundred 2 GB-sized files have
been written using the Linux dd tool. This size has been chosen as a trade-off
between write performance and later read accessibility for packet traces. The
effects of the afore-mentioned configuration parameters in the write throughput
are summarized in Tables 4.4 and 4.5 for mechanical and solid-state drives re-
spectively. Specifically, those tables show how to tune parameters to obtain the
minimum and maximum write throughput for different combination of disks, along
with the mean write throughput, the confidence interval for this mean with a 0.01
significance level and 5th/95th percentiles.

Vı́ctor Moreno Martı́nez 103

H
P

C
A

P
IM

P
L

E
M

E
N

TA
T

IO
N

D
E

TA
IL

S
A

N
D

F
E

A
T

U
R

E
S

Number
Scenario Strip RAID cache Disks’ Filesystem

Throughput (Gb/s)
of average confidence Percentile

disks size policy cache interval (α = 0.01) 5th 95th

1
min 1 MB WTC off jfs 0.69 (0.67, 0.70) 0.58 0.77
max 64 kB WBC on xfs 1.27 (1.26, 1.27) 1.26 1.27

2
min 64 kB WTC off jfs 1.20 (1.18, 1.22) 1.11 1.30
max 64 kB WBC on xfs 2.53 (2.52, 2.55) 2.52 2.54

3
min 64 KB WTC off jfs 1.76 (1.74, 1.79) 1.58 1.84
max 1 MB WBC on xfs 3.81 (3.80, 3.82) 3.76 3.85

4
min 64 kB WTC off ext4 2.03 (1.99, 2.07) 1.79 2.22
max 256 kB WBC on xfs 5.08 (5.07, 5.10) 5.04 5.14

5
min 64 KB WTC off jfs 2.68 (2.65, 2.70) 2.49 2.80
max 64 KB WBC on xfs 6.28 (6.24, 6.32) 6.15 6.34

6
min 64 KB Direct off jfs 3.24 (3.22, 3.27) 3.13 3.29
max 256 KB WBC on xfs 7.52 (7.49, 7.56) 7.37 7.63

7
min 64 KB WTC off jfs 3.64 (3.61, 3.67) 3.53 3.71
max 1 MB WBC on xfs 8.78 (8.74, 8.83) 8.56 8.96

8
min 64 kB Direct off jfs 3.64 (3.51, 3.76) 2.90 4.19
max 1 MB WBC on xfs 10.06 (10.01, 10.12) 9.77 10.35
min 1 MB Direct off jfs 4.14 (3.98, 4.30) 3.27 4.81

9
max 1 MB WBC on xfs 11.31 (11.25, 11.37) 10.96 11.47

10
min 64 kB Direct off ext4 4.19 (3.92, 4.45) 2.00 5.02
max 1 MB WBC on xfs 12.60 (12.53, 12.68) 12.09 13.03

11
min 64 kB Direct off ext4 5.15 (4.82, 5.48) 2.51 6.16
max 1 MB WBC on xfs 13.8 (13.70, 13.91) 12.96 14.29

12
min 1 MB WTC off jfs 5.90 (5.83, 5.97) 5.63 6.08
max 1 MB WBC on xfs 14.86 (14.56, 15.17) 13.75 15.87

Table 4.4: Write throughput summary results for mechanical drives

104
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

4.3. PACKET STORAGE

In practical terms, Table 4.4 shows that a single mechanical disk has an av-
erage write throughput of 1.26 Gb/s for its best configuration, with both a narrow
confidence interval and a percentile range of roughly tenths of Mb/s. Interest-
ingly, average throughputs scale linearly with the number of disks when they are
optimally configured —note that this linearity is not observed if the configuration
is not the optimal one. The mean (more precisely, the lower bound of its confi-
dence interval) is over the target rate all packets can be served without losses in
the long-term. This suggests that 8 disk will suffice for all scenarios and packet
sizes under study if a properly sized buffer is used to overwhelm peaks in the
write throughput. In fact, the 5th percentile for the throughput obtained with 8
disk, which is 9.77 Gb/s, is below the target for some of the most typical scenar-
ios on the Internet assuming PCAP header.

Alternatively to the use of a buffer, a lighter packet header such as the one
in the RAW format makes 8 disk to suffice for packets with a size up to 512
bytes. Additionally, we can note that a 9-disk RAID presents measurements for
its best configuration over the target rate both in the estimation for the mean
and 5th percentile. This configuration presents a good trade-off to deal with
the oscillations that commodity hard-drives have experimented and to handle all
scenarios even those with the largest packet size.

On the other hand, Table 4.5 shows the effect of the diverse configuration
parameters over a solid-state RAID volume. Results show that a single SSD
drive is capable of consuming nearly the double amount of data than a mechan-
ical one, that is, an average of 2.21 Gb/s in contrast with 1.26 Gb/s. However,
our experiments show that the write throughput obtained by a SSD RAID does
not scale a well as a mechanical one does. Specifically, this effect is exposed
in Fig. 4.10. This figure shows as dashed-dotted line the write throughput that
would be obtained if a linear scale applied. It can be easily seen that a me-
chanical RAID scales very close to linearity for any amount of drives available,
while the solid-state RAID looses linearity when the amount of disks is above
two, even experiencing performance losses when adding more drives. Fig. 4.10
also shows another effect which is the influence of the existence of a filesystem
in the write throughput obtained: while mechanical drives favour from having a
filesystem to manage their contents, solid-state drives experience a serious de-
crease in their performance (reaching a maximum of 49.9 loss with three disks).
We also note that, although this relevant effect of the filesystem in performance
may be solved by using a flash-aware high-performance filesystem [PP11], the
problems when managing SSD RAID volumes are not only on the software side
but also on the hardware, i.e., RAID controllers to be aware of the peculiarities
that a SSD volume has.

Vı́ctor Moreno Martı́nez 105

H
P

C
A

P
IM

P
L

E
M

E
N

TA
T

IO
N

D
E

TA
IL

S
A

N
D

F
E

A
T

U
R

E
S

Number
Scenario Strip RAID cache Disks’ Filesystem

Throughput (Gb/s)
of average confidence Percentile

disks size policy cache interval (α = 0.01) 5th 95th

1
min 64 KB WTC off xfs 0.58 (0.58, 0.59) 0.55 0.62
max 1 MB WBC on jfs 2.21 (2.18, 2.23) 2.19 2.21

2
min 64 KB Direct off ext4 1.07 (1.06, 1.08) 1.03 1.10
max 64 KB WBC on jfs 4.44 (4.32, 4.56) 4.35 4.43

3
min 64 KB Direct off jfs 1.22 (1.21, 1.24) 1.14 1.28
max 256 KB WBC on xfs 3.96 (3.68, 4.24) 2.53 5.82

4
min 64 KB Direct off jfs 1.46 (1.41, 1.52) 1.26 1.68
max 256 KB Direct on xfs 6.43 (6.03, 6.83) 4.27 8.57

5
min 64 KB Direct off jfs 1.37 (1.34, 1.40) 1.23 1.55
max 1 MB Direct on xfs 5.10 (4.73, 5.48) 4.03 7.65

6
min 64 KB Direct off jfs 1.46 (1.43, 1.48) 1.32 1.64
max 256 KB WTC on xfs 8.18 (7.80, 8.55) 5.84 10.62

7
min 64 KB Direct offf jfs 1.69 (1.64, 1.73) 1.50 1.96
max 64 KB WBC on xfs 10.31 (9.60, 11.03) 6.07 15.15

8
min 64 KB WTC off jfs 2.15 (1.99, 2.31) 1.68 3.82
max 1 MB WBC on xfs 7.52 (6.54, 8.51) 3.17 15.97

Table 4.5: Write throughput summary results for solid-state drives

106
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

4.3. PACKET STORAGE

2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18
x 10

9

Number of disks in the RAID 0 array

S
u

st
ai

n
ed

 w
ri

te
 t

h
ro

u
g

h
p

u
t

(G
b

/s
)

Mechanical drives (best FS)

Mechanical drives (no FS)

Mechanical linear scale

Solid−state drives (best FS)

Solid−state drives (no FS)

SSD linear scale

SSD

HDD

Figure 4.10: Write throughput scalability for mechanical and
solid-state drives

Once we have studied how to gauge a disk RAID, we turn our attention to
explain how the set of configuration parameters impacted on its performance.
We have posed a balanced full-factorial analysis of the data for a RAID-0 array
with 9 mechanical hard drives. All factors and their interactions turn out to be
statistically significant. Thus, each sample is fully-characterized by the addition
of 192 terms, the main-effect factors and an additional term per each of the
possible interactions between factors. As a main conclusion, the factor analysis
highlighted the importance of hardware caches. Starting from an overall mean
of roughly 4 Gb/s, the use of disk caches represent an average addition of 3.1
Gb/s and similarly, the use of WBC policy gives an average gain of 3.3 Gb/s. The
volume’s strip size has a relatively marginal significance which translates into a
few hundred of Mb/s for the best configuration—a strip size of 1 MB. On the other
hand, the choice of file system is also significant: xfs has shown the best results
with an increase of 0.7 Gb/s in mean compared to jfs which shows the worst
results. This analysis has been restricted to the mechanical case because no
solid-state configuration has proven to provide a sustained throughput capable
of reaching our 10 Gb/s goal.

Additionally, we found that the choice of the filesystem does not only affect
the average write rate, but also exerts a critical effect on its variance. Fig. 4.11
shows the throughput obtained when writing the same files as in the previous

Vı́ctor Moreno Martı́nez 107

HPCAP IMPLEMENTATION DETAILS AND FEATURES

experiment (one hundred 2 GB-sized files) on a 9 mechanical disk RAID-0 vol-
ume with the optimal configuration for each filesystem. The figure shows that
writing data on the volume if there is no filesystem present has a low-variance
behavior. This is a non-practical scenario for later data access, although it is of
interest for reference purposes. When a filesystem is set up, throughput oscil-
lations appear. In some filesystems such oscillations are severe. Interestingly,
both Fig. 4.11 and Table 4.4 show that the xfs filesystem presents the smallest
oscillation, making such a filesystem again the most suitable in our setup. In the
case of jfs and ext4, the throughput oscillation may entail adding more disks
to the RAID volume to make sure that even the lowest throughputs are over the
target rate as already discussed in this section.

0 20 40 60 80 100 120
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

10

W
ri

te
 t

h
ro

u
g
h
p
u
t

(G
b
/s

)

Time (s)

no FS xfs jfs ext4

Figure 4.11: Effect of the FS on a 9-mechanical-disks RAID-0
volume with the optimal configuration for each filesystem

Conversely, Fig. 4.12 shows the effect of the filesystem choice over the vari-
ability of the write throughput in a solid-sate RAID. In this case, the oscillations
amplitude are much wider, leading to poorer performance results in a sustained
throughput scenario. Again, we assume this effect is due to the need of SSD-
aware software and hardware to deal with the peculiarities implied by this kind
of drives.

108 Tuning modern architectures for high-performance networking

4.3. PACKET STORAGE

0 20 40 60 80 100 120
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

10

W
ri

te
 t

h
ro

u
g
h
p
u
t

(G
b
/s

)

Time (s)

no FS xfs jfs ext4

Figure 4.12: Effect of the FS on a 7-SSD RAID-0 volume with
the optimal configuration for each filesystem

4.3.3 Network traffic storage solutions

Once we have discussed how to optimize both network traffic sniffing and
data storage processes separately, we pay attention to how to make the most of
their combination: network traffic storage. In order to carry out such a task, we
outline the fundamental techniques NTSS may adopt:

• System call minimization: The sniffing and storage processes imply data
transfer and synchronization between user and kernel level contexts. Mini-
mizing the amount of system calls used along this interaction is key in order
to reduce context switches and improve overall performance. Some ways
of minimizing the amount of system calls include buffer mapping, or ac-
cessing data in a byte-stream or batch fashion rather than in a per-packet
basis.

• Huge intermediate receiving buffers: As mentioned in Section 4.3.2, the
target storage device may experience write throughput drops. In order to
prevent the NTSS from packet losses due to this spurious effects, the final
application may use a big enough intermediate buffer.

• Memory-alignment : Maximum write performance is achieved when the
transfers between system memory and the storage device are done via
DMA operations. This way, no CPU nor cache management nor memory
bandwidth is spent in the data transfers. This behavior is forced when cre-

Vı́ctor Moreno Martı́nez 109

HPCAP IMPLEMENTATION DETAILS AND FEATURES

ating the destination file with the O_DIRECT flag. However, this efficient
configuration required the transfer operations to be page-aligned, making
memory alignment become a critical feature.

• Sniffing and storage overlapping: If the sniffing and storage processes
were isolated, their execution could be parallelized and thus overall perfor-
mance increased.

Note that only two of the high-performance packet capture approaches avail-
able on the state-of-the-art, PF_RING and HPCAP, have given rise to a final
NTSS, n2disk and hpcapdd respectively. We focus our attention on them
hereafter.

On the one hand, hpcapdd was developed on top of the HPCAP driver. Both
the driver and the application were designed with the goal of optimizing network
traffic storage [MSdRR+14b]. Regarding the aforementioned techniques, the
HPCAP+hpcapdd system instantiates a 1 GB kernel-level buffer, limited by the
kernel configuration. The driver is in charge of timestamping and copying the
incoming packets into this buffer, so hpcapdd can access them in a stream-
oriented basis. This buffer is efficiently accessed as it is properly aligned and
mapped at user-level. Furthermore, this buffer isolates the sniffing and storage
processes, so the overall process is parallelized.

On the other hand, n2disk has been recently developed by the authors of
PF_RING [DCF13]. Specifically, n2disk instantiates one or more packet stor-
age threads, leading to a single-thread (ST) and a multi-thread (MT) version,
which are executed in parallel. Each of those threads has an independent mem-
ory buffer, and traffic is distributed among them using a hash function. Impor-
tantly, n2disk not only stores the incoming packets, but also creates additional
index files for optimizing later access to the stored data.

We are measuring the percentage of incoming traffic stored versus the num-
ber of cores used in our testbed, i.e., an optimized 9-disk RAID-0 volume. Specif-
ically, n2disk (with two different flavors) and hpcapdd results which are shown
in Fig. 4.13. This figure also depicts the amount of fully occupied CPU cores
used by each of the NTSS under test.

Remarkably, hpcapdd is capable of storing 99.2% of the incoming traffic
for synthetic 64-byte packets (CRC included) and 100.0% real-traffic and syn-
thetic maximum-sized packets experiments. Those figures are achieved by fully-
occupying two CPU cores.

The results show that n2disk’s single-thread version uses one thread for
packet sniffing and one more thread for storage whereas the multi-thread version
uses one thread for sniffing and four threads for processing and storing. The ST
version stores 92.4% of the packets for the 64-byte experiment, and 98.2% for

110 Tuning modern architectures for high-performance networking

4.3. PACKET STORAGE

both maximum-sized packets and real traffic. The MT counterpart stores 99.1%
of the packets for the 64-byte experiment, and 98.0% for both maximum-sized
packets and real traffic. These last results show that instantiating several threads
helps in dealing with the worst-case sniffing scenario, i.e., 64-byte packets, but
does not solve demanding storage throughput scenarios.

n2disk ST n2disk MT HPCAP
0

20

40

60

80

100

Network traffic storage systems (NTSS) performance

NTSS

S
to

re
d

 P
ac

k
et

s
(%

)

1

2

3

4

5

N
u

m
b

er
 o

f
co

re
s

u
se

d

64−byte packets CAIDA trace 1514−byte packets Cores required

Figure 4.13: Percentage of stored packets (into a RAID-0 vol-
ume) for a full-saturated 10 GbE link versus the number of occu-
pied CPU cores for a 30-minutes experiment

Vı́ctor Moreno Martı́nez 111

HPCAP IMPLEMENTATION DETAILS AND FEATURES

4.4 Duplicates detection and removal

The presence of duplicate data is a general problem for systems with the
aim of extracting information from this data which has been studied in the last
decades [EIV07,CCMO11]. Those studies focus mainly on the field of databases,
knowledge engineering and statistical analysis. In our field, the data duplica-
tion emerges with the appearance of duplicated packets in a network. The
appearance of such duplicated packets can generate problem at two different
levels: first, generating a malfunction in the network segment those duplicates
appeared at, and second, obstructing network monitoring tasks being carried
out over the network. The first is dependant on the diverse protocols and con-
figurations present in the network under study and is difficult to measure in an
objective way. This section focuses on, by means of the HPCAP driver, solving
the second problem in order to propel an effective network monitoring policy.

There are different kinds of packet duplication problems that may arise that
may arise in a network, which are deeply explained in [UMMI13]. As the packet
processing time is tight in high-speed network processing, we restrict our efforts
to detecting the lowest-level type of duplicates: switching duplicates. This kind
of duplicates are typically generated due to port mirroring policies carried out
at layer 2 interconnection elements. For example, when a mirror port is config-
ured to redirect the traffic traversing a subset of the existing ports in a switch,
both ingress and egress packets must be mirrored or traffic coming to/from non-
mirrored interchanged with the mirrored ones would be lost. However, this gen-
erate that packets that ingress and egress the switch through mirrored ports will
be redirected twice. The appearance of those switching duplicates distort MAC-
to-MAC analysis tasks and consequently affects upper layers.

In order to address the duplicate removal problem, works such as [UMMI13,
MGAG+11] follow a packet window approach, so that each packet is compared
with the X previous packets. However, if the duplicate removal process is to be
carried out at kernel in the HPCAP driver, it may benefit from some calculations
that are done at hardware level by the NIC and placed inside each incoming
packet’s receive descriptor. That is precisely the case of the Toeplitz hash value
which is calculated for RSS packet distribution (see Section 3.1). Further infor-
mation regarding the information contained in each packet’s receive descriptor
structure can be found in section 7.1.6.2 of [Int12]. Specifically, if one packet is
a duplicated copy of another they will present the same hash value, so it can
be applied in order to reduce the amount of comparisons carried out and thus
reduce the amount of processing time used by the duplicate removal process.

The duplicate removal approach implemented inside the HPCAP driver uses
a multi-level hash table, which is indexed by the hash value of each incoming
packet modulo the size of the table. For each record in the table, the data of K

112 Tuning modern architectures for high-performance networking

4.4. DUPLICATES DETECTION AND REMOVAL

packets is stored, being K the amount of levels or pools in the table, as shown
in 4.14. Having multiple pools pretends to mitigate the effects that hash value
collisions may have over the duplicate detection accuracy. For each packet, the
table stores:

• the packet’s length,

• arrival timestamp,

• and the first M bytes of data.

The arrival timestamp is used to avoid pointing an incoming packet as a dupli-
cate if the time elapsed between the arrival of the first packet and the new one
exceeds a certain threshold. This threshold depends on each network’s specific
configuration, and in the our cases under study, 200 ms has proven to be a rea-
sonable value. The amount of data stored per packet M may be configured at
compile-time. Previous studies [UMMI13] show that an amount of 60 bytes is
enough to identify switching duplicates. However, in order to keep the table’s
records memory-aligned, 70 bytes of data of each packet are stored as default
value. Importantly, the total size of the table N is limited by kernel memory al-
location policies to a table with 32768 records. Note also that, if the table has a
total amount of N records, each of the K pools will have thus N/K packets.

Incoming packet
 - capped packet data

- packet length

- arrival timestamp

- hardware-calculated hash value

Pool 0 Pool 1 Pool K-1

N
/K records

Is the packet
a duplicate?

No

Yes discard
packet

replace
oldest record

Figure 4.14: Duplicate packet removal hash table structure

The scheme used to decide whether a packet is a duplicate or not is the
following: Every time an incoming packet is fetched by the HPCAP driver, the

Vı́ctor Moreno Martı́nez 113

HPCAP IMPLEMENTATION DETAILS AND FEATURES

packet is compared against all the records stored which has the same hash
value that had the same length and is inside the time-sliding window. If the
comparison concludes that the new packet is a duplicate, it is not copied to the
kernel intermediate buffer so no more resources are dedicated to it. Regardless
the packet is classified as a duplicate or not, the record corresponding to the
oldest packet which had the same hash value is replaced with the new packet’s
data for future comparisons.

Importantly, the additional processing required for duplicate packet removal
may damage capture performance because the timing constraints are high and
the time available for processing each packet is small, as already shown in sec-
tion 4.2.2. In the following, both the classification accuracy and the impact over
capture performance of this duplicate removal approach is analysed.

4.4.1 Accuracy

The accuracy of our packet removal approach has been tested with two
different traffic sources, each one belonging to an industrial network that has
been proven to experience the packet duplication problem. The characteristics
of each of the traces is summarized in Table 4.6. The first trace has a very
relevant ratio of duplicates, 32.1%, whereas Trace B has an amount of duplicate
packets below 1%.

Trace A Trace B
Number of

32,912,969 149,505,380packets

Average rate 2.03 Kp/s 9.56 Kp/s
3.97 Mb/s 48 Mb/s

Average
245.0 bytes 634.1 bytespacket size

Number of
10,569,746 20,933duplicates

Table 4.6: Characteristics of the traces used for duplicate re-
moval testing

In order to obtain accuracy results of this approach, the tool infodups [inf]
is used as a ground-truth reference. Importantly, the time-sliding window has
been configured for all traces to 200 ms for both the ground-truth reference tool
and the HPCAP driver-level approach. The duplicate classification accuracy has
been tested for different window sizes and for different amount of pools, de-
pending on the table’s total size. We have restricted the experimental space so
that the smallest pools used contain 1024 packet records, as a smaller number

114 Tuning modern architectures for high-performance networking

4.4. DUPLICATES DETECTION AND REMOVAL

would increment the probability of collisions and may have a negative impact
over accuracy.

Table 4.7 represents the True Positive Rate (TPR) against the False Positive
Rate (FPR) for each combination under study. TPR gives the ratio of packets
that were duplicated and were classified as a duplicate, versus the total amount
of packets that were duplicates; i.e., a value of 1 means that all the duplicated
packets have been detected. On the other hand, FPR stands for the ratio be-
tween the packets that have wrongly classified as duplicates, versus the total
amount that were not duplicates; i.e., a value of 0 means that no non-duplicate
packet was labelled as a duplicate. Consequently, an ideal classifier would yield
to a TPR of 1 and a FPR of 0.

Total Number of Trace A Trace B
table size pools TPR FPR TPR FPR

1K 1 0.957 0 0.935 0

2K
1 0.994 0 0.974 0
2 0.957 0 0.934 0

4K
1 0.999 0 0.995 0
2 0.994 0 0.974 0
4 0.957 0 0.935 0

8K

1 0.999 0 0.996 0
2 0.999 0 0.995 0
4 0.994 0 0.974 0
8 0.957 0 0.935 0

16K

1 1.000 0 0.998 0
2 0.999 0 0.996 0
4 0.999 0 0.995 0
8 0.994 0 0.974 0

16 0.957 0 0.935 0

32K

1 1.000 0 1.000 0
2 1.000 0 0.998 0
4 0.999 0 0.996 0
8 0.999 0 0.995 0

16 0.994 0 0.974 0
32 0.957 0 0.935 0

Table 4.7: Duplicate classification accuracy for different real
traces varying the hash table configuration

The results obtained demonstrate that for a fixed total size of table, instanti-
ating several pools have a negative impact over the classification accuracy. This
may be a consequence of the hash function being balanced enough, at least
along the temporal sliding-window we are taking into account. Furthermore, for
a fixed number of pools in the table, the accuracy is increased with the total size

Vı́ctor Moreno Martı́nez 115

HPCAP IMPLEMENTATION DETAILS AND FEATURES

of the table. It is worth mentioning that no non-duplicate packets were classified
as being a duplicate for any combination, i.e., the FPR is always zero, so this im-
plementation can be applied in real-world monitoring tasks without a significant
information lost.

Importantly, the implementation with a 32K packets table distributed among
one unique pool has proven to obtain the accuracy of a perfect classifier, so
increasing the table size would not lead to better results. Consequently, the
effort of using other memory management alternatives in order to increase the
hash table’s size (remember that 32K packets was a limit imposed by the kernel
dynamic allocation mechanism) such as kernel-level huge-pages mapping or
low-level kernel tuning becomes a non-urgent task. However, different traffic
profiles may experience different accuracy results so this must be part of the
future work.

4.4.2 Performance

Once the accuracy of our duplicated packet removal implementations has
been assessed, it is time to measure the impact of this additional process over
HPCAP’s packet capture performance. As a reminder, in a fully-saturated 10
GbE link receiving minimal-sized, i.e., 64 bytes, packets, the time available for
processing each packet is 67.2 ns. In section 4.2.2 we checked that requesting
a timestamp value for every incoming packet has a negative impact in packet
capture performance, so it is expected that our heavier duplicate classification
process will have an even more negative effect.

The diverse plots inside Fig. 4.15 represent the percentage of packets cap-
tured when the duplicate detection is activated for different hash table configura-
tions. The plots show the impact of this process when packets of constant size
are captured for different sizes. Importantly, those plots show the worst-case
scenario, in which no duplicates packet appear. This was easily achieved us-
ing the FPGA-based generator, already mentioned in Section 3.4.2, configured
so that it increased each packet’s data. The worst case scenario gives the im-
pact over capture performance when none of the computational power invested
in duplicate detection has a profit, as no packet is non-copied in the buffer for
upper-layer processing.

The results obtained show that, for a fixed total table size, adding more pools
damages capture performance. This seem natural, as the more pools are avail-
able, the more packet comparisons must be done for each incoming packet and
thus the higher the processing time will be. If this result is placed in context
with the previous accuracy evaluation results, it is concluded that the lower the
amount of pools is the higher the capture performance and classification accu-

116 Tuning modern architectures for high-performance networking

4.4. DUPLICATES DETECTION AND REMOVAL

racy, so the more optimal is the duplicate removal implementation.

Additionally, results show that increasing the total table size has nearly-
negligible negative impact on capture performance: for table sizes of 16K and
32K packets a small performance loss is experienced if results are compared for
a fixed number of pools. However, in the case of the most accurate configuration,
i.e., a 32K table with an unique pool, the performance experienced is similar to
the one shown by the rest of size tables with just one pool.

Results also give a minimum packet size above which packet capture per-
formance is optimal. This size is 256 bytes for those configurations with one or
two pools, and higher for the rest. Importantly, a packet capture performance
test was made using the optimal configuration for capturing the traffic contained
in traces A and B, and no packet loss was experienced.

Vı́ctor Moreno Martı́nez 117

H
P

C
A

P
IM

P
L

E
M

E
N

TA
T

IO
N

D
E

TA
IL

S
A

N
D

F
E

A
T

U
R

E
S

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

Hash table of 1k packets

1 pool

(a) Hash table of 1K packets

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

Hash table of 2k packets

1 pool

2 pools

(b) Hash table of 2K packets

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

Hash table of 4k packets

1 pool

2 pools

4 pools

(c) Hash table of 4K packets

Figure 4.15: (a), (b), (c) Duplicate removal performance evaluation (10 Gb/s link, fully-saturated with different packet
sizes) for different hash table configurations

118
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

4.4.
D

U
P

L
IC

A
T

E
S

D
E

T
E

C
T

IO
N

A
N

D
R

E
M

O
V

A
L

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

Hash table of 8k packets

1 pool

2 pools

4 pools

8 pools

(d) Hash table of 8K packets

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

Hash table of 16k packets

1 pool

2 pools

4 pools

8 pools

16 pools

(e) Hash table of 16K packets

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

Hash table of 32k packets

1 pool

2 pools

4 pools

8 pools

16 pools

32 pools

(f) Hash table of 32K packets

Figure 4.15: (d), (e), (f) Duplicate removal performance evaluation (10 Gb/s link, fully-saturated with different packet
sizes) for different hash table configurations

V
ı́ctorM

oreno
M

artı́nez
119

HPCAP IMPLEMENTATION DETAILS AND FEATURES

4.5 Conclusions

The first section of this chapter has been devoted to give an overview over
HPCAP’s structure and design. The rest of the sections have been devoted to
study and evaluate those feature that differentiate HPCAP amongst other high-
performance packet capture alternatives. The conclusions of those studies are
manifold:

Timestamping

Some high-performance packet capture engines use techniques such as
batch processing in order to enhance their packet capture performance, but this
is at the expense of packet timestamping accuracy. After alerting research com-
munity and measuring the problem, two approaches were proposed to mitigate
timestamping degradation:

• UDTS/WDTS algorithms that distribute the inter-batch time gap among the
different packets composing a batch. Those solutions offer good levels of
accuracy when the link is fully saturated, but the error is greatly increased
when if there are gaps between packets. However, they could be used
by those packet capture engines that, while relying on batch processing,
need to increase their timestamping accuracy.

• A redesign of the network driver, KPT, to implement a kernel-level thread
which constantly polls the NIC buffers for incoming packets and then times-
tamps and copies them into a kernel buffer one-by-one. This is the policy
implemented by the HPCAP driver, and offers reasonable timestamping
accuracy in any scenario.

As future work, we propose a combination of both approaches according to
the link load: i.e., using WDTS when the link is nearly saturated for distribut-
ing the timestamp between groups of packets and, otherwise, using KPT policy
for independently timestamping each incoming packet. We have stress tested
the proposed techniques, using both synthetic and real traffic, and compared
them with other alternatives achieving the best results (standard error of 1 µs or
below).

Packet storage

The most significant findings are:

1. Out-of-the-box tools (i.e., vanilla network drivers and tcpdump) are not

120 Tuning modern architectures for high-performance networking

4.5. CONCLUSIONS

enough to sniff and store packets at 10 Gb/s using off-the-shelf systems.
Indeed, the obtained performance is far below 10 Gb/s. The application of
some ideas discussed in this work improves the performance of such tools
up to rates that potentially may be useful in networks with low utilization.

2. Optimizations must be applied to improve sniffing performance and make
the most of commodity multi-core servers and modern NICs. Indeed, there
are several open-source packet sniffing engines, capable of achieving full-
packet sniffing at 10 Gb/s on a commodity server. Affinity planning appears
to be a key factor, which is relevant for both optimized and out-of-the box
applications.

3. Importantly, some of these optimizations have collateral effects: batch pro-
cessing degrades timestamping accuracy, whereas the use of multiple re-
ceiving queues may cause packet re-ordering. Thus, depending on the
application requirements, such optimizations must be carefully chosen.

4. Although a single commodity hard drive is not able to achieve enough
write throughput to cope with a 10 GbE link, we may improve the storage
performance by using skillfully tuned RAID volumes. With this tuning, the
average writing throughput is beyond 10 Gb/s using 9 high-end mechanical
disks.

5. The write throughput of commodity hard-drives has shown significant os-
cillations over the mean across time. While in file systems such as xfs
those oscillations are modest, others show remarkable excursions.

6. The case which is usually considered to be the most demanding in terms
of packet sniffing (i.e., minimal-size packets), is the least demanding sce-
nario in terms of packet storage throughput. Similarly, the best-case for
packet sniffing (i.e., maximal-size packets) becomes the most demanding
scenario in terms of packet storage throughput.

7. Obtaining maximum performance in a NTSS does not only imply properly
tuning the sniffing and storage processes alone, but their interaction must
also be carefully planned.

In conclusion, this study has provided both the research community and
practitioners with a roadmap not only to understand and use state-of-the-art
NTSS solutions based on off-the-shelf systems, but also to implement and de-
ploy their own systems. We expect the lessons and ideas we share here may
open new opportunities to the use of off-the-shelf systems in areas traditionally
reserved for high-end and expensive hardware.

Vı́ctor Moreno Martı́nez 121

HPCAP IMPLEMENTATION DETAILS AND FEATURES

Duplicate removal

The appearance of duplicated packets in a monitored network is common
problem that apart from consuming valuable resources may damage all the anal-
ysis tasks carried out above this traffic. In order to identify those duplicated pack-
ets as soon as possible and minimize their resource consumption, a duplicate
removal methodology has been implemented inside the HPCAP kernel level.

Importantly, carrying out the packet duplicate task at kernel level may benefit
from information that is calculated by the NIC’s hardware and transferred to the
CPU, but is commonly ignored. Specifically, HPCAP may benefit on the Toeplitz
hash value calculated at hardware level to carry out a hash-based pre-filtering
policy.

For different configuration options, an accuracy and worst-case packet cap-
ture performance analysis has been carried, leading to an optimal configuration
in both terms: a 32K packets hash table with a unique pool. This configuration
has proven to give an accuracy similar to an ideal classifier, and experiences no
packet losses for traffic with an average size above 256 bytes.

122 Tuning modern architectures for high-performance networking

5
M3OMon: a framework on
top of HPCAP

As an attempt to make network managers’ life easier, we present
M3Omon, a system architecture that helps to develop monitoring
applications and perform network diagnosis. M3Omon behaves as
an intermediate layer between the traffic and monitoring applica-
tions that provides advanced features, high performance and low
cost. Such advanced features leverage a multi-granular and multi-
purpose approach to the monitoring problem. Multi-granular mon-
itoring gives answer to tasks that use traffic aggregates to identify
an event, and requires either flow records or packet data or even
both to understand it and, eventually, take the convenient coun-
termeasures. M3Omon provides a simple API to access traffic si-
multaneously at several different granularities—i.e., packet-level,
flow-level and aggregate statistics. The multi-purposed design of
M3Omon allows not only performing tasks in parallel that are specif-
ically targeted to different traffic-related purposes (e.g., traffic clas-
sification and intrusion detection) but also sharing granularities be-
tween applications—e.g., several concurrent applications fed from
flow records that are provided by M3Omon. Finally, the low-cost
characteristic is brought by off-the-shelf systems (the combination of
open-source software and commodity hardware) and the high per-
formance is achieved thanks to modifications in the standard NIC
driver, low-level hardware interaction, efficient memory manage-
ment and programming optimization.

5.1 Introduction

Network managers’ life has become progressively more laborious given the
ever-increasing users’ demands for both traffic volumes and further quality of
experience, the arrival of novel and heterogeneous applications, and peaks in

M3OMON: A FRAMEWORK ON TOP OF HPCAP

operational and capital expenditures [GDFM+12]. To complicate matters, there
is a lack of synergy between traffic capture engines and network management
applications (e.g., network anomaly and intrusion detection systems, NIDS, or
traffic classification tools). As a result, traffic capture devices do not incorpo-
rate the necessary flexibility to actually process the traffic, which is the ultimate
goal of any network manager. To tackle this issue we present and make public
M3Omon, a monitoring framework that exploits the interaction between the traf-
fic capture and processing tasks, which provides: (i) a simplification of network
monitoring tools, (ii) a significant performance increase and (iii) a CAPEX reduc-
tion thanks to the use of off-the-shelf systems—the combination of open-source
software and commodity hardware [BDKC10].

5.1.1 Novel features: multi-granular / multi-purpose

Network trouble shooting typically entails the following three steps. First,
traffic aggregates are used to spot an anomalous situation such as sudden traffic
peak. Second, flow level traces are employed, for example, to identify the trou-
blesome agents (IP address/ranges, port numbers). Third, inspection of a traffic
trace is made in order to further diagnose the problem (for example, duplicated
or lost packets). We refer to this kind of applications that leverage more than one
granularity of data as multi-granular. However we find that the literature fails to
provide practitioners with an intermediate software layer that actually provides
such multi-granular data access through an unified API. We note that this is a
very challenging problem because flow record logging must happen concurrently
with trace storage and this is very demanding in terms of processing, parallelism
and disk throughput. Our novel M3Omon software efficiently tackles this issue by
providing an API whereby each application running over it may ask for data at
different granularities. Remarkably, this is performed in commodity hardware at
very high speed. Therefore, from the point of view of a practitioner, there is not
difference between asking for a packet or a flow-record. Specifically, M3Omon
defines in its current version three levels of granularity, namely time-series ag-
gregates (e.g., MRTG (Multi-Router Traffic Grapher)-like series), flow records
and packet traces. All of these granularities may be retrieved in real-time or after
being stored in a hard drive. This is a clear departure from the current state of
the art that has focused on packet capture, storage and flow record creation as
separate processes. Clearly, doing all these activities in parallel is most chal-
lenging at high-speed, due to the very demanding parallel processing that must
be achieved in a constrained general-purpose architecture.

Additionally, monitoring applications may actually be distributed in several
physical machines, which carry out the most diverse monitoring tasks—e.g. in-
trusion detection and traffic classification applications. In most cases no syner-

124 Tuning modern architectures for high-performance networking

5.1. INTRODUCTION

gies between monitoring applications are exploited at all, which implies a severe
performance loss. For example, a firewall and a traffic classification applica-
tion (say, for billing purposes), that both perform flow records creation in sep-
arate machines. We strongly believe that there are many synergies between
monitoring applications, which can be exploited to decrease the CAPEX and
increase the efficiency of monitoring systems. Indeed, M3Omon performs data
pre-processing at several granularities, which are made available for all the ap-
plications running on top of it. As an example, M3Omon provides flow records
to all the applications that require such flow-level data, thus saving the extra ef-
fort of flow record creation on a per-application basis. This novel characteristic
entails a significant advantage because nowadays more and more monitoring
applications use flow records [LSBG13]. Several M3Omon threads must access
the packet-level data at the same time —i.e., packet capture and storage, flow
construction and statistic generation. This is very challenging in terms of parallel
processing due to the high-speed. We note that synchronization at high-speed
is very hard to achieve as it strongly penalizes performance. Therefore, even the
low-level kernel interaction must be carefully planned in the traffic capture and
storage chain, which drove the development of an ad-hoc driver called HPCAP,
was previously described in Chapter 4.

Figure 5.1 presents a workflow description that portrays the conventional
decoupled monitoring applications scenario compared to our current proposal.
On the one hand, Figure 5.1(a) depicts the conventional approach for a moni-
toring probe, where several applications individually retrieve traffic from the NIC,
separately pre-process the data on their own and finally execute a specific mon-
itoring task. On the other hand, Figure 5.1(b) highlights our novel approach,
where the proposed framework provides a common pre-processed data source
for all the specific applications. This data source is the output of M3Omon, which
is the only module capturing packets and pre-processing them. After that, each
specific application addresses its respective final task in the same way than the
conventional approach. As a consequence, repeated efforts that were previously
carried out by each specific monitoring task are now moved into M3Omon, result-
ing in a decreased complexity and higher efficiency of multi-granular monitoring
applications.

5.1.2 High-performance in off-the-self systems

With the previous characteristics in mind, we note that current monitoring
probes render useless if their capacity is not in the multi-Gb/s range [Sys13].
Indeed, line-rate monitoring in 10GbE links involves processing at up to tens of
million packets per second (Mp/s) and millions of flows per second (Mf/s).

In order to provide the multi-granular and multi-purpose features, involving

Vı́ctor Moreno Martı́nez 125

M3OMON: A FRAMEWORK ON TOP OF HPCAP

NIC
Packet
Ring

Packet
Arrival

App. 1
Packet
sniffing

Flow
construction

Stats
generation

Specific
application

App. 2
Packet
sniffing

Flow
construction

Specific
application

App. N
Packet
sniffing Stats

generation

Specific
application

(a) Conventional approach

NIC
Packet
RingPacket

Arrival

App. 1

Specific
application

M3OMON
API

packet
access

MRTG
access

flow
access

M3OMON

App. 2

Specific
application

App. N

Specific
application

(b) M3Omon

Figure 5.1: Contrast between our approach and a conventional
one

126 Tuning modern architectures for high-performance networking

5.1. INTRODUCTION

both packets and flow records, several novel optimization techniques have been
applied at three different levels. First, each module of M3Omon and their corre-
sponding client monitoring applications are bound to a different CPU core, thus,
exploding low-level hardware affinities [GDMR+13]. Second, HPCAP driver fol-
lows the recently-proposed modifications for both standard NIC driver and de-
fault network stack optimization [GDMR+13], and, additionally, the number of
write operations to hard drives is minimized to optimize storage throughput.
Third, we have performed software optimization, efficient memory management,
and tailored data structures in the M3Omon layer itself.

We have thoroughly evaluated the performance of HPCAP and M3Omon on
a general-purpose server. The results show that the system is able to deal with
10GbE links even in challenging scenarios with small packet size. Moreover, to
show the applicability of our system, we present a network traffic monitoring tool,
named DetectPro, implemented over the proposed framework, which is able
to provide monitoring statistics, report alarms and afterwards perform forensic
analysis based on packet-level traces, flow-level records and aggregate statistic
logs. DetectPro has been put in production in commercial networks from
several banks and ISPs [nau13]. We believe that such experiences highlight
the importance of the interaction between traffic measurements and statistics at
different granularities, especially traffic aggregates and flow records.

As an additional contribution, we release the code of the proposed driver,
HPCAP, and intermediate pre-processing software layer, M3Omon, under an open-
source license [Hig13], which may be useful for the research community for com-
parison purposes and moving forward in the development of high-performance
tasks on off-the-self systems.

5.1.3 Contributions

Finally, as a summary, the contributions of M3Omon are manifold: (i) it fea-
tures an API to facilitate the development of multi-granular applications (first M
in its name); (ii) it provides a novel mechanism to construct and share data at
different granularities between applications thus saving duplicated efforts (multi-
purpose, second M); (iii) it works at multi-Gb/s rates after a carefully low-level
hardware interaction, a new NIC driver design, and software optimization (third
M); and, (iv) for the first time, all of this runs on off-the-self systems (that is the
O) thus providing low-cost and additional flexibility and scalability, available un-
der an open-source license. The rest of this chapter details all these M3Omon
functionalities and their implementation.

Vı́ctor Moreno Martı́nez 127

M3OMON: A FRAMEWORK ON TOP OF HPCAP

5.2 System Overview

Let us detail our architecture, which is made up of the three different blocks
shown in Figure 5.2: HPCAP, M3Omon and an end-user API.

The HPCAP block consists of one kernel-level module, which implements
a traffic sniffer, responsible for capturing incoming packets at line-rate. This
module instantiates a kernel-level thread in charge of polling the NIC for new
packets, and copies them into an intermediate packet buffer. As HPCAP design
goals and features have been already described in Chapter 4, this module will
not be discussed in this chapter.

M3Omon runs on top of HPCAP. It consists of a set of user-level processing
modules which simultaneously fed from the traffic sniffed by HPCAP. Such user-
level modules are in charge of delivering packet-level, flow-level and MRTG-like
data accessible by any end-user application—according to the multi -granular
and -purpose features.

Finally, M3Omon provides an API that allows monitoring applications to ac-
cess the different granularity data both in a real-time and offline fashion. This
means that applications running on top of M3Omon can focus on final monitor-
ing tasks such as DPI, statistical classification or security analysis starting from
a common data base. This architecture allows users to instantiate a variable
number of modules, referred as application layer, each of them responsible for a
specific monitoring task.

128 Tuning modern architectures for high-performance networking

5.2.
S

Y
S

T
E

M
O

V
E

R
V

IE
W

HPCAP

M3OMON

Traffic
Sniffer

NIC
Packet
Ring

Packet
Buffer

Packet
Dumper

Flow
Manager

Flow
Exporter

Packet-level
Traces

Flow-level
Traces

Agg.Stats
Traces

App. 1

App. 2
Flow
Table

READ
(on demand)

WRITE
NON-VOLATILE

MEMORY
VOLATILE
MEMORY

KERNEL-LEVEL
PROCESSING

MODULE

Packet
Arrival

USER-LEVEL
PROCESSING

MODULE

App. N

M3OMON
API

packet
access

MRTG
access

flow
access

READ
(real-time)

Figure 5.2: M3Omon’s Architecture

V
ı́ctorM

oreno
M

artı́nez
129

M3OMON: A FRAMEWORK ON TOP OF HPCAP

Note that the different tasks and modules (sniffing, flow handling, statistics
collecting, multiple level traces dumping, specific monitoring) are simultaneously
running on different CPU cores. Performance is not degraded due to a careful
scheduling and to the use of CPU affinity techniques—i.e., the execution of each
thread bound to a different core. Such schedule allows the system to make the
most of contemporary computer architectures.

5.2.1 M3Omon

M3Omon in turns consists of three different modules in charge of generating
triple-grain monitoring information, namely: Packet Dumper, Flow Manager and
Flow Exporter.

Packet dumper: The Packet dumper module is responsible for generating
packet-level traces in disk. The module is implemented as a HPCAP listener
that consumes packets from the intermediate packet buffer through the driver’s
API. It reads fixed-size blocks of bytes (e.g., 1 MB) from the buffer and writes
them into disk. Note that working with byte-blocks instead of packets minimizes
the amount of write operations. This fact combined with page-alignment of those
byte blocks allows the module to obtain the maximum write performance. It is
worth remarking that the destination volume has to be capable of consuming
the desired data throughput. In order to avoid concurrent write accesses to disk
leading to a performance degradation, it is advisable that the storage device for
packet traces is independent from the devices that any other processes may use.

To give more manageability and compatibility, packet traces are split in fixed-
size files (e.g., 2 GB). The captured traces may be processed offline—e.g., with
forensic analysis purposes. As the non-volatile storage space in the system is
limited, an independent periodic process (e.g. a script invoked through the cron
API) is in charge of deleting old capture files when the volume is nearly-full. This
deletion process only implies removing filesystem’s i-nodes and it has proven
not to interfere in the system’s performance. Note that, using the multi-granular
approach, such traces may be infrequently accessed and may be bounded to
specific time intervals as flow-level and MRTG statistics provide the most rele-
vant information needed for monitoring.

Flow Manager: Concurrently, the Flow Manager module is in charge of two
tasks: flow reconstruction and statistic collection. Again, the module acts as
another HPCAP listener, reading packets from the buffer one-by-one. For each
packet, its corresponding flow information and the aggregate counters are up-
dated. This process is computationally heavy and its implementation has been
tailored in several ways to achieve line-rate throughput.

130 Tuning modern architectures for high-performance networking

5.2. SYSTEM OVERVIEW

To store flows, this module uses a table indexed with a hash over the 5-
tuple, handling collisions with linked lists. A flow is marked as expired when it
does not present packets during a given time interval (e.g., 30 seconds) or when
it has been explicitly finished with TCP FIN/RST flags. Note that the timeout
expiration process requires a garbage-collector mechanism, but scanning the
whole hash table is computationally unaffordable. For this reason, we keep a list
of active flows with each node containing a pointer to the flow record in the hash
table. This active list is sorted by the last packet’s timestamp in decreasing order.
When a flow is updated with the information of a new packet, the corresponding
node in the active list is moved to the end, keeping the list sorted with negligible
computational cost. Thus, the garbage-collector only checks the first active flows
in order to expire inactive flows. Expired flows (for both timeout and flags) are
queued to be exported for the next module.

All the memory used during the process (structures, nodes, lists and hash-
table) is pre-allocated in a memory pool in order to reduce insertion/deletion
times. Once a data structure is no longer required, the memory is returned to
the pool but not de-allocated. Thus, such data structure can be reused without
a new allocation process. This policy significantly increases the performance of
the system.

Importantly, the Flow Manager module periodically (e.g., every second) gen-
erates the MRTG statistics both writing them to a file and sending them through
a multicast socket. The multicast socket allows several applications to concur-
rently access the exported real-time data with no additional cost, which perfectly
fits the multi-purpose philosophy. Note that the use of multicast sockets allows
that the applications making use of the exported data to be located on differ-
ent machines, thus distributing the monitoring process. The MRTG statistics are
also written to disk in case offline access to the data is needed. Such statistics
are generated every second for three metrics: packets, bytes and active flows.

Flow Exporter: Finally, the Flow Exporter module instantiates a different
thread which is in charge of exporting the expired flow records both writing
them to disk and using a multicast socket as previously described. The multi-
cast sockets give the same advantages for flow processing as aforementioned.
Note that different multicast groups are used for the MRTG and flow data and for
each network interface. This way, upper-layer applications can subscribe only
to the data they desire. Flows may be exported in either an extended NetFlow
or standard IPFIX formats. Each flow record contains: 5-tuple, MAC addresses,
first/last packet timestamps, counters of bytes and packets, average/standard
deviation/minimum/maximum for both packet length and interarrival times, TCP
statistics (e.g., counters of flags or number of packets with TCP zero-window
advertisements), the first 10 packet lengths and interarrivals and, if required, the
first N bytes of payload, which is configurable.

Vı́ctor Moreno Martı́nez 131

M3OMON: A FRAMEWORK ON TOP OF HPCAP

5.2.2 M3Omon’s API

M3Omon provides a simple and efficient API to access the multi-granular data
from monitoring applications. The API provides real-time and offline access to
the data gathered by the system, namely: raw packets (PCAP format), MRTG
statistics and flow records. It has been designed taking as a reference the de-
facto standard PCAP library.

To access real-time packet-level data, M3Omon allows applications to hook
as HPCAP listeners and read packets using a packet loop function similar to
pcap_loop implemented in the PCAP library. Additionally, monitoring applica-
tions may need to process captured traffic on demand (e.g forensic analysis).
In this case, the API offers a similar packet loop mechanism that accesses the
packet data once users define the time interval they wish to analyze. Note that
offline access to the packet traces is scheduled as low I/O priority process, so
that write performance is minimally affected, at the expense of a higher access
latency.

To access the exported flow records in a real-time fashion, the API provides
a method to loop over the flow records subscribing to the corresponding mul-
ticast group. This API allows the gathering of flow records either in the same
machine and in a distributed way. Additionally, the stored flow records may be
accessed on demand through a method that loops over the flow records in a
given time interval. Note that the flow table shown in Figure 5.2 and its state is
not accessible through the API due to security, consistency and mutual exclusion
policies.

The M3Omon API provides similar methods to access MRTG information both
real-time and on demand. To access MRTG in a real-time fashion, a method to
loop over the MRTG registers given a multicast MRTG group is provided. To
access MRTG data on demand, a time interval must be specified to loop over
the data.

This approach provides great flexibility and allows monitoring applications
to obtain data at any of the three granularities in an efficient and if possible dis-
tributed way. Due to the very own nature of the API implementation several appli-
cations may access any of the offered data with minimum processing overhead,
in full compliance with both the multi-granular and multi-purpose approaches.

132 Tuning modern architectures for high-performance networking

5.3. PERFORMANCE EVALUATION RESULTS

5.3 Performance Evaluation Results

Our experimental setup consists of two servers, one receiver and one sender,
directly connected with an optical fiber link. Both servers are based on two Intel
Xeon E52630 equipped with six cores per processor running at 2.30 GHz and
with 96 GB of DDR3 RAM at 1333 MHz. The motherboard model is Supermi-
cro X9DR3-F with two processor sockets (or NUMA nodes) and three PCIe 3.0
slots directly connected to each processor. The NIC (10 GbE Intel NIC based
on 82599 chip) is connected to a slot assigned to the first processor. Regarding
the system storage, 12 Serial ATA-III disks that made up a RAID-0 are con-
trolled by a LSI Logic MegaRAID SAS 2208 card have. These disks are Hitachi
HUA723030ALA640 with SATA-3 interface and 3 TB of capacity. On the other
hand, the operating system is an Ubuntu server 64-bit version with a 3.2.16 Linux
kernel, with XFS filesystem—as preliminary experiments showed that is the best
choice in terms of performance and scalability.

In order to inject traffic, we have developed a tool built on top of Packet-
Shader’s [HJPM10] API capable of: (i) generating tunable-size Ethernet packets
at maximum speed, and, (ii) replaying PCAP traces at variable rates. For our
experiments, we have used both synthetic and real traffic. Synthetic traffic con-
sists of TCP segments encapsulated into fixed-size Ethernet frames, forged with
incremental IP addresses and TCP ports. Note that synthetic traffic allows us to
test worst-case scenarios in terms of byte and packet throughput, but they are
not useful for testing the flow-related modules. The real traffic trace was sniffed
at an OC192 backbone link of a Tier-1 ISP located between San Jose and Los
Angeles (both directions), available from CAIDA [WAcAa].

In order to evaluate the performance of the flow-related modules, a key met-
ric is the number of concurrent flows rather than the throughput in packets or
bytes. Replaying the backbone trace at line-rate leads to a throughput of 9.59
Gb/s1, 1.65 Mp/s, with a maximum of 2.25 million concurrent. All the results
shown in this section have been obtained by replaying the corresponding traffic
along a 10 minutes period.

First, we have assessed the performance of a simple packet sniffer appli-
cation (as provided by M3Omon’s API) and the packet dumper thread. Table 5.1
shows the mean throughput and standard error of the mean when repeating the
10-minutes experiments 50 times, for both applications and for fixed-size line-
rate synthetic traffic. The table shows that both applications only loose packets
in the worst-case scenario (i.e., 60-bytes packets, as CRC is deleted at NIC
level). It is also shown that above this packet size all packets can be success-

1This is the maximum achievable speed due to the preamble and inter-frame gaps that the Ether-
net protocol requires.

Vı́ctor Moreno Martı́nez 133

M3OMON: A FRAMEWORK ON TOP OF HPCAP

fully captured stored into disk in a full-saturated 10 Gb/s link.

Packet size
(bytes,

CRC excluded)

Throughput (Gb/s)
x̄± SEx̄

Theoretical
Max.

Packet
sniffer

Packet
dumper

60 7.14 4.92± 0.02 4.81± 0.02
64 7.27 7.27± 0 7.27± 0

128 8.42 8.42± 0 8.42± 0
256 9.14 9.14± 0 9.14± 0
512 9.55 9.55± 0 9.55± 0

1024 9.77 9.77± 0 9.77± 0
1514 9.84 9.84± 0 9.84± 0

Table 5.1: Packet sniffer and dumper modules performance
when sending synthetic line-rate traffic (D=packet dumper,
S=packet sniffer)

The effect of processor affinity on each module of M3Omon has been studied
as well. In our case, although the NIC is plugged into a PCIe slot attached to
NUMA node 0, the intermediate packet buffer is allocated in node 1’s memory.
Thus, it seems reasonable that applications making use of that buffer benefit
from being executed in node 1. Table 5.2 empirically shows this effect. The table
shows the mean and standard error of the mean (through 50 experiment repe-
titions) for both system’s throughput and packet loss when receiving the CAIDA
trace at link-speed. Note that, as the dumper application accesses the pack-
ets in a byte-block fashion, it experiences a much lower performance decrease
if scheduled in the wrong node as it minimizes memory accesses: 1% com-
pared to the 35%-45% of packet lost when flow-related module’s threads are not
properly scheduled. Those results show the relevance of a proper processor
scheduling policy in terms of system’s performance. Table 5.2 also shows the
performance obtained by the complete M3Omon system, when all of the modules
are scheduled in the optimal slot. In such case, the system experiences a packet
loss of 1.1%, leading to a global throughput of 9.48 Gb/s.

134 Tuning modern architectures for high-performance networking

5.3.
P

E
R

F
O

R
M

A
N

C
E

E
V

A
L

U
A

T
IO

N
R

E
S

U
LT

S

Active
Core schedule Throughput Packet

NUMA node 0 NUMA node 1 (Gb/s) loss (%)
Modules 0 1 2 3 4 5 6 7 8 9 10 11 x̄± SEx̄ x̄± SEx̄

D
K D 9.59± 0 0± 0
K D 9.41± 0.04 0± 0.1

P+E

K P E 9.59± 0 0± 0
K E P 6.23± 0.05 34.2± 0.4
K P E 4.99± 0.04 47.1± 0.3
K P E 5.53± 0.04 41.6± 0.3

M3Omon K P E D 9.48± 0.05 1.1± 0.2

K OP OF F F F P E D F F F 9.15± 0.06 4.7± 0.1
K OP OF F F F P E D S F F 8.97± 0.05 6.1± 0.3

M3Omon K OP OF F F F P E D S S F 8.97± 0.07 6.2± 0.3
+ apps. K OP OF F F F P E D S S S 8.87± 0.07 6.5± 0.4

K OP OF S S S P E D S S S 7.98± 0.05 15.3± 0.4

Table 5.2: Throughput and packet loss of the different modules in the system while receiving the CAIDA-trace sent at
line-rate on a 10 Gb/s link (K=kernel sniffer, D=packet dumper, P=flow process, E=flow export, S=packet sniffer app.,
F=flow reader app., OP=offline packet reader, OF=offline flow reader)

V
ı́ctorM

oreno
M

artı́nez
135

M3OMON: A FRAMEWORK ON TOP OF HPCAP

Once M3Omon’s performance has been assessed, we proceed to analyze
the effect of instantiating additional end-user applications on top. Table 5.2
shows the overall performance when instantiating two forensic (offline) appli-
cations –one for packets and one for flows– and using all of the available cores
for real-time flow record processing. In such case, a mean packet loss of 4.7%
is experienced with a mean throughput of 9.15 Gb/s. This packet loss is due
to the extensive usage of the non-volatile volume of this scenario: the packet
dumper writes packets, and the offline packet reader simultaneously accesses
the same volume. Note that packet-oriented applications can only be executed
in the same machine we are sniffing traffic from. This way, we have tested the
system when adding a different number of packet sniffing applications, while
keeping the slot for the two forensic applications, and instantiating real-time flow
processing applications in the free cores. Table 5.2 shows that adding additional
packet sniffling applications may degrade system’s mean throughput down to
7.98 Gb/s. Such results show that end-users may instantiate several listeners,
although we note that a scalable monitoring policy should prioritize MRTG and
flow-based monitoring rather than packet-based.

In terms of CPU usage, the kernel-sniffing thread (K in the table) uses 99.9%
of its core. This is also true for the flow processing thread (P) and the real-time
packet sniffing threads (S). On the other hand, the packet dumper thread (D)
uses 60% of a core, and flow exportation threads (E) use 32% of their core. Re-
garding the offline data access application (OP and OF), they are both executed
with the lowest I/O priority, leading to a core CPU usage of 42% and 23% re-
spectively. Both real-time and offline MRTG data access applications use less
than 1% of one core, so they can be executed at any core not being fully occu-
pied –and this is the reason why they do not appear in the table. With respect to
memory consumption, the flow-pool elements used by the flow manager and ex-
porter threads has been set so that the system supports up to 450K concurrent
connections entailing a use of 8GB of memory. The rest of elements of M3Omon
use a negligible amount of memory compared to the previous one.

It is worth remarking that, due to the multicast export policy, the use of
flow-based or MRTG-based applications does not affect system performance –
regardless the NUMA node of choice. Interestingly, such applications can be ex-
ecuted on external machines if needed. In our test scenario, the total throughput
for flow and MRTG exportation employs nearly 1 Gb/s, namely a considerable
bandwidth is necessary for sending the flow/MRTG data through a distributed
environment.

136 Tuning modern architectures for high-performance networking

5.4. INDUSTRIAL APPLICATION SAMPLES

5.4 Industrial application samples

This section gives an overview of two industrial applications that have been
developed and deployed on top of HPCAP: DetectPro and VoIPCallMon.

5.4.1 DetectPro

Let us illustrate the functionality and applicability of the above introduced
framework M3Omon with an example of a monitoring tool deployed in real bank
networks. DetectPro leverages M3Omon to monitor network traffic without be-
ing concerned about lower level tasks (packet capturing, flow building and statis-
tic aggregation), focusing only in network analysis. That is, DetectPro exploits
three-level grained traces to detect anomalous events (aggregated statistics),
locate hosts/network segments/services involved in the anomaly (flow records)
and discover the root cause behind the anomaly (packet traces), minimizing the
human intervention and coping with multi-Gb/s rates.

DetectPro reads aggregate statistics to diagnose both short-term and
long-term changes [MGDA12] and reports the corresponding alarms, including
information of detected anomalies such as start and end times of the alarm
as well as the values of bit/packet/flow rates that caused the alarm. When an
alarm is triggered, DetectPro automatically starts inspecting flow records to
extract information about the network activity during the alarm period. Hence, it
generates several reports containing, for instance, the distribution of hosts/net-
work segments/services with the highest byte, packet, flow counts as well as
other metrics (e.g., TCP flags, retransmissions), and the largest flows in terms
of packets and/or bytes. Finally, the application selects and inspects packet
traces corresponding to the alarm period. Note that such traces are automat-
ically selected with the information previously obtained —e.g., filtering packets
belonging to the busiest host.

In the following, we describe two case studies requiring the exploitation of
multi-granular features by DetectPro to fully characterize anomalies detected
in real network traffic.

First, we analyze an anomalous event observed in the traffic from a large
commercial network. On June 3rd, 2013 DetectPro automatically launched an
alarm, that indicated an increment in the number of concurrent flows from 200K
up to 300K in a couple of minutes, returning to the initial steady state. Figure 5.3
shows some of the outputs (concurrent flows, bytes and packets time series)
during the anomalous event. We can observe that neither bytes nor packets
time series show anomalies, unlike concurrent flow series. This suggests that

Vı́ctor Moreno Martı́nez 137

M3OMON: A FRAMEWORK ON TOP OF HPCAP

the number of connections had increased in this time interval but the increment
in the involved bytes and packets was not relevant.

06:32 06:37 06:42
0

200

400

C
o

n
c
u

rr
e

n
t

fl
o

w
s

(×
 1

0
3
)

06:32 06:37 06:42
0

100

200

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

06:32 06:37 06:42
0

50

100

T
h

ro
u

g
h

p
u

t
(K

p
/s

)

Figure 5.3: Time series for concurrent flows, bytes and packets
during an anomalous event

Once the alarm was triggered, DetectPro accessed flow records obtaining
several metrics and statistics which helped network manager to discover the traf-
fic involved in the event. For instance, it reported the most active IP addresses
and TCP/UDP ports in terms of concurrent flows during the time interval of the
anomalous event. From such reports, it was observed that DNS (Domain Name
System) connections to/from two given hosts represented the 90% of the total
flows during the anomalous event. Then, network managers may use the packet
inspection feature of DetectPro to select some packets of the anomalous con-
nections and infer the root causes behind the problem. In particular, the problem
was related to Mozilla Firefox browser’s DNS queries (updates, markups, popup
blocking) whose responses were not properly answered.

Secondly, we describe the use of multi-granular monitoring for the charac-
terization of a phenomenon detected in CAIDA San Jose datasets [WAcAa]. Fig-
ure 5.4 shows three time series representing concurrent flows, bytes and packets
by replaying the traces of October 18th and November 15th of 2012, in both traf-
fic directions (A and B). While replaying the trace corresponding to November
15th, an alarm was triggered. In direction A, flow concurrence reaches peaks
of more than 15 million flows per second, which is more than ten times the ex-
pected value. Similarly, in direction B, flow concurrence doubles the expected
value.

As stated before, DetectPro uses flow records to identify the hosts in-

138 Tuning modern architectures for high-performance networking

5.4. INDUSTRIAL APPLICATION SAMPLES

volved in this increase of flow concurrence. The results of this flow-level analysis
reveal that hosts in the subnets represented as 40.10.0.0/16 and 238.138.39.0/24,
in directions A and B respectively, generated a number of SYN-flag activated
packets that exceeded in more than one order of magnitude those coming from
the rest of the hosts discovered in these traces. Finally, network managers may
use DetectPro to select some packets of such anomalous connections and
finally assess that the packet pattern for such hosts corresponds to two SYN
flood DoS attacks against web servers.

18/10/2012

15/11/2012

15/11/2012 − 40.10.0.0/16

15/11/2012 − 238.138.39.0/24

15/11/2012 − Rest

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000
Direction A

C
on

cu
rr

en
t f

lo
w

s
(x

 1
04)

0 500 1000 1500 2000 2500 3000 3500
0

2000

4000

6000

T
hr

ou
gh

pu
t

(M
b/

s)

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

T
hr

ou
gh

pu
t

(K
p/

s)

Seconds since beginning of capture

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60
Direction B

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

0 500 1000 1500 2000 2500 3000 3500
0

200

400

600

Seconds since beginning of capture

Figure 5.4: Flow concurrence and throughput in terms of Mb/s
and Kp/s for both directions

5.4.2 VoIPCallMon

VoIP is increasingly replacing the old PSTN (Public Switched Telephone Net-
work) technology. In this new scenario, there are several challenges for VoIP
providers. First, VoIP requires a detailed monitoring of both users’ QoS and
QoE (Quality of Experience) to a greater extent than in traditional PSTNs. Sec-
ond, such monitoring process must be able to track VoIP traffic in high-speed
networks, nowadays typically of multi-Gb/s rates. Third, recent government di-
rectives require that providers retain information from their users’ calls. Similarly,
the convergence of data and voice services allows operators to provide new ser-
vices such as full-data retention, in which users’ calls can be recorded for either

Vı́ctor Moreno Martı́nez 139

M3OMON: A FRAMEWORK ON TOP OF HPCAP

quality assessment (call-centers, QoE), or security purposes (lawful intercep-
tion). This implies a significant investment on infrastructure, especially on large-
scale networks which require multiple points of measurement and redundancy.

In this context, we introduce VoIPCallMon as a novel methodology, ar-
chitecture and system to fulfil the existing challenges in high-performance VoIP
monitoring. As distinguishing features, VoIPCallMon provides very high per-
formance being able to process VoIP traffic on-the-fly at high bitrates, novel ser-
vices, and significant cost reduction by using commodity hardware with mini-
mal interference with operational VoIP networks. In what follows, let us discuss
the functionality of each of the VoIPCallMon modules, which are shown and
labeled in top left part of Figure 5.5. VoIPCallMon software is written in C
language over a Linux-based system:

SBC

SIP
Clients

C
on

ve
nt

io
na

l
T

el
ep

ho
ne

s

Mobile
Phones

Media
Gateway

1

2

Access
Network

Mobile
Network

PSTN

IP
Network

II’) TCP/IP
reassembler

II) Detector and
tracker of SIP/

RTP traffic

III) Generator of
VoIP records

and calls

IV) VoIP call
retention

module

I) Traffic
Capture Module

SPAN ports
/ taps

VoIPCallMon

Network
Manager

Clients
Front end

VoIP PoP

QoE alarms
generator

Government
Surveillance

Service Provider

Figure 5.5: SIP VoIP network (bottom) and VoIPCallMon ar-
chitectures (top)

• Traffic capture module: VoIPCallMon requires to keep track and corre-
late both SIP and RTP data flows but note that these flows do not share
the same 5-tuple, and that, however, such tuples are used by RSS tech-
nology to distribute packets among different receive queues at NIC and

140 Tuning modern architectures for high-performance networking

5.4. INDUSTRIAL APPLICATION SAMPLES

kernel level. This prevents the use of multiple receive queues in VoIP mon-
itoring as a signalling flow (e.g., SIP) and its corresponding payload flow
(e.g., RTP) may potentially end up to different queues and, thus, cores.
Consequently, the capture process needed to be carried out in a way so
that maximum performance was achievable with one single receive queue.
Furthermore, the QoS metrics calculated for each call register involve cal-
culations with the packet’s timestamps, which needed to be as accurate
as possible. For those reasons, the network capture tasks was carried out
using the HPCAP driver.

• Detector and tracker of SIP/RTP traffic: Once incoming packets are cap-
tured, and via the M3=Mon framework built on top of HPCAP, it is very easy
to instantiate a new thread and feed it with the traffic obtained by the cap-
ture module. Note that, to achieve maximum performance, this new thread
must be carefully scheduled so that it does not interfere with the capture
process and so that it benefits from memory locality.
In order to obtain useful information for each call, both the SIP and RTP
streams must be carefully analysed. SIP packets contain important infor-
mation to characterize a call such as the call identifier (call-ID), caller and
callee identifiers (from and to fields), as well as information to establish
the RTP sessions, essentially source/destination IP addresses and port
numbers (4-tuple) and codec of the RTP stream. Once a RTP connection
is established via SIP, the system begins to monitor the call’s associated
RTP stream for calculating its associated QoS metrics and to decode the
voice streams. In order to manage all this information, there are two dif-
ferent hash tables used to index the calls data, so each record can be
accessed from the two tables. The first table is indexed by SIP call-ID,
which is useful when a call is updated by a SIP packet; whereas the sec-
ond one is indexed by RTP 4-tuple, which is useful when a RTP packet is
processed. Note that these two tables are necessary because RTP pack-
ets do not have call-ID or other SIP information, whereas SIP packets do
not have the same IP addresses/ports as RTP packets.

• Generator of VoIP records and calls: When a call is expired, it is deleted
from the detection module’s active call list and hash-tables, and redirected
to this third module which generates all the required information about the
call. This includes the information required by the European Union di-
rective 2006/24/EC [SG08]: the ID of both edges of the communication
(from and to SIP fields), and the start and end times of the call. Further-
more, the module includes several flow parameters useful to assess the
users’ QoE for a given call such as the used codecs, count of packets
and bytes, throughput, max/min/mean/standard deviation of both packet
size and inter-arrival time, round-trip-time, jitter and packet loss rate. For
a further thorough explanation of the calculated parameters the reader is

Vı́ctor Moreno Martı́nez 141

M3OMON: A FRAMEWORK ON TOP OF HPCAP

referred to [Sch12].

• VoIP call retention module: Periodically, the output of the previous mod-
ule, i.e., calls records and pointers to the RTP files (if such service is re-
quired) are dumped to a MySQL database. Thus, clients, network man-
agers or any other agent (i.e., law enforcement and intelligence agencies)
may retrieve calls, measurements or alarms using a given key (e.g., the
caller/callee ID, phone number/user name) via a front-end.

Figure 5.6 shows the number of active calls during a 30-minute experiment
as well as the call generation rate in one of the case-study scenarios. The num-
ber of active calls gives more than 52,000 concurrent calls with a rate of 442 new
calls per second in the stationary state, which in this case yields a VoIP rate of
8.9 Gb/s. Importantly, the amount of simultaneously active calls supported by a
VoIP system can limit its performance if resource consumption and contention
is not carefully analysed. Those results are far beyond the requirements from
a Spanish VoIP operator with 15 points of presence across the country whose
data we had access to: this operator managed between 60,000 and 100,000
calls during the busy hour whose mean call hold time is about 120 seconds.
That is translated into between 17 and 28 calls per second and between 2,040
and 3,360 simultaneous active calls.

Importantly, in order to achieve performance levels that allow VoIPCallMon
operate in high-speed networks, all modules and their interactions have been
carefully optimized. For a deeper and more detailed description, we recom-
mend reading [GDSdRR+14]. Importantly, the system’s performance has been
assessed by testing each of the modules’ performance independently, and once
the proved multi-gigabit capabilities, the global system’s performance was tested.
The performance evaluation stated that VoIPCallMon’s limits are above 10
Gb/s, surpassing other systems presented in the literature, ergo merging low-
cost and high-performance in a proposal.

142 Tuning modern architectures for high-performance networking

5.4. INDUSTRIAL APPLICATION SAMPLES

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6
x 10

4

Time

A
c
ti
v
e
 C

a
lls

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

C
a
ll

c
re

a
ti
o
n
 r

a
te

 (
c
a
lls

/s
)

Calls creation rate

Active calls (empirical)

Active calls (theoretical)

Figure 5.6: Active calls and new calls managed by
VoIPCallMon during a 30-minute experiment

Vı́ctor Moreno Martı́nez 143

M3OMON: A FRAMEWORK ON TOP OF HPCAP

5.5 Related Work

In this section we present those systems that share with M3Omon its target
of facilitating the labor of network monitoring. Let us highlight in each case the
offered flexibility, scalability, performance and kind of hardware required.

We now turn our interest out to systems and applications that provide a more
elaborated set of measurements. We acknowledge Tstat [FMM+11], an open-
source monitoring tool with more than a decade of development. Tstat cap-
tures traffic, classifies it with remarkable accuracy, and generates a number of
statistics aggregates at different granularities. Similarly, the authors in [MSD+08]
also state the importance of forensic analysis of traffic and highlight that is enor-
mously helpful to store packet traces to inspect them in case any problem arises.
They proposed a system, TM, that collects only the first packets of each connec-
tion of the traffic under study. The rationale behind this approach is that connec-
tions follow a long-tail distribution whereby a small set of connections accounts
for most of the traffic and conversely there are many connections with very little
traffic. Thus, by capturing only a few packets per connection the throughput and
storage requirements are dramatically reduced. On the downside, many pack-
ets are ruled out, however the authors claim that the most useful packets for
monitoring purposes are the first ones, therefore the savings in space and com-
putational burden pay off the accuracy lost. In this regard, it is worth remarking
that M3Omon is compatible with the operation of TM, by simply modifying the store
module of M3Omon to follow the packet discarding rules that TM proposes.

By comparing these proposals to M3Omon, we note that neither Tstat nor
TM are a framework or architecture for multi-granular and multi-purpose monitor-
ing, and their performance are far from multi-Gb/s rates. Although Tstat high-
lighted the importance of multi-granular monitoring, it does not give any support
to the applications running over. It leaves data available to be accessed later
in an off-line fashion, being the developer who accesses the data and builds
such application from the ground up. Although TM does provide user with traffic
packets by simple mechanisms (specifically a tuned database), there are neither
references to any richer set of data granularities nor multi-purpose deployments.
By paying attention to performance, both Tstat and TM may work over com-
modity hardware, but they lack of optimization at packet reception level and their
performance would be limited to 1 Gb/s rates.

Following a completely different approach to all the previous presented works
(including ours), the authors in the technical report presented in [ČKB+10] en-
trusted dedicated hardware with the task of high-performance monitoring. In par-
ticular, they developed a FPGA-based design name HAMOC. Similarly to Tstat
and TM, HAMOC does not focus on exploiting the multi-purpose capacities of a
monitoring system as M3Omon does. Remarkably, HAMOC offers a rich set of ap-

144 Tuning modern architectures for high-performance networking

5.5. RELATED WORK

plications modified to work over their FPGA-design, but such applications’ works
are isolated without sharing efforts to pre-process data. In contrast, M3Omon
features a driver that allows several threads to access to the same packet dis-
tribution queue when typically drivers permit the opposite, distributing traffic to
different queues accessed each of them by a unique thread. Certainly, HAMOC
pays attention to the generation of flow records at high-speeds, but there is no
reference to packet storage, any other broader statistics or framework to access
such data. Turning to similarities, HAMOC does share with M3Omon multi-Gb/s
performance rates. HAMOC showed rates close to 10 Gb/s both in the subtask of
packet capture and application layer.

Regarding the process of coding monitoring applications, we emphasize
Blockmon [dPHB+13b]. Blockmon allows building a monitoring application
out of blocks, where each of them represents a different subtask in a given ap-
plication. For example, reading a PCAP trace or filtering traffic at 4-layer may
be subtasks for an application that inspects DNS traffic. Thus, Blockmon may
ease the development of multi-granular applications over our proposal. That is,
an application that correlates data at different granularities may be written as a
sequence of Blockmon’s blocks with all the support that Blockmon’s library
offers. The application examples provided with Blockmon use only packet-level
information and run over PFQ capture engine. Using multiple queues, the sys-
tem is able to process about 5 Gb/s in the worst-case scenario of small packet
size—about 15% less compared to PFQ’s capture process [dPHB+13b].

As examples of successful implementations of final applications, we remark
some related to traffic classification [GES12, SdRRG+12] and NIDS [JLM+12,
VPI11], which are able to process the incoming traffic at 10 Gb/s rates. All
of these proposals and those forthcoming may benefit from the flexibility and
scalability that M3Omon offers to the applications running on top.

Vı́ctor Moreno Martı́nez 145

M3OMON: A FRAMEWORK ON TOP OF HPCAP

5.6 Conclusions

We have proposed a novel monitoring system architecture that provides net-
work managers and network analysts with mechanisms to deploy more flexible,
scalable, and affordable monitoring applications over high-speed networks.

The design is based in five key aspects which in turn comprise the contri-
butions of this work: (i) a novel and optimized layer between the traffic sniffer
and the monitoring application themselves that provides advanced characteris-
tics (M3Omon), (ii) a framework to access multi-granular data, (iii) an improved
NIC driver (HPCAP) for monitoring purposes, and all of them (iv) running as an
off-the-self system at (v) high-speed.

M3Omon allows applications to run in parallel reading traffic at different data
granularities—time-series aggregates, flow records and packet traces. Such
granularities have been constructed only once, to be shared by the set of ap-
plications running over M3Omon. We have termed this as multi-granular and
multi-purpose features, and they provide outstanding flexibility and scalability
over the state-of-the-art.

Such features are easily exploited thanks to the provided framework, and vi-
able thanks to an improved NIC driver as well as low-level hardware interactions,
efficient memory management tuning, and programming optimization. This work
has comprehensively explained all these implementation details so that it results
useful for both network managers and analysts in their duty to develop novel
multi-granular monitoring tools. In this regard, we have shown a real monitoring
application, DetectPro, which illustrates its successful exploitation in produc-
tion environments in real networks.

To conclude, we remark that our system runs over commodity hardware as
open-source software available under an open-source license [Hig13], which
gives additional adaptability, scalability, and cost-aware developments. That is,
commodity hardware is easily upgraded over time and replicated over the in-
frastructure, and its cost is lower than dedicated solutions. High-speed is the
other characteristic of our proposal, we note that the performance evaluation
has shown that it reaches multi-Gb/s rates. We believe that our proposal paves
the way for future migration of high-performance tasks to off-the-self systems.

146 Tuning modern architectures for high-performance networking

6
Network monitoring in
virtualized environments

On this chapter, we assess the feasibility of moving high-
performance network processing tasks to a virtualized environment.
For such purpose, we analyse the possible configurations that al-
low feeding the network traffic to applications running inside virtual
machines. For each configuration, we compare the usage of differ-
ent high-performance packet capture engines on virtual machines,
namely PF RING, Intel DPDK and HPCAP. Specifically, we obtain
the performance bounds for the primary task, packet sniffing, for
physical, virtual and mixed configurations. We also developed HP-
CAPvf, a counterpart of HPCAP for virtual environments, and made
it available under a GPL license.

The maturity of the telecommunication market plus the emergence of new
services and applications have lead to a harsh competition between the different
actors involved. The amount of services and applications available to end-users
makes it necessary for those services’ providers to deploy quality-assessment
policies in order to distinguish their product among the rest. As a consequence,
network processing and analysis becomes a central task that demands process-
ing elements capable of reaching a humongous amount of data rates while keep-
ing the cost as low as possible.

In order to deal with the network processing tasks some solutions based
on specialized hardware have been developed. Those solutions are tradition-
ally built on top of FPGAs, Network Processors or even ASICs. These solutions
answer the high-performance needs for specific network monitoring tasks, e.g.
routing or classifying traffic on multi-Gb/s links [YKL04, FSLB+14]. However,
this approach causes operators’ amenities being populated with a huge amount
of heterogeneous hardware boxes, which complicates and raises the price of
maintenance processes. The scalability of such an infrastructure is limited, as it
involves adding new hardware boxes which has a set of constraints in terms of
physical space, cooling or power consumption. Additionally, those solutions im-

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

ply high investments: such hardware’s elevated cost rises CAPEX, while OPEX
are increased due to the difficulty of their operation, maintenance and evolution
if new services arise.

Off-the-shelf systems, the combination of commodity hardware and open-
source software, have emerged as an alternative to reduce the limitation im-
posed by specialized hardware [GDMR+13]. The advantages of those systems
lay in the ubiquity of their components, which makes it easy and affordable to ac-
quire and replace them. Those systems are not necessarily cheap, but their wide
range of application allows their price to benefit from large-scale economies and
makes it possible to achieve great degrees of experimentation. Furthermore,
such systems offer extensive and high-quality support. However, the increased
demands for network processing capacity would be translated into a big number
of machines, probably from different vendors, which complicates and raises the
price of maintenance processes and empowers the appearance of interoperabil-
ity issues.

All those maintenance and scalability issues damage the profitability that
networked service providers may experience when applying either specialized
hardware or off-the-shelf systems to carry their network processing tasks. Look-
ing for a solution, industry and academia have turned an eye to virtualized so-
lutions [YHB+11]. The evolution and ubiquity of virtualization techniques along
the past years have proven to play a fundamental roll in terms of expenditure re-
duction, as they allow providing a unified homogeneous layer on top which new
services and applications could be deployed.

Virtualization technology has been improving and developed so much the
last years that network processing on virtual machines are close to reach the
same performance than on physical ones. The scope of applicability is enor-
mous and there are many potential advantages. The most evident is increas-
ing the infrastructure’s profitability due to a reduction in the equipment invest-
ment by acquiring large-scale manufacturers’ products that may host several
virtual elements. This policy entails a reduction in the amount of physical ma-
chines required, and thus saving in terms of physical space and power consump-
tion. Another relevant advantage of virtualization techniques is the possibility
of dynamically adjusting network applications and resources based on specific
clients’ requirements. Besides, virtualization contributes to open the market for
small companies and academia by minimizing risk and thus encouraging inno-
vation. For all those reasons, network manufactures have been working during
the last years on the development of the concept of Network Function Virtualiza-
tion (NFV) [Net14b]. This new paradigm aims to unify the environments where
network applications shall run by means of adding a virtualization layer. This
novel philosophy also allows merging independent network applications using
unique hardware equipment, thus reducing the amount of physical machines re-

148 Tuning modern architectures for high-performance networking

6.1. HIGH-PERFORMANCE NETWORK PROCESSING

quired, speeding up network applications maturation cycle, easing maintenance
procedures and expenditures, and rapidly adjust network applications and re-
sources based on specific clients requirements. The development of this novel
NFV philosophy has been favored by other trending technologies such as Cloud
Computing and Software Defined Networking (SDN) [AFG+10,MRF+13].

However, in order to make the most of NFV, mechanisms that allow obtain-
ing maximum network processing throughput in such virtual environments must
be developed. In a bare-metal scenario, researchers have recently focused on
developing high-performance packet capture engines [GDMR+13]. This work
assesses the feasibility and provides performance bounds when moving high-
performance network processing tasks to a virtualized environment. As our goal
implies fetching packets from high-speed networks and at least storing them in
non-volatile volumes, this work has focused on optimizing the communication of
both network and storage devices with the corresponding virtual machines. We
evaluate different virtualization alternatives, namely PCI passthrough and Net-
work Virtual Functions (NVF) available on state-oh-the-art systems. From the
network side, we have evaluated the use of already existing high-performance
packet capture engines. In terms of non-volatile storage we have translated
the experiences we had with physically connected RAID volumes to the virtual
case. Additionally, we have discussed the details and performance results for
instantiating a network virtual probe and a network monitoring agent, so re-
searchers and practitioners may benefit from our results in order to build their
high-performance NFV-based applications.

The rest of this chapter is structured as follows: first, we discuss the state
of the art of packet capture and storage systems in section 6.1. Second, we
explain diverse virtualization approaches for I/O devices in section 6.2. Sec-
tion 6.3 discusses how to create a virtual probe with the knowledge acquired
in the previous sections, while section 6.4 presents the instantiation of a virtual
network-monitoring agent. Finally, section 6.5 presents the conclusions and the
future roadmap generated by this work.

6.1 High-performance network
processing

The need for more flexible and profitable network processing equipment
have made both industry an academia to pay attention to off-the-shelf systems
[BDKC10], understood as the combination of commodity hardware and open-
source software. The inherent nature of those systems supply some interest-
ing characteristics such as high flexibility, reduced CAPEX due to the benefits

Vı́ctor Moreno Martı́nez 149

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

of manufactures’ page-scale economies, and minimal OPEX thanks to the ex-
tensive documentation and functional testing carried out by the corresponding
vendors. The NIC vendor’s driver plus a network stack traditionally compose an
off-the-shelf system applied for network processing tasks. This approach pro-
vides a high degree of flexibility, as the network stack is made up of independent
layers that allow distributing the traffic to the corresponding final applications.
However, this approach fails in terms of performance, as each incoming packet
has to traverse a subset of the existing layers, meaning that additional copies
and resource re-allocation are required. Thus, this flexibility the standard solu-
tion offers limits its applicability in high-speed scenarios.

ixgbe PF_RING PacketShader netmap PFQ DPDK HPCAP
0

10

20

30

40

50

60

70

80

90

100

Capture engines performance in a bare−metal scenario

Capture engine

%
 o

f
c
a

p
tu

re
d

 p
a

c
k
e

ts

64−byte packets

CAIDA trace

Figure 6.1: Percentage of packets captured for different traffic
patterns in a fully-saturated 10 Gb/s link obtained by different
solutions

Fortunately, if they are carefully scheduled and tuned, off-the-shelf systems
are still eligible for operating in high-speed networked scenarios. With this is
mind, some implementations have been developed which are referred as high-
performance packet capture engines in the literature [GDMR+13,Mor12,Int14b].
Solutions such as PF_RING, PacketShader, netmap, PFQ, Intel DPDK or HP-
CAP were created as high-performance counterparts for the traditional network
driver-plus-stack alternative. All those capture engines reach high processing
rates due to the application of diverse optimizations along the capture process.
A detailed description of those optimizations and the ones used by each capture
engine is included in Chapter 3. In a nutshell, some of those optimizations are
memory pre-allocation and efficient reuse, prefetching network packets’ data into
the system’s caches, and circumventing the traditional network stack in order to
exploit parallelism. Specifically, PF_RING, PacketShader and Netmap achieve
wire-speed using few cores (even with only one reception queue), but they lack

150 Tuning modern architectures for high-performance networking

6.1. HIGH-PERFORMANCE NETWORK PROCESSING

of flexibility. At the same time, HPCAP obtains comparable results while addition-
ally provides accurate timestamping [MSdRR+12], being designed for optimizing
the packet-storage process [MSdRR+14b] and providing a multi-purpose multi-
granular monitoring framework [MSdRR+14a]. Importantly, those additional fea-
tures force HPCAP to uses two CPU cores per receive queue, while the other
engines use one core per queue. Conversely, PFQ needs a larger number of
queues and cores to achieve high throughput, but provides the biggest flexibility
due to a customized packet aggregation and delivery mechanism.

Fig. 6.1 shows the performance level obtained for packet capture in a full-
saturated 10 Gb/s link for the worst-case scenario (64 byte packets) and an
average scenario (a CAIDA trace from a ISP’s backbone link between Chicago
and Seattle obtained the 19th June 2014, with an average packet size of 965
bytes [WAcAa]). All the performance tests presented along this chapter have
been made replaying this traffic in 30-minutes experiments. Specifically, all tests
have been carried out using a server with two Xeon E5-2630 processors running
at 2.6 Ghz and 32 GB of DDR3 RAM running a Linux Fedora 20 with a 3.14.7
kernel. The NIC used was an Intel card with 82599 chipset connected to a PCIe
Gen3 slot. The traditional approach, represented by the default ixgbe Intel
driver in addition to the de facto standard PCAP library has also been included in
the comparison. The results obtained show that all capture engines are capable
of capturing 100% of the packets when replaying the CAIDA trace at top-speed.
In the worst-case scenario, ixgbe captures only 2.7% of the incoming packets,
while PF_RING and Intel DPDK capture 100% of them, HPCAP captures 97.9%
of the packets and the rest solutions obtain slightly lower results.

Nevertheless, come studies have proven that packet capture may result in-
sufficient for an effective network analysis. The authors in [MSD+08] highlight
the relevance of storing network for a later in-depth analysis. Even an intuitively
simple task such as sniffing and storing the traversing traffic is a challenge when
dealing with 10 Gb/s speeds or higher due to the great amount of resources
and computational power needed. In this light, it is natural to focus on how
the already mentioned capture systems behave when storing the captured traf-
fic. Among all the capture solutions mentioned, only PF_RING and HPCAP have
taken into the account the packet storage task. Their corresponding applications,
n2disk and hpcapdd respectively were studied and tested in [MSdRR+14b].
Results for optimal disk throughput configuration in a bare-metal scenario are
presented in Table 6.1. This work also discussed and tested how to tune a stor-
age device to reach multi-Gb/s write data rates.

All the above-mentioned high-performance capture and storage solutions
enable network managers to deploy high-performance network applications on
top of them. Nevertheless, the application of the existing packet capture engines
has been limited in the literature to the bare-metal case. That is, a physical

Vı́ctor Moreno Martı́nez 151

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

server to which the NIC is connected through a PCIe slot as shown in Fig. 6.3(a).
With this in mind, this work focuses on the study on how to effectively migrate
already high-performance network processing solution from bare-metal to virtual
scenarios. Specifically, we will focus on the use of Intel DPDK and HPCAP, as
they are the only two packet capture solutions that support working with NIC’s
virtual functions. That involved, in the case of DPDK, developing a packet stor-
age solution as none had been already built on top of it.

152 Tuning modern architectures for high-performance networking

6.2. VIRTUALIZED ENVIRONMENTS AND I/O PROCESSING

6.2 Virtualized environments and I/O
processing

The use of virtual machines imposes a computational overhead on any ap-
plication being executed on top of them. For this reason, if VM (Virtual Machine)
are used for computing intensive applications, the performance obtained by the
target application is usually damaged. If we desire to obtain maximum perfor-
mance, the creation and schedule of each VM must be carefully made. First, the
amount of cores of the VM should be such that allows the VM to be executed
inside a single NUMA node in the physical server, and those virtual cores should
be configured to be mapped to independent physical cores. Second, the way a
VM accesses the host’s physical memory can be properly configured in order to
reduce the amount of page misses and memory swapping. Most contemporary
VM hypervisors support execution of their virtual machines with their memory at-
tached to a certain NUMA node. Moreover, the authors in [KKA13] highlight the
how use of Linux’s huge pages for allocating the VM’s memory chunk improve
the VM’s performance. By using Linux huge pages both the packet capture en-
gines and the network applications built on top of them running on a VM would
experience a performance increase. Finally, if the host’s hardware configuration
supports it, as it was our case, virtualization enhancement instructions should
be enabled. All the VMs used along the performance experiments presented in
this chapter were created taking these facts into account. Regarding the operat-
ing system running inside the VMs, we used the same version as in the physical
server, a Linux Fedora 20 with a 3.14.7 kernel. The choice of the operating sys-
tems to be used both in the physical and virtual machines is relevant, as not all
combinations support the use of Linux huge pages both in the physical server for
creating the VM as mentioned and inside the VM. Note that some of the capture
engines used such as PF_RING and Intel DPDK make use of those huge pages,
so this requirement is nontrivial.

However, not only memory and computational configurations are relevant
when running a network application on a virtual machine. Network applications
have high I/O data-transfer requirements. An application processing the traffic
coming from a 10 GbE link may have to process up to 14.88 Mp/s in a worst-case
scenario. Thus, I/O configuration becomes critical for this kind of applications.
That is even worse when writing the incoming data into a non-volatile storage
device, such as a set of hard drives. In that case the storage device has to be
able to consume up to 10 Gb/s in the storage’s worst-case scenario. The rest
of this section discusses diverse alternatives for mapping the I/O devices into
virtualized environments. Note that most of the concepts exposed along this
section apply to any I/O device regardless they are network, storage, etc.

Vı́ctor Moreno Martı́nez 153

N
E

T
W

O
R

K
M

O
N

IT
O

R
IN

G
IN

V
IR

T
U

A
L

IZ
E

D
E

N
V

IR
O

N
M

E
N

T
S

Physical commodity server

Hypervisor

Virtual
Machine 1

User
application

Virtual-device
driver

Virtual
Machine 2

User
application

Virtual-device
driver

I/O device

Physical
driver

I/O device

Physical
driver

User
level

Kernel
level

(a) Full-virtualization

Physical commodity server

Hypervisor

Virtual
Machine 1

User
application

virtio
front-end

driver

Virtual
Machine 2

User
application

virtio
front-end

driver

I/O device

virtio
back-end

driver

I/O device

virtio
back-end

driver

User
level

Kernel
level

Physical
driver

Physical
driver

(b) Paravirtualization

Figure 6.2: Mapping an I/O device using full-virtualization and virtio’s paravirtualization

154
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

6.2. VIRTUALIZED ENVIRONMENTS AND I/O PROCESSING

6.2.1 Full-virtualization

Providing a hardware-independent abstraction layer that allowed virtual de-
vices or machines to operate regardless the underlying hardware configuration
motivated the idea of virtualization. In line with this, the natural way a physical
I/O device is used from a VM also has a virtualization layer. Thus, the VM has
access to a virtual device, which is necessarily managed by a specific driver
usually provided by the virtualization solution manufacturer. The VM will then
access this virtual device completely unaware of its virtual nature. For each I/O
request received by the virtual device, its driver will forward such request to the
hypervisor. The hypervisor will then process the request and communicate with
the corresponding physical device to attend the VM’s request. Note that the hy-
pervisor carries out a resolution process to match which of the available physical
devices was the request directed to. This configuration is depicted in Fig. 6.2(a).

For example, when a network device is fully-virtualized, incoming packets
are captured by the physical’s NIC driver running on the physical server and tra-
verse the system’s network stack before being delivered to the hypervisor’s net-
work module. Once acquired by the hypervisor, packets are delivered to the tar-
get VM depending on the virtual network configuration. Note that this data path
requires at least two additional copies: from the physical server to the hypervi-
sor and from the hypervisor to the virtual machine, which obviously degrades
the performance achieved by the capture system. The performance degradation
experienced by network applications running in this configuration has pushed
academia and industry to tune and to optimize the hypervisor’s packet handling
policy. In this line, authors of [HRW14] introduce NetVM, a module for speeding
up hypervisor’s packet forwarding mechanism based on the use of Intel’s DPDK.
This work obtains promising results when performing packet forwarding between
virtual machines instantiated in the same physical server, but does not deal with
the problem of sniffing traffic from the wire.

Note that when using a fully-virtualized I/O device, the hypervisor is the cen-
tral communication element. Consequently, the hypervisor becomes the bot-
tleneck and a single point-of-failure for network processing tasks, limiting their
applicability for I/O intensive applications.

6.2.2 Paravirtualization and VirtIO

Paravirtualization emerged as an alternative to the full-virtualization approach.
This philosophy is similar to the full-virtualization approach in terms of having
both front-end and back-end drivers instantiated at guest and hypervisor’s lev-
els respectively. The main difference is that the guest’s operating system is

Vı́ctor Moreno Martı́nez 155

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

aware of the corresponding devices being virtualized, while in a full-virtualization
approach the guest is unaware of this condition. Furthermore, front-end and
back-end drivers communicate using an efficient high-performance approach.
Virtio [Rus08] has emerged as the de facto standard for this communication
between guest and a KVM hypervisor. Note that KVM-based hypervisors offer
a virtualization layer that is aware of the underlying hardware [KKL+07], in con-
trast with traditional virtualization approaches. Specifically, virtio implements
a flexible API for this communication via a set of queue structures and callback
function handlers. This configuration is represented in Fig. 6.2(b).

Virtio supports different kind of I/O devices such as block, console or
PCI devices. In the recent years, support for networking devices has also been
added [MW12]. Furthermore, authors of [RLM13] introduce a paravirtualized
extension for devices managed by the e1000 1 Gb/s driver and the correspond-
ing adaptations at hypervisor level in order to improve the network processing
performance. By applying their proposals they leverage the system throughput:
from 300 Mb/s using the conventional approach to nearly 1 Gb/s using a VALE
software switch in the worst-case scenario (64 byte UDP packets); and results
from 2.7 Gb/s up to 4.4 Gb/s when transmitting TCP traffic between VMs in the
same physical server. Although the good results obtained by this approach, it
still far from our 10 Gb/s goal. For this reason, we have not taken network device
virtualization using virtio into account for the traffic capture process.

On the other hand, the promising results obtained by virtio when applied
to data storage drivers lead to take it into account for the traffic storage pro-
cess. Specifically, we have compared the write throughput obtained when using
a RAID-0 volume with different number of disks for the bare-metal and virtio
approaches. Our RAID-0 array is composed of high-end mechanical hard disks,
Hitachi HUA723030ALA640 with SATA-3 interface and 3 TB of capacity. The
results obtained in those tests are shown in Table 6.1 when varying the amount
of disks. The RAID configuration parameters vary with the number of disks in
the array, and as being out of the scope of this chapter we refer the readers
to Chapter 4.3 for a detailed discussion. Results show a slight improvement
when instantiating the RAID-0 array in the VM using the virtio driver. We jus-
tify those unexpected results due to the write-requests buffering and scheduling
policies that the virtio-blk driver performs [BYBF+12].

Keeping in mind that the goal of this work is processing 10 Gb/s traffic in
VMs, we show the numerical results of the write throughput experiments in Ta-
ble 6.1. Specifically, we show average throughput obtained and the confidence
interval for the mean write throughput with a 0.99 level of significance. In order
to prevent packet losses, we look forward to a combination of disks such that
the confidence interval for the mean is above our 10 Gb/s goal, so a properly
sized buffer will suffice to keep the system rate constant. Results obtained for 1

156 Tuning modern architectures for high-performance networking

6.2. VIRTUALIZED ENVIRONMENTS AND I/O PROCESSING

disk are near to the 1.25 Gb/s rate offered by the manufacturer. If performance
scaled linearly, an amount of 8 disks would suffice to reach our target rate. How-
ever, although the scaling is very near linear, the results show that 8 disks do not
meet our requirement for the mean confidence interval, and thus we conclude
that an amount of 9 disks is required for both the bare-metal and the virtio
configurations.

Number
of disks Mode Throughput (Gb/s)

Average Conf. interval
(α=0.01)

1
BM 1.27 (1.27, 1.28)

VirtIO 1.29 (1.25, 1.34)
PT 1.27 (1.27, 1.28)

8
BM 9.93 (9.89, 9.96)

VirtIO 9.96 (9.79, 10.13)
PT 9.91 (9.85, 9.96)

9
BM 11.16 (11.09, 11.23)

VirtIO 11.21 (11.03, 11.39)
PT 11.15 (11.09, 11.21)

Table 6.1: Write throughput summary results for RAID 0
configuration in a bare-metal (BM) and virtualized (via PCI
passthrough, PT, and VirtIO) scenarios

An interesting feature that paravirtualized devices have is that as the map-
ping in the VM is done by accessing a character/block device in the physical
server, several VM could simultaneously access the same device and thus share
the contents of the paravirtualized I/O. However, this must be made with caution
as no access protection mechanisms are provided and data corruption may arise
if no synchronization mechanism is used. For example, a paravirtualized RAID
volume could be shared between two VM if exclusively one of them writes data
into the volume while the second only accesses for reading purposes.

Vı́ctor Moreno Martı́nez 157

N
E

T
W

O
R

K
M

O
N

IT
O

R
IN

G
IN

V
IR

T
U

A
L

IZ
E

D
E

N
V

IR
O

N
M

E
N

T
S

Physical commodity server

Physical
driver

User
application User

level

Kernel
level

PCI device

PC
I slot

(a) Bare-metal

Physical commodity server

Virtual Machine

Physical
driver

User
application User

level

Kernel
level

PCI device

PC
I slot

(b) PCI passthrough

Physical commodity server

Virtual
Machine 2

Virtual
Machine 1

SR-IOV
PCI device

Physical driver
(VF generator)

PCI slot

User
application

User
application

VF
driver1

VF
driver2

Hypervisor

User
level

Kernel
level

(c) PCI-VF passthrough

Figure 6.3: Using a I/O device in bare-metal scenario (leftmost), and in a virtual machine using both physical and virtual
functions’ PCI pass-through

158
Tuning

m
odern

architectures
forhigh-perform

ance
netw

orking

6.2. VIRTUALIZED ENVIRONMENTS AND I/O PROCESSING

6.2.3 PCI passthrough

Most important hardware vendors such as Intel, AMD and ARM, implement
I/O memory management units (IOMMU) and a set of techniques for I/O man-
agement. The name of these techniques may vary from one vendor to other
(VT-d for Intel and ARM, Vi for AMD). Those features supply the protection and
support required form virtual machines to safely access those memory regions
corresponding to a certain I/O device, which is also referred as I/O passthrough
or PCI passthrough when applied to PCI devices. The case in which a PCI de-
vice is mapped by a VM using PCI passthrough is depicted in Fig. 6.3(b). By us-
ing PCI passthrough, the access from the VM to the device presents a minimal
overhead, as all intermediate virtualization layers disappear. Note that, in this
configuration, the VM sees the device just as they were physically connected,
which implies that the driver used must be the same one that manages such
device in a bare-metal configuration. Consequently, this allows network appli-
cations being executed in virtual machines to benefit from the high-performance
packet capture solutions developed for bare-metal scenarios. The application of
PCI passthrough has been successfully applied in high-performance computing
scenarios [YLWH14].

As our goal is sniffing and storing network packets at maximum rates, two
potential application points for PCI passthrough appear: the NIC and the RAID
controller. Specifically, write throughput performance results obtained when
mapping the RAID controller card in a VM via PCI passthrough were shown in
Table 6.1. Note that, in this configuration, the RAID volume is directly managed
by the VM. Results show that mapping the RAID controller via PCI passthrough
provides write throughput comparable to the bare-metal scenario. Importantly,
although virtio results may present a slightly higher average throughput, they
also present a higher variance as shown by the 0.99 confidence intervals for the
mean.

Capture
engine

% of packets processed
BM PT

64 B CAIDA 64 B CAIDA
ixgbe 2.7 100 1.9 62.7

PF RING 100 100 100 100
DPDK 100 100 100 100

HPCAP 97.9 100 85.2 100

Table 6.2: Percentage of packets captured for different traffic
patterns in a fully-saturated 10 Gb/s link obtained by different
solutions in a bare-metal (BM) and PCI passthrough (PT) config-
uration

Alternatively, Table 6.2 shows the performance results when capturing the

Vı́ctor Moreno Martı́nez 159

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

incoming packets in a virtual machine with the NIC mapped via PCI passthrough.
Those results were obtained when capturing traffic from a fully-saturated link in
both the worst-case (with minimal-sized packets) and an average-case, using
the default ixgbe, PF_RING, Intel’s DPDK and HPCAP drivers. The amount of
packets captured by ixgbe falls from 2.7% under the bare-metal configuration
to 1.9% using PCI pass-through in the worst-case scenario, and from 100%
to 37.3% when replaying the previously mentioned CAIDA trace. On the other
hand, PF_RING and Intel DPDK show no performance degradation when used
via PCI passthrough, as they capture 100% of the packets on all scenarios.
When it comes to HPCAP, packet capture performance is damaged when using
PCI pass-through in the worst-case scenario, in which the amount of packets
captured falls from 97.9% to 85.2%. The performance penalty experienced when
introducing PCI passthrough can be blamed on the execution of the capture
software over a virtual machine.

6.2.4 PCI virtual functions

Note that, using PCI passthrough for mapping I/O devices to VMs has an in-
herent constraint: only one VM can make use of each mapped I/O device. Thus,
PCI passthrough presents a scalability problem when increasing the amount of
VMs in use that can only be solved by adding additional PCI devices which is
also limited, as the amount of PCIe slots a server has is limited. With the goal
of promoting virtualization performance and interoperability the PCI Special In-
terest Group developed a series of standards, which they called Single-Root I/O
Virtualization (SR-IOV). Those standards use the term PF (Physical Function)
when referring to a PCI device connected to a physical PCI slot. They also in-
troduce the concept of VF (Virtual Function) as a way for PCI devices to offer
a lightweight register interface for managing part of the data interchanged with
the physical PCI device. A VF is a lightweight PCI device, that is, it has an I/O
memory area assigned to it with a set of control-related registers that allow the
end system to use the VF as a regular PCI (usually with a reduced functional-
ity). Importantly, the driver managing this new virtual device is usually different
from the one managing the corresponding physical device, as it must be aware
of the peculiarities the virtual device presents. After creating the corresponding
VF, they could be mapped by a VM via PCI passthrough just as if they were
purely physical devices. This configuration is represented in Fig. 6.3(c). A rele-
vant advantage of VF over PF is that, depending on the underlying hardware, a
single PF can be attached to a number of VF. This behavior allows the system
manager to solve the scalability issue by attaching new virtual machines to new
VF without needing to increase the amount of hardware in the system.

A device supporting this feature is Intel’s 82599 and its more recent versions,

160 Tuning modern architectures for high-performance networking

6.2. VIRTUALIZED ENVIRONMENTS AND I/O PROCESSING

but we had no access to a RAID controller card supporting VF when we carried
out our experiments. Those NICs refer to their VF by introducing the concept of
Virtual Machine Device Queues (VMDq), and have a 1-to-1 correspondence with
the VF instantiated. Through a set of hardware registers, the system manager
can configure the way the incoming traffic is distributed or replicated to each VF.
Note that this configuration allows connecting an arbitrary number of VMs to a
single physical device. The amount of virtual functions generated per physical
device is limited by the hardware device, being this limit 32 for our Intel 82599
adapter. As mentioned above, only VF-aware drivers can be used to manage
the NIC’s VF, which limits the amount of capture engines available. Specifically,
Intel’s DPDK has native support for working with VF, and they also supply a
VF-aware counterpart to the ixgbe driver, named ixgbevf. Additionally, we
developed a VF-aware version of HPCAP, that we named HPCAPvf, following all
the design principles that guided HPCAP’s design [MSdRR+14a]. Those three
drivers have consequently been the only ones we have been able to test for their
use with VF.

VF
generator

Capture
Engine

% of packets
captured

ixgbe
ixgbevf 0.1
DPDK 37.6

HPCAPvf 36.3

DPDK
ixgbevf 1.0
DPDK 100.0

HPCAPvf 82.7

Table 6.3: Packet capture performance obtained when capturing
from a 10 Gb/s link fully-saturated with 64-byte packets using
VF for different VF-generators

On the other hand, the task of creating and managing the VFs belongs to the
driver managing the physical device. Above all the drivers previously mentioned
capable of managing a physical NIC, only Intel’s ones offer this feature. Con-
sequently, when using VF only ixgbe and Intel DPDK are eligible. Importantly,
the choice among those two drivers for generating the VF has an impact on the
performance obtained by possible network applications running inside the VMs.
Table 6.3 shows the effect of such choice when using different VF-aware for
packet capturing in the worst-case scenario, that is a fully-saturated 10 Gb/s with
64-byte packets. Results show that using DPDK as VF generator improves the
packet capture performance obtained from the VM side compared to the perfor-
mance when using ixgbe for generating those VF. Specifically, when capturing
packets in a VM using the ixgbevf driver using DPDK as VF generator raises
the amount of packets captured from 0.1% to 1%. In a similar manner, when
using DPDK and HPCAPvf in the VM side with ixgbe as VF generator, only

Vı́ctor Moreno Martı́nez 161

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

ixgbevf HPCAPvf DPDK
0

20

40

60

80

100

Capture engine

%
 o

f
c
a

p
tu

re
d

 p
a

c
k
e

ts

64−byte (1 VF)

CAIDA trace (1 VF)

64−byte (2 VF)

CAIDA trace (2 VF)

Figure 6.4: Packet capture performance obtained by different VF
alternatives when capturing different traffic in a fully-saturated
10 Gb/s link

37.6% and 36.3% are respectively captured, but those figures are increased to
100% and 82.7% respectively when DPDK is used as VF generator.

When instantiating several VF through a single physical interface, the default
traffic distribution policy is based on the MAC and IP addresses of each VM’s in-
terface the VF are connected to. Thus, each VF would only receive the traffic
targeted to its corresponding VM. This would limit the use of this VF approach
in scenarios where different network applications running on independent VMs
need to be fed the same input traffic, which is the desirable case for scalable net-
work monitoring. However, NICs such as Intel’s 82599 supply a set of registers
controlling packet mirroring and Multicast Promiscuous Enable (MPE) for each
PF allowing to redirect the traffic assigned to a certain VF to another one. By
enabling those options, any VF could receive all the traffic traversing the physical
device, or the traffic corresponding to a different VM, regardless it is targeted to
its VM or not. Note that enabling those features in the Intel 82599 NIC implies
a hardware-level packet replication, which minimizes the impact on the capture
process’ performance. Depending on the physical driver used to generate the
NIC’s VFs, activating the packet mirroring and MPE bits may be done by tun-
ing the driver’s source code (that is the case when using ixgbe for generating
the VFs) or by using a user-level application giving access to the NIC’s registers
(such as the testpmd application offered by Intel’s DPDK).

162 Tuning modern architectures for high-performance networking

6.2. VIRTUALIZED ENVIRONMENTS AND I/O PROCESSING

Importantly, if several VMDqs are to be fed the same incoming packets, the
NIC will have to issue additional copies for each additional VMDq, and overall
packet capture performance may be degraded. This effect is shown in Fig. 6.4:
adding a second VF to each physical device reduces the overall packet capture
throughput obtained. When using ixgbevf the amount of packets captured
is 1% when using either one or two VFs in the worst-case scenario, but falls
from 34.2% with one VF to 14.8% with two when replaying the CAIDA trace.
Intel DPDK also suffer performance loss as it is capable of capturing all of the
packets in both scenarios when only one VF is instantiated, but it captures 50.8%
of the 64-byte packets and 83.0% of the CAIDA ones when two VFs are used.
Finally, HPCAP’s performance falls in both cases: from 74.3% to 44.1% in the
worst case and from 100% to 82.7% for the CAIDA trace.

Vı́ctor Moreno Martı́nez 163

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

6.3 Virtual network probe

Now that the diverse possibilities for mapping I/O devices into virtual ma-
chines have been explored, it is time to apply this knowledge in real-life scenar-
ios.

The first use case we consider is the instantiation of that we called VNP
(Virtual Network Probe): that is, a virtual machine that will be able to both capture
the desired network’s packets and store them into non-volatile storage. A virtual
probe will thus have to simultaneously deal with network and disks I/O system
in the most efficient way. Importantly, this virtual probe should be instantiated
in a new virtual machine independent from the already running ones. Note that
the possibility of completely acquiring each of the network and storage devices
will be decisive when choosing the I/O virtualization alternative for each device.
For example, PCI passthrough for network I/O will only be feasible if there are
unused NIC in the system. Otherwise a VF must be used, but that means that
the system manager left a VF free for the probe, or a driver re-installation may
be required.

Amongst the results shown in the previous section, there are two possibil-
ities for mapping each I/O source to a VM: the NIC could be mapped via PF
passthrough or by creating a VF and using passthrough to connect it to the VM;
while the RAID controller card could be paravirtualized with virtio or mapped
via PF passthrough. The performance results for each of the possible combina-
tions compared to the bare-metal case are summarized in Table 6.4. Note that in
terms of packet capture, minimal-sized packets represents the worst-case sce-
nario as the amount of packets per second will be maximal, while in terms of
storage the bigger the packets are the higher the effective data throughput will
be.

164 Tuning modern architectures for high-performance networking

6.3.
V

IR
T

U
A

L
N

E
T

W
O

R
K

P
R

O
B

E

I/O configuration Capture
engine

% of packets processed
64-byte packets CAIDA trace

Network Storage Capture
only

Capture
and storage

Capture
only

Capture
and storage

Bare-metal
DPDK 100.0 95.8 100.0 100.0

HPCAP 97.9 95.7 100.0 100.0

PT
PT

DPDK 100.0 97.6 100.0 100.0
HPCAP 85.2 82.3 100.0 100.0

VirtIO
DPDK 100.0 95.3 100.0 100.0

HPCAP 85.2 82.8 100.0 100.0

VF
PT

DPDK 100.0 94.2 100.0 100.0
HPCAPvf 82.7 82.6 100.0 100.0

VirtIO
DPDK 100.0 68.0 100.0 100.0

HPCAPvf 82.7 82.3 100.0 100.0

Table 6.4: Percentage of packets processed for diverse virtual I/O configurations in a network probe for packet capture
only and packet capture and storage

V
ı́ctorM

oreno
M

artı́nez
165

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

Table 6.4 shows light performance degradation when capturing and storing
the traffic with respect to the capture only case. This effect is due to the synchro-
nization logic that has to be added between the capture and storage processes.
As a consequence of being designed with the capture and storage goal in mind,
HPCAP suffers a lighter degradation than Intel’s DPDK, but still obtaining worse
results when instantiated in a virtual machine in the worst-case scenario. Im-
portantly, the use of the storage system mapped via virtio seems to entail
the biggest performance degradation, specially when used in combination with
Intel’s DPDK managing network virtual functions. Additionally, the use of PCI
VFs imposes a relevant performance degradation regardless the capture engine
used of up to 5% more packets lost.

Network managers and practitioners will find the results of Table 6.4 useful,
as each combination has different interesting properties that may be required
in a specific situation. Nevertheless, in light of the results obtained we remark
that the best capture and storage results in a virtual machine are obtained when
both I/O resources are mapped to the VM via PF passthrough. Thus, this is the
configuration we recommend when instantiating a maximum-performance VNP,
as shown in Fig. 6.5. Different configurations to the ones studied along this work
but as already mentioned they either lead to poorer performance or focus on
inter-VM communication rather than network-to-VM.

166 Tuning modern architectures for high-performance networking

6.3. VIRTUAL NETWORK PROBE

Physical commodity server

Virtual
Machine N

Virtual
Machine 1

RAID controller

Physical
driver

User
application

Network
application User

level

Kernel
level

Hypervisor__

PC
I slot

User
application

NIC

Physical
driver

PC
I slot

Analyzed network

NIC

SPAN
port

Physical
driver

PC
I slot

Figure 6.5: Example deployment of a virtual network probe
(VNP)

Vı́ctor Moreno Martı́nez 167

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

6.4 Virtual network monitoring agent

As a different use-case, we propose the creation of that we named a VNMA
(Virtual Network Monitoring Agent): the dynamic creation of a VM for a (probably
limited) period of a time that may monitor all the traffic arriving to the NIC, a
subset of it, or even the traffic generated by other VMs. The way we have defined
our VNMA necessarily requires the network device to create a VF to be attached
to such VNMA. This approach, based on the instantiation of several VFs when
loading the NIC’s physical driver allows instantiating several VMs in the same
physical server whose traffic would be isolated from one to the other. Once
everything is set, our VNMA could be deployed and configured so that it receives
the desired traffic: the one not directed to the other VFs, the one to/from a certain
set of VFs, or all of it.

The potential of this approach is that we can have a physical server hosting
several VMs carrying out different tasks, e.g. an Apache server, an OpenFlow
switch, or a certain network application using a VF-aware high-performance cap-
ture engine; and instantiate our VNMA for passively monitoring those VMs or the
network itself without interfering on the other tasks. This scenario is depicted in
Fig. 6.6. The only requirement for this system to work is to force all the VMs to
work with VF-aware devices. As this is automatically done by Linux, this should
not represent a severe requisite and allow even legacy applications to be triv-
ially migrated. This approach may seem specially useful for those companies
providing cloud or virtual computing services.

Let us assume for a while that we have a physical server with one or more
active VMs receiving traffic from a 10 Gb/s. We also assume that that the traf-
fic traversing the 10 Gb/s is equally distributed between all the active virtual
machines, e.g. if there are tree VMs each one will receive 3.3 Gb/s. In this sce-
nario, we want to instantiate a VNMA capable of monitoring the traffic traversing
the link and, in particular, addressed to the rest of VMs. As it was explained
when presenting the concept of VF, Intel’s 82599 NIC allows creating mirroring
rules so that the each packet can arrive to its corresponding VM and up to one
more VF. However, this replication process is done at NIC level, consuming time
and memory resources. Consequently, if the number of packets to be replicated
is high the capture performance of our VNMA will be lower to the ones obtained
when using one VF for capturing non-replicated traffic (the ones in Table 6.4).
That is the effect shown by the results included in Table 6.5: although with only
one VM and the VNMA active each of them should receive 100% of the incom-
ing traffic, they receive 44.0% of it. Similarly, the amount of traffic captured with
more VMs is reduced in the VNMA side, as packet replication has to be done
from several sources. Those results have been carried out for packet capture
only using Intel’s DPDK (although the results are similar for HPCAPvf) in order

168 Tuning modern architectures for high-performance networking

6.4. VIRTUAL NETWORK MONITORING AGENT

Physical commodity server

Virtual
Machine N

Virtual
Machine 3

Virtual
Machine 2

Virtual
Machine 1

SR-IOV
NIC

Physical driver
(VF generator)

PCI slot

Web
server M3OMon

[MSdRR+14a]

ixgbevf ixgbevf DPDK /
HPCAPvf HPCAPvf

User
level

Kernel
level

 Hypervisor

Customized application:
software router,

OpenFlow switch,...

MRTG flow
records packets

Physical
driver

RAID controller

PCI slot

Figure 6.6: Example deployment of a virtual network monitor-
ing agent (VNMA)

to illustrate the packet replication effect on performance. Results in Table 6.5
refer only to the worst packet-capture scenario, i.e., 64-byte packets.

VMs
% of packets processed

VNMA in NUMA 0 VNMA in NUMA 1 Theoretical
VNMA VMs VNMA VMs VNMA VMs

1 VM 44.0 44.0 41.8 41.8 100.0 100.0
2 VMs 31.3 15.6 42.1 21.0 100.0 50.0
3 VMs 30.4 10.1 41.1 13.7 100.0 33.3

Table 6.5: VNMA packet capture performance varying the num-
ber of additional VMs hosted in the same server and the NUMA
node where the VNMA is attached to with minimal-size traffic

Table 6.5 shows another interesting effect, as is the placement of the VMs
and the VNMA in terms of the NUMA node they are executed on. In the results
obtained along the previous sections, the VMs where always attached to NUMA
node 0 as both the NIC and the RAID controller card are connected to this node
and thus performance would be maximal. Note that, as we have assumed that
the performance power of our VNMA has to be greater than the one of each
VM, we place the VNMA in a NUMA node alone using the six cores available,
and we place the rest of VMs in the opposite NUMA node with two cores per

Vı́ctor Moreno Martı́nez 169

NETWORK MONITORING IN VIRTUALIZED ENVIRONMENTS

VM. As in those experiments one packet has to be addressed to each NUMA
node, i.e., one to its corresponding VM and its copy to the VNMA, it could be
thought that the NUMA placement policy is irrelevant. However, when packet
replication is involved performance is favored when the VFs whose packets are
to be replicated are mapped to VMs in the NUMA node closest to the NIC. This
effect is also appreciated in the results for packet capture and storage, which
are presented in Table 6.6. Note that, in this case the RAID controller card is
also connected to NUMA node 0, but no node change is required for the VNMA
because the amount of packets captured is far from the RAID’s performance
limits.

Being conscious of the performance degradation issue related to the packet
replication effect, Table 6.6 shows the performance results for packet capture
and storage for both Intel’s DPDK and HPCAPvf. In this case, results do not
change with the policy used to map the RAID controller and so it is not included
in the table for simplicity. The experiments shown in this table have been carried
with three VMs and the VNMA simultaneously active. Importantly, as the packet
replication effect greatly damages packet capture performance, the results ob-
tained for packet capture and storage are similar to those for packet capture
only.

Capture
engine

VNMA’s
NUMA node

% of packets processed
64-byte packets CAIDA trace

DPDK
0 22.8 38.4
1 50.4 76.8

HPCAPvf
0 30.7 48.0
1 47.4 76.7

Table 6.6: VNMA capture and storage performance varying the
traffic, the VF-aware capture engine used and the NUMA node
where the VNMA is attached to

Note that the results offered in along this section refer to worst-case scenar-
ios in which packet replication inflicts maximal performance degradation. Per-
formance results near to the ones shown in Table 6.4 can be obtained if the
configuration of the incoming is such that only a small fraction of it is targeted to
the VMs in the same physical server and thus packet replication effect is mini-
mized, which would be the case for real-life scenarios. Specifically, performance
results prove the feasibility of our VNMA proposal to work in real scenarios with
1 Gb/s networks or under-used 10 Gb/s networks.

170 Tuning modern architectures for high-performance networking

6.5. CONCLUSIONS

6.5 Conclusions

The results obtained along the experiments presented in this work assess
the feasibility of migrating the usage of high-performance packet capture engines
into virtualized environments. We have discussed the different configurations by
which an I/O device can be used inside a virtual machine, and obtained the per-
formance bounds for each of those configurations. Experimentation has allowed
us to identify the different bottlenecks that may arise in a variety of network pro-
cessing virtualized scenarios. Moreover, we have given a set of guidelines that
allow exploiting the functionality of generating virtual network functions, enabling
a set of interesting scenarios. Differently from PCI passthrough, the use of VF
allows end-users to scale in the amount of network applications running on a sin-
gle hardware, with the consequent saving in terms of space, cooling and power
consumption.

We have presented a set of solutions available for use under GNU Linux
and, in the case of HPCAP and Intel DPDK, accessible as free software. As
an additional contribution, we have developed HPCAPvf, a VF-aware version of
HPCAP, offering a set of interesting features and capabilities. HPCAPvf may be
used in any Linux distribution with kernel version newer than or equal to 2.6.32
without modifying nor kernel nor hardware configuration. Furthermore, we have
made available the source code of HPCAPvf under a GPL license1.

1https://github.com/hpcn-uam/HPCAP

Vı́ctor Moreno Martı́nez 171

https://github.com/hpcn-uam/HPCAP

7
Conclusions and future
work

This chapter has the purpose of highlighting and summarizing the
main results of this PhD. thesis. That includes the practical implica-
tions, the divulgation results and the industrial applications of this
work. Finally, a set of future work paths are presented as possible
continuations of this work.

The use of off-the-shelf systems on high-performance networked tasks has
opened an exciting scenario, on which this thesis has been focused. Thus, the-
sis has been oriented to achieve that any network task can be carried out by a
flexible, extensible, adaptable and even inexpensive system. Examples of these
tasks that have been enriched of this novel paradigm are applications such as
software routers, anomaly and intrusion detection, traffic classification, and VoIP
monitoring. Unfortunately, the development process of a high-performance net-
working task on commodity hardware from its foundation stone may result a non-
trivial process composed of a set of thorny sub-tasks, each of which presents
fine-tuned configuration details. In this light, this work has aimed at providing
practitioners and researchers with a road-map to the exploration of this useful
paradigm. Specifically, this thesis has contributed to the field in the following
ways:

1. An extensive guide for researchers and practitioners to understand the
main challenges that a general-purpose high-performance network appli-
cation must face has been provided. Furthermore, a detailed description
and guide has been given for each of the state-of-the-art alternatives. With
this information, future users will find it easier to choose the existing solu-
tion that best fits their needs, or even to develop their own solution from
scratch.

CONCLUSIONS AND FUTURE WORK

2. The research community has been alerted about the counterparts that
some high-performance network processing solutions may entail, such as
timestamping inaccuracy. Additionally, an extensive set of performance
evaluation metrics have supplied, some of them showing that a proper
hardware tuning can greatly improve the performance experienced by stan-
dard solutions.

3. The HPCAP engine provides accurate packet timestamping, line-rate packet
storage and duplicate removal with minimal interference. Furthermore,
the buffer-oriented architecture of HPCAP has been created in order to
pipeline the process carried out over each packet, so that part of the pro-
cess is carried out at kernel level and the rest is made at user-level. This
pretends to alleviate the strict timing constraints existing when doing some
computational task over each incoming packet in a high-speed network.
Extensive performance and functional assessment studies have been car-
ried out, in order to provide a solid validation of the developments made.

4. A multi-granular multi-purpose framework has been built on top of HPCAP.
With the help of M3OMon, network developers may easily develop new
high-performance applications feeding from different data sources with di-
verse aggregation profiles, namely: network packets, flow records or time
series.

5. The feasibility of migrating the knowledge acquired in physical environ-
ments to virtual ones has been assessed, and the overhead implied by the
application of virtualization techniques has proven attractively low.

6. A NVF-compliant version of HPCAP, HPCAPvf, has been successfully de-
veloped and its performance bounds of limitations have been established.

7. In order to serve as a start point for the development of new applications,
as well as for the shake of repeatability, the software developments carried
out along this thesis work have been published under an Open-Source
license.

7.1 Results dissemination and
publications

(i) In Chapter 2 diverse hardware architectures for network processing were
presented, together with their pros and cons. Apart from their industrial and
academic application, the development of two network processing proto-
types, namely Argos and Twin−1, meant the acquisition of valuable ex-
perience both in terms of using diverse hardware architecture and some

174 Tuning modern architectures for high-performance networking

7.1. RESULTS DISSEMINATION AND PUBLICATIONS

fundamental requirements that a general-purpose network monitoring sys-
tem should address.

The results obtained in this chapters have directly led to the following publi-
cations:

• J. Garnica, V. Moreno, I. Gonzalez, S. Lopez-Buedo, F.J. Gomez-
Arribas and J. Aracil. ARGOS: A GPS Time-Synchronized Network
Interface Card based on NetFPGA. In 2nd North American NetFPGA
Developers Workshop, August 2010.
Non-indexed workshop.
• V. Moreno, J. Garnica, F.J. Gomez-Arribas, S. Lopez-Buedo, I. Gon-

zalez, J. Aracil, M. Izal, E. Magana and D. Morato. High-accuracy
network monitoring using ETOMIC testbed. In the 7th EURO-NF Con-
ference on Next Generation Internet (NGI 2011), June 2011.
Non-indexed conference.
• V. Moreno, F.J. Gomez-Arribas, I. Gonzalez, D. Sanchez-Roman, G.

Sutter, S. Lopez-Buedo. Comparativa del uso de HLLs en FPGA,
GPU y Multicore para la aceleracion de una aplicacion de red IP. In
the XI Edicion Jornadas de Computacion Reconfigurable y Aplica-
ciones (JCRA2011), September 2011. Non-indexed conference.

And also those results have led, in an indirect way, to the following publica-
tions:

• I. Csabai, A. Fekete, P. Haga, B. Hullar, G. Kurucz, S. Laki, P. Ma-
tray, J. Steger, G. Vattay, F. Espina, S. Garcia-Jimenez, M. Izal, E.
Magana, D. Morato, J. Aracil, F.J. Gomez, I. Gonzalez, S. Lopez-
Buedo, V. Moreno, J. Ramos. ETOMIC Advanced Network Monitor-
ing System for Future Internet Experimentation. In 6th International
Conference on Testbeds and Research Infrastructures for the Devel-
opment of Networks & Communities (TridentCom 2010), May 2010.
Non-indexed conference.
• V. Lopez, J.L. Anamuro, V. Moreno, J. Lopez de Vergara, J. Aracil, C.

Garcia, J.P. Fernandez-Palacios and M. Izal. Implementation of Multi-
layer techniques using FEDERICA, PASITO and OneLab network in-
frastructures. In the 17th IEEE International Conference on Networks
(ICON2011), December 2011. Conference rank: B (obtained from
the 2013 CORE Conference Ranking).

(ii) In Chapter 3 the limitations of both the default NIC driver and networking
stack were highlighted, and then, we detailed how to tune them to boost up
performance. Fortunately, the research community has presented different
solutions, named packet captures engines, that have put in practice these
tunings and directly provide application layers developments with captured

Vı́ctor Moreno Martı́nez 175

CONCLUSIONS AND FUTURE WORK

packets, thus saving much of the effort to manage and understand low-level
interactions. In this light, it has been thoroughly explained how these en-
gines work, pinpointed the most appropriate ones according to a trade-off
between performance and different user requirements, which is summa-
rized in a quantitative way in Fig. ??.

Importantly, a guide to easily set up any packet capture engine has been
provided in Appendix A. This guide includes a number of code examples
through which those practitioners not interested on low-level details but on
developing applications over commodity hardware may rapidly achieve re-
markable competence on the area.

Finally, the most successful systems based on these novel capture engines
which have achieved not only remarkable performance results, but also be-
come commercial solutions, have been studied and listed. First, this study
allows us to provide newcomers to the application-layer development with
a set of advices to ease their work on this area. And second, we have
presented a detailed state-of-the-art of implementations already in place
that may turn out useful for comparison purposes, setting of current perfor-
mance bounds and as a catalyst for the arrival of new applications based
on this paradigm.

The results obtained in this chapters have directly led to the following publi-
cation:

• V. Moreno, J. Ramos, P.M. Santiago del Río, J.L. Garcia-Dorado, F.J.
Gomez-Arribas and J. Aracil. Commodity Packet Capture Engines:
tutorial, cookbook and applicability. In IEEE Communications Sur-
veys & Tutorials, accepted for publication.
Journal impact factor: 6.490. Journal rank: 2/78 (Q1). Category:
Telecommunications (obtained from the 2013 JCR).

And also those results have led, in an indirect way, to the following publica-
tion:

• J.L. Garcia-Dorado, F. Mata, J. Ramos, P.M. Santiago del Río, V.
Moreno, and J. Aracil . High-performance network traffic processing
systems using commodity hardware. In Lecture Notes in Computer
Science, vol. 7754, Springer Berlin Heidelberg, 2013.
Non-indexed publication.

(iii) Chapter 4 has presented our proposal for the high-performance network
processing problem, and one of the main contributions of this thesis, which
is the HPCAP packet capture engine. Specifically, this capture engine has
been made accessible under a Open-Source code license, an can be found
on the Github website [HPC15]. This chapter has not been devoted only to
a functional description of HPCAP, but also to an evaluation of the diverse

176 Tuning modern architectures for high-performance networking

7.1. RESULTS DISSEMINATION AND PUBLICATIONS

features that distinguish HPCAP among other approaches, which are: ac-
curate packet timestamping, high-performance network traffic storage and
the possibility of duplicated packets removal.

The results obtained in this chapter have directly led to the following publi-
cations:

• V. Moreno, P.M. Santiago del Río, J. Ramos, J.J. Garnica, and J.L.
Garcia-Dorado. Batch to the future: Analyzing timestamp accuracy
of high-performance packet I/O engines. On IEEE Communications
Letters, 16 (2012), no.11, 1888.1891.
Journal impact factor: 1.160. Journal rank: 30/78 (Q2). Category:
Telecommunications (obtained from the 2012 JCR).

• V. Moreno, P.M. Santiago del Río, J. Ramos, J.L. Garcia-Dorado, I.
Gonzalez, F.J. Gomez-Arribas and J. Aracil. Packet storage at multi-
gigabit rates using off-the-shelf systems. On the 16th IEEE Interna-
tional Conference on High Performance Computing and Communica-
tions (HPCC 2014), August 2014.
Conference rank: B (obtained from the 2014 CORE Conference Rank-
ing).

• V. Moreno, J. Ramos, J.L. Garcia-Dorado, I. Gonzalez, F.J. Gomez-
Arribas and J. Aracil. Testing the capacity of off-the-self systems to
store 10GbE traffic. Submitted to the Network Testing Series of IEEE
Communications Magazine.
Journal impact factor: 4.460. Journal rank: 3/78 (Q1). Category:
Telecommunications (obtained from the 2013 JCR).

(iv) Chapter 5 presents M3OMon as a framework built on top of HPCAP pro-
viding final users with an easy way of deploying new network applications
feeding from up to three sources of network data: packets, flow records,
or time series. A thorough and exhaustive performance evaluation on the
capabilities offered by this framework is also presented, showing the feasi-
bility of building line-rate applications on top of it. The M3OMon framework
has also been made available under an Open-Source license in the sam-
ples folder of the HPCAP’s GitHub repository [HPC15].

The results obtained in this chapter have directly led to the following publi-
cation:

• V. Moreno, P.M. Santiago del Río, J. Ramos, D. Muelas, J.L. Garcia-
Dorado, F.J. Gomez-Arribas, and J. Aracil. Multi- granular, multi-
purpose and multi-Gb/s monitoring on off-the- shelf systems. On In-
ternational Journal of Network Management, 24 (2014), no. 4, 221-
234.
Journal impact factor: 0.517. Journal rank: 60/78 (Q4). Category:

Vı́ctor Moreno Martı́nez 177

CONCLUSIONS AND FUTURE WORK

Telecommunications (obtained from the 2013 JCR).

And also those results have led, in an indirect way, to the following publica-
tion:

• J. L. Garcia-Dorado, P.M. Santiago del Río, J. Ramos, D. Muelas,
V. Moreno, J.E. Lopez de Vergara, and J. Aracil. Low-cost and high-
performance: VoIP monitoring and full-data retention at multi-Gb/s
rates using commodity hardware. On International Journal of Network
Management, 24 (2014), no. 3, 181-199.
Journal impact factor: 0.517. Journal rank: 60/78 (Q4). Category:
Telecommunications (obtained from the 2013 JCR).

(v) Finally, Chapter 6 has been focused on the application of the knowledge and
tools acquired in the previous parts of this thesis, in the Network Function
Virtualization philosophy. Specifically, this chapter has been devoted to the
study of under which circumstances high-performance network processing
can be achieved in virtualized scenarios, supported by an extensive set of
tests. Furthermore, this chapter also contributes to the research community
by spreading the availability under an Open-Source license of HPCAPvf on
GitHub [HPC15].

The results obtained in this chapter have directly led to the following publi-
cation:

• V. Moreno, R. Leira, I. Gonzalez, F.J. Gomez-Arribas. Towards high-
performance network processing in virtualized environments. Submit-
ted to the 17th IEEE International Conference on High Performance
and Communications (HPCC2015).
Conference rank: B (obtained from the 2014 CORE Conference Rank-
ing).

178 Tuning modern architectures for high-performance networking

7.2. INDUSTRIAL APPLICATIONS

7.2 Industrial applications

The results of this thesis work have not been restricted to the research and
academia fields, but have also had a direct impact in industrial environments.
This has been possible due to the existence of synergies between Spanish Uni-
versities and companies, with the aim of promoting technology transfer actions.
In this case, the results of this work are being applied and delivered by Naudit
HPCN S.L. [Nau15]. Naudit HPCN is a technology-base startup company cre-
ated as a spin-off of two Spanish public universities: the Universidad Autónoma
de Madrid (UAM) and the Universidad Pública de Navarra (UPNA). It is included
as part of the Campus of International Excellence initiative [UAM].

Through Naudit HPCN, it has been possible to carry out several innovation
and technology transfer projects, which have, up to date, involved clients such as
the Spanish Ministry of Industry and the Spanish National Post and Telegraph
Society (Correos); Internet service providers such as Telefónica-Movistar and
British Telecom; or banking institutions as BBVA Latin-America, Banco Popular
and Inversis.

More specifically, the results of this work have been applied into industrial
scenarios:

(i) Network traffic storage: HPCAP has been deployed in several scenarios
in order to accomplish one of its main design goals: storing network traffic
from high-speed networks. It has been deployed in British Telecom, Banco
Popular, Banco Sabadell and the Spanish National Post and Telegraph So-
ciety.

(ii) Multi-granular network processing: the M3OMon framework has been in-
stalled, by means of its sample application, DetectPro (see 5.4.1), in sev-
eral places. Those places include the Latin-American network infrastructure
from BBVA Bank and the Spanish National Post and Telegraph Society.

(iii) Multi-media traffic analysis: the VoIPCallMon application (see 5.4.2), also
developed on top of HPCAP is currently being installed in Telefonica’s Latin-
American network.

(iv) GPU-based traffic management: Twin−1, the duplicate removal and traf-
fic distribution presented in 2.2.2 has been installed in Telefonica-Movistar
Imagenio’s (the operator’s name for their TV services) core network.

Vı́ctor Moreno Martı́nez 179

CONCLUSIONS AND FUTURE WORK

7.3 Future work

Several lines have been identified as possible continuation of the current
works:

• Supporting new NICs: there are some new NICs, from Intel and other
vendors, that should be supported in the future. Those NICs include inter-
esting features such larger descriptor rings, opening the possibility of en-
hancing system’s capture performance as well as more advanced Virtual-
Functions management. Furthermore, the results obtained along this the-
sis should also be applied in new NICs supporting higher link speeds: 40
Gb/s, 100 Gb/s and beyond.

• Optimized packet transmission: the HPCAP engine and all their deriva-
tions presented in this work are focused on packet reception. The same
low-level concepts that have explained along this thesis are also applica-
ble for packet transmission, and would thus be a natural continuation. In
fact, this continuation could be done following different paths, all of them
with interesting applications:

◦ Focusing on bandwidth: obtaining the maximum transmission band-
width when replaying a previously stored —big— network trace. This
would result extremely interesting for network stress-testing.

◦ Focusing on temporal accuracy: the higher the network speed is,
the tighter temporal constraints become and thus packet timing be-
comes a crucial aspect. Having an accurate way of defining packet
inter-departure time can become vital in order to reproduce network
failure scenarios.

◦ Synthetic traffic generation: diverse high-level applications require
not high-throughput traffic generations, but a high control over the
generated traffic. Creating a flexible system on top of HPCAP ca-
pable of generating traffic with diverse characteristics (packet-size,
quintuples, inter-departure times) can enhance low-intrusive active
network monitoring tasks.

• Further analysis on timestamping error sources: the dependence of soft-
ware timestamping techniques from the system’s clocks and scheduling
policies implies the appearance of several error sources in packet times-
tamping. A further study on the timescale in which those error are made
depending on several system-load factors could help developing a pol-
icy capable of telling the final user how loaded could their system be for
a certain level of accuracy. Moreover, we believe that timestamp error
have strong auto-correlations. Analysing the cyclic nature of those auto-
correlations could help deciding the maximum burdens in which timestamp

180 Tuning modern architectures for high-performance networking

7.3. FUTURE WORK

keeps a certain level of accuracy. This could be very interesting for ac-
tive monitoring techniques based on the transmission of pairs, batches or
trains of packet through a network.

• Discovering new virtualization possibilities: it is more common every-
day for new hardware devices to include function virtualization support.
We had no access to a SR-IOV RAID controller card during this study,
but we find interesting to complete our tests including this possibility in
our experimental repository. We also see interesting on exploring the
NFV-possibilities offered by other hardware alternatives such as FPGAs,
GPGUs, etc.

• Surpassing HPCAP’s current limitations: along this thesis the pros and
cons of HPCAP have presented. When applying our system in industrial
scenarios we realized the is still interesting work to be done:

◦ When HPCAP works with several NICs at the same time, the kernel
buffer memory limited is still 1GB. Although we made it easily config-
urable so the final user can decide the amount of memory dedicated
to each NIC, a drastic reduction on the buffers size has a negative
impact of the interface’s packet capture performance. Consequently,
we suggest to include support for defining the buffer regions using
Linux’s hugepages techniques, which could eliminate this restriction.

◦ If the network’s traffic to be stored is high, it can only be kept in the
non-volatile storage system for a short period of time. Consequently,
creating policies that allow deciding whether a packet’s data is inter-
esting to be stored or not, or even how much of each packet should
be stored can mean a significant difference.

Some of these future-work lines are, in fact, under development at the present
time.

Vı́ctor Moreno Martı́nez 181

8
Conclusiones y trabajo
futuro

Este capt́itulo tiene como objetivo subrayar y resumir los princi-
pales resultados alcanzados por esta tesis doctoral. Abarca por
tanto las implicaciones prácticas de dichos resultados, la divul-
gación cientı́fica llevada a cabo y las aplicaciones industriales de
este trabajo. Finalmente, se presentan una serie de posibles lı́neas
de trabajo que supondrı́an una continuación natural de esta tesis.

La utilización de elementos hardware estándar en tareas de procesamiento
de redes de alta velocidad ha abierto un escenario con muchas posibilidades.
El principal objetivo de la tesis ha sido demostrar que en este escenario incluso
la tarea más compleja puede ser llevada a cabo de una manera flexible, extensi-
ble y con un coste comedido. Ejemplos de tareas de red que se han favorecido
de este novedoso paradigma son róuters software, detección de anomalías e
intrusiones, clasificación de tráfico y monitorización de voz sobre IP. Desafortu-
nadamente, el proceso de desarrollo de una aplicación de red de altas presta-
ciones en hardware estándar desde cero resulta ser un proceso muy tedioso
que implica una serie de espinosas tareas, cada una de las cuales requiere lle-
var a cabo configuraciones a muy bajo nivel. En este contexto, este trabajo ha
pretendido allanar a aquellos investigadores y desarrolladores que lo deseen, el
camino que les permita explorar y explotar este mundo. Concretamente, esta
tesis ha contribuido al campo de las siguientes maneras:

1. Se ha creado una extensa guía dirigida a profesionales del sector e in-
vestigadores, con el objetivo de entender los principales retos a los que
una aplicación de procesamiento de tráfico de red debe enfrentarse hoy
en día. Adicionalmente, se ha llevado a cabo un estudio descriptivo y eva-
luación de cada una de las alternativas disponibles en el estado del arte.
Con la información aportada, potenciales usuarios tendrán una base de

CONCLUSIONES Y TRABAJO FUTURO

conocimiento sólido y de resultados empíricos que les ayudará a discernir
qué solución se ajusta más a sus necesidades, o incluso desarrollar su
propia solución.

2. Se ha alertado a la comunidad investigadora sobre los efectos colaterales
que algunas soluciones de procesamiento de tráfico de red a alta veloci-
dad llevan asociadas, como por ejemplo la falta de precisión en el mar-
cado temporal de los paquetes. También se han presentado experimen-
tos funcionales y de rendimiento que han demostrado que una modifi-
cación a bajo nivel en la configuración puede incrementar enormemente
el rendimiento de soluciones tradicionales de procesamiento de red.

3. El motor HPCAP ha sido diseñado con vistas a proveer un marcado de
tiempo de paquetes preciso, almacenamiento del tráfico a tasa de línea
y la eliminación de paquetes duplicados, con mínima interferencia tanto
a nivel funcional como de rendimiento. Adicionalmente, la arquitectura
orientada a buffers de HPCAP pretende segmentar el procesamiento lle-
vado a cabo sobre cada paquete, de manera que una parte recaiga a nivel
del kernel del sistema, y el resto a nivel de usuario. Esta filosofía pretende
aliviar en la medida de lo posible, las estrictas restricciones temporales
existentes para procesar cada paquete en redes de alta velocidad. Cada
una de las características distintivas red HPCAP han sido extensivamente
evaluadas y probadas, con vistas a proveer un sólido marco de referencia
para desarrollos futuros.

4. Se ha construido sobre HPCAP un marco de propósito general y de alto
rendimiento. Con la ayuda de M3OMon, los desarrolladores de aplica-
ciones de red podrán crear fácilmente aplicaciones que se alimenten de
distintas fuentes de datos de red: los propios paquetes, registros de flujos
o series temporales.

5. Se ha demostrado la posibilidad de migrar todo el conocimiento adquirido
para el procesamiento de tráfico de red en entornos físicos a entornos
de virtualización. También se ha comprobado empíricamente que el im-
pacto sobre el rendimiento experimentado por dicha migración puede ser
atractivamente bajo.

6. Se ha desarrollado HPCAPvf, una versión de HPCAP compatible con la
filosofía de virtualización de funciones de red, que se encuentra en pleno
apogeo hoy en día. Al igual que para la versión original, se han llevado
a cabo una serie de experimentos para evaluar los límites de rendimiento
de esta versión.

7. Con el fin de servir como punto de partida para el desarrollo de nuevas
aplicaciones así como para fomentar la reproducibilidad de los experimen-
tos presentados, los desarrollos software llevados a cabo en esta tesis se

184 Tuning modern architectures for high-performance networking

8.1. DISEMINACIÓN Y DIVULGACIÓN DE LOS RESULTADOS ALCANZADOS

han publicado bajo licencia de códio abierto.

8.1 Diseminación y divulgación de los
resultados alcanzados

(i) En el Capítulo 2 se han evaluado diferentes arquitecturas hardware para el
procesamiento de tráfico de red, junto con sus pros y sus contras. Aparte
de su aplicación industrial y en entornos de investigación, el desarrollo de
los prototipos de procesamiento de red Argos y Twin−1 han permitido
la adquisición de una valiosa experiencia en términos del uso de diversas
alternativas hardware así como requisitos fundamentales que cualquier sis-
tema de monitorización de red de altas prestaciones debería tener.

Los resultados obtenidos a lo largo de la elaboración de este capítulo han
generado, de forma directa, las siguientes publicaciones:

• J. Garnica, V. Moreno, I. Gonzalez, S. Lopez-Buedo, F.J. Gomez-
Arribas and J. Aracil. ARGOS: A GPS Time-Synchronized Network
Interface Card based on NetFPGA. In 2nd North American NetFPGA
Developers Workshop, August 2010.
Workshop no indexado.
• V. Moreno, J. Garnica, F.J. Gomez-Arribas, S. Lopez-Buedo, I. Gon-

zalez, J. Aracil, M. Izal, E. Magana and D. Morato. High-accuracy
network monitoring using ETOMIC testbed. In the 7th EURO-NF Con-
ference on Next Generation Internet (NGI 2011), June 2011.
Conferencia no indexada.
• V. Moreno, F.J. Gomez-Arribas, I. Gonzalez, D. Sanchez-Roman, G.

Sutter, S. Lopez-Buedo. Comparativa del uso de HLLs en FPGA,
GPU y Multicore para la aceleracion de una aplicacion de red IP. In
the XI Edicion Jornadas de Computacion Reconfigurable y Aplica-
ciones (JCRA2011), September 2011.
Conferencia no indexada.

Estos mismos resultados también han contribuido a la realización de las
siguientes publicaciones:

• I. Csabai, A. Fekete, P. Haga, B. Hullar, G. Kurucz, S. Laki, P. Matray,
J. Steger, G. Vattay, F. Espina, S. Garcia-Jimenez, M. Izal, E. Mag-
ana, D. Morato, J. Aracil, F.J. Gomez, I. Gonzalez, S. Lopez-Buedo,
V. Moreno, J. Ramos. ETOMIC Advanced Network Monitoring Sys-
tem for Future Internet Experimentation. In 6th International Confer-
ence on Testbeds and Research Infrastructures for the Development

Vı́ctor Moreno Martı́nez 185

CONCLUSIONES Y TRABAJO FUTURO

of Networks & Communities (TridentCom 2010), May 2010.
Conferencia no indexada.
• V. Lopez, J.L. Anamuro, V. Moreno, J. Lopez de Vergara, J. Aracil,

C. Garcia, J.P. Fernandez-Palacios and M. Izal. Implementation of
Multi-layer techniques using FEDERICA, PASITO and OneLab net-
work infrastructures. In the 17th IEEE International Conference on
Networks (ICON2011), December 2011.
Ranking de la conferencia: B (obtenida del Ranking de conferencias
CORE 2013).

(ii) En el Capítulo 3 se han identificado las limitaciones de procesamiento de
las NIC estándar, y se han detallado diversas alternativas para solventar
esas limitaciones. Afortunadamente, la comunidad investigadora ha pre-
sentado diversas soluciones, denominadas motores de captura, que han
puesto en práctica dichas optimizaciones para entregar los paquetes cap-
turados a la capas de aplicación, ahorrando el esfuerzo computacional que
supone comprender y gestionar las interacciones a bajo nivel implicadas.
En este contexto, se ha explicado en detalle el funcionamiento de estos
motores de captura, subrayando las características de cada uno de ellos
que se han resumido en témirnos cualitativos en la tabla 3.1. En adición
a esta comparativa, se ha elaborado un guía con las instrucciones bási-
cas requeridas para poner en marcha cada uno de los motores de captura
existentes, y que se incluye en el Apéndice A.

Finalmente, se ha presentado un resumen incluyendo los sistemas más re-
señables que se han desarrollado sobre los motores de captura existentes.
Este estudio permite, en primer lugar, que los recién llegados al desarrollo
de aplicaciones de red se encuentre con un conjunto de experiencias de
uso que le resultarán de gran utilidad. En segundo lugar, este resumen
supone una referencia del estado del arte existente en el campo, estable-
ciendo los límites de procesamiento actuales y sirviendo como catalizador
de futuros desarrollos.

Los resultados obtenidos a lo largo de la elaboración de este capt́itulo han
generado, de forma directa, la siguiente publicación:

• V. Moreno, J. Ramos, P.M. Santiago del Río, J.L. Garcia-Dorado, F.J.
Gomez-Arribas and J. Aracil. Commodity Packet Capture Engines:
tutorial, cookbook and applicability. In IEEE Communications Sur-
veys & Tutorials, accepted for publication.
Journal impact factor: 6.490. Journal rank: 2/78 (Q1). Category:
Telecommunications (obtained from the 2013 JCR).

Estos mismos resultados también han contribuido a la realización de la
siguiente publicación:

186 Tuning modern architectures for high-performance networking

8.1. DISEMINACIÓN Y DIVULGACIÓN DE LOS RESULTADOS ALCANZADOS

• J.L. Garcia-Dorado, F. Mata, J. Ramos, P.M. Santiago del Río, V.
Moreno, and J. Aracil . High-performance network traffic processing
systems using commodity hardware. In Lecture Notes in Computer
Science, vol. 7754, Springer Berlin Heidelberg, 2013.
Non-indexed publication.

(iii) El objetivo del Capítulo 4 es el de presentar nuestra propuesta para el
procesamiento de red de altas prestaciones y una de las principales con-
tribuciones de esta tesis, el motor de captura HPCAP. Dicho motor de cap-
tura se ha hecho accesible bajo una licencia de software libre en la página
web GitHub [HPC15]. El capt́itulo no se ha restringido a una descripción
funcional de HPCAP, sino que también ha llevado a cabo una evaluación de
las características que diferencias a HPCAP entre el resto de alternativas,
que son: el marcado preciso de paquetes, el almacenamiento de tráfico a
tasa de línea y la eliminación de paquetes duplicados.

Los resultados obtenidos a lo largo de la elaboración de este capítulo han
generado, de forma directa, las siguientes publicaciones:

• V. Moreno, P.M. Santiago del Río, J. Ramos, J.J. Garnica, and J.L.
Garcia-Dorado. Batch to the future: Analyzing timestamp accuracy
of high-performance packet I/O engines. On IEEE Communications
Letters, 16 (2012), no.11, 1888.1891.
Journal impact factor: 1.160. Journal rank: 30/78 (Q2). Category:
Telecommunications (obtained from the 2012 JCR).

• V. Moreno, P.M. Santiago del Río, J. Ramos, J.L. Garcia-Dorado, I.
Gonzalez, F.J. Gomez-Arribas and J. Aracil. Packet storage at multi-
gigabit rates using off-the-shelf systems. On the 16th IEEE Interna-
tional Conference on High Performance Computing and Communica-
tions (HPCC 2014), August 2014.
Ranking de la conferencia: B (obtenida del Ranking de conferencias
CORE 2014).

• V. Moreno, J. Ramos, J.L. Garcia-Dorado, I. Gonzalez, F.J. Gomez-
Arribas and J. Aracil. Testing the capacity of off-the-self systems to
store 10GbE traffic. Enviado al Network Testing Series of IEEE Com-
munications Magazine.
Journal impact factor: 4.460. Journal rank: 3/78 (Q1). Category:
Telecommunications (obtained from the 2013 JCR).

(iv) En el Capítulo 5 se presenta M3OMon, un marco de desarrollo constru-
ido a partir de HPCAP que provee una forma sencilla de crear y desple-
gar aplicaciones de red de alto rendimiento alimentándose de hasta tres
fuentes de datos de red: paquetes, registros de flujos y series temporales.
En el mismo capítulo se incluye también una exhaustiva evaluación del

Vı́ctor Moreno Martı́nez 187

CONCLUSIONES Y TRABAJO FUTURO

rendimiento ofrecido por este marco de desarrollo. M3OMon también se ha
publicado bajo licencia de software libre, y se encuentra dentro de la carpe-
ta de aplicaciones de ejemplo del repositorio de HPCAP en GitHub [HPC15].

Los resultados obtenidos a lo largo de la elaboración de este capt́itulo han
generado, de forma directa, la siguiente publicación:

• V. Moreno, P.M. Santiago del Río, J. Ramos, D. Muelas, J.L. Garcia-
Dorado, F.J. Gomez-Arribas, and J. Aracil. Multi- granular, multi-
purpose and multi-Gb/s monitoring on off-the- shelf systems. On In-
ternational Journal of Network Management, 24 (2014), no. 4, 221-
234.
Journal impact factor: 0.517. Journal rank: 60/78 (Q4). Category:
Telecommunications (obtained from the 2013 JCR).

Estos mismos resultados también han contribuido a la realización de la
siguiente publicación:

• J. L. Garcia-Dorado, P.M. Santiago del Río, J. Ramos, D. Muelas,
V. Moreno, J.E. Lopez de Vergara, and J. Aracil. Low-cost and high-
performance: VoIP monitoring and full-data retention at multi-Gb/s
rates using commodity hardware. On International Journal of Network
Management, 24 (2014), no. 3, 181-199.
Journal impact factor: 0.517. Journal rank: 60/78 (Q4). Category:
Telecommunications (obtained from the 2013 JCR).

(v) Finalmente, el capítulo 6 se ha centrado en la migración del conocimiento
previamente adquirido en entornos de ejecución físicos a entornos virtual-
izados. Concretamente, se ha estudiado bajo qué circunstancias el proce-
samiento de red puede realizarse utilizando plataformas virtuales, a través
de una serie de experimentos llevados a cabo. Adicionalmente, el desa-
rrollo a lo largo de este capt́itulo se ha materializado en la puesta a dis-
posición de cara a la comunidad científica de HPCAPvf bajo licencia de
software libre.

Los resultados obtenidos a lo largo de la elaboración de este capítulo han
generado, de forma directa, la siguiente publicación:

• V. Moreno, R. Leira, I. Gonzalez, F.J. Gomez-Arribas. Towards high-
performance network processing in virtualized environments. Submit-
ted to the 17th IEEE International Conference on High Performance
and Communications (HPCC2015).
Ranking de la conferencia: B (obtenida del Ranking de conferencias
CORE 2014).

188 Tuning modern architectures for high-performance networking

8.2. APLICACIONES INDUSTRIALES

8.2 Aplicaciones industriales

Los resultados de esta tesis doctoral no se han restringido a ámbitos acadé-
micos, sino que también han tenido impacto en entornos industriales. Esto ha
sido posible gracias a la existencia de sinergias entre las universidades españo-
las y las empresas, con el objetivo de fomentar iniciativas de transferencia tec-
nológica. En este caso, los resultados de este trabajo están siendo aplicados e
implantados a través de Naudit HPCN S.L. [Nau15]. Naudit HPCN es un startup
de base tecnológica creada como una spin-off de dos universidades púbicas:
la Universidad Autónoma de Madrid (UAM) y la Universidad Pública de Navarra
(UPNA). Además es parte de la iniciativa de Campus de Excelencia Interna-
cional de la UAM [UAM].

A través de Naudit HPCN, ha sido posible el desarrollo de diversos proyec-
tos de innovación y transferencia tecnológica que han implicado la participación
de entidades como el Ministerio Español de Industria, la Compañia Nacional
de Correos y Telégrafos (Correos); proveedores de servicio como Telefónica-
Movistar y British Telecom; o instituciones de banca como la división Latinoame-
ricana de BBVA, Banco Popular e Inversis.

En concreto, los resultados de este trabajo han sido aplicados en los si-
guientes escenarios:

(i) Almacenamiento de tráfico de red: HPCAP ha sido desplegado en diver-
sos escenarios con el fin de servir a uno de sus objetivos de diseño: el
almacenamiento de tráfico en redes de alta velocidad. Ha sido desplegado
en British Telecom, Banco Popular, Banco Santander y Correos.

(ii) Procesamiento de tráfico con múltiples granularidades: el marco de de-
sarrollo M3OMon ha sido instalado, por medio de una de sus aplicaciones,
Detect-pro (ver 5.4.1) en BBVA Latinoamérica y Correos.

(iii) Análisis de tráfico multimedia: la aplicación VoIPCallMon (ver 5.4.2) tam-
bién desarrollada sobre HPCAP, se encuentra instalada en la red Lati-
noamericana de Telefónica.

(iv) Gestión de tráfico basada en GPGPU: Twin−1, la aplicación de eliminación
de duplicados y distribución de tráfico presentado en 2.2.2 ha sido instalada
en la red de Imagenio de Telefónica-Movistar.

Vı́ctor Moreno Martı́nez 189

CONCLUSIONES Y TRABAJO FUTURO

8.3 Trabajo futuro

A la luz de los resultados obtenidos y de las experiencia adquirida a lo largo
del desarrollo de esta tesis, se proponen las siguientes líneas de trabajo fu-
turo:

• Soporte de nuevas NICs: nuevos desarrollos de NICs, tanto de Intel como
de otros fabricantes, tienen interesantes características que las hacen in-
teresantes de integrar en HPCAP en el futuro. Estas características in-
cluyen anillos de descriptores más grandes o un manejo más avanzado
de las funciones virtuales. Adicionalmente, los resultados aquí presenta-
dos pretenden servir de base para llevar a cabo desarrollos de mayores
prestaciones como tarjetas de 40 y 100 Gb/s.

• Emisión de paquetes optimizada: el motor de captura HPCAP y sus deriva-
dos se han centrado en la recepción de paquetes de red. No obstante, los
mismos conceptos aquí expuestos son aplicables a la hora de optimizar
la emisión de paquetes por la red. De hecho, esta configuración podría se
enfocada de diversas formas:

◦ Centrándose en el ancho de banda: obtener el máximo ancho de
banda a la hora de enviar trazas de paquetes previamente almace-
nadas. Esta aproximación es interesante para realizar pruebas de
stress de redes de comunicación.

◦ Centrándose en precisión temporal: cuanto más elevada sea la ve-
locidad de red, más elevadas se vuelven las restricciones tempo-
rales para el procesamiento de cada paquete, y la temporización
se vuelve un tema más crucial. Tener un método preciso de definir
tiempos entre la salida de los paquetes es vital con vistas a repro-
ducir escenarios de fallo en la red.

◦ Generación de tráfico sintético: diversas aplicaciones de alto nivel
no requieren la generación de tráfico con elevadas velocidades, sino
que requieren un alto control sobre el tráfico generado. Se propone
por tanto la creación de un sistema flexible sobre HPCAP que per-
mita reproducir tráfico con diversas características (tamaños de pa-
quetes, quíntuplas, tiempos entre salida de paquetes, ...), que sería
de gran utilidad para la realización de tareas de monitorización ac-
tiva de redes.

• Análisis de otras fuentes de error en el timestamp: la dependencia de las
técnicas de marcado de los relojes del sistema y las políticas de plani-
ficación del sistema suponen la aparición de diferentes fuentes de error.
Se propone realizar un estudio más profundo sobre las escalas de tiempo
en las que aparecen estos errores, dependiendo de diferentes factores

190 Tuning modern architectures for high-performance networking

8.3. TRABAJO FUTURO

de carga del sistema. Dicho estudio ayudaría en la elaboración de una
política que establezca una relación entre la carga del sistema y la pre-
cisión del marcado, de cara a que los usuarios finales sean conscientes
de los niveles en los que se encuentran. Asimismo, creemos que existe
una fuerte autocorrelación en los errores de marcado experimentados.
El análisis de esta naturaleza cíclica de las autocorrelaciones ayudaría a
decidir los intervalos de tiempo en los cuales se puede garantizar una pre-
cisión en el marcado. Este estudio sería muy atractivo de cara a técnicas
de monitorización activa basadas en el envío de pares, grupos, ó trenes
de paquetes en una red.

• Descubrimiento de nuevas posibilidades de virtualización: cada vez es
más común que los nuevos dispositivos hardware incluyan soporte para
virtualización. Concretamente, a lo largo de este estudio no se ha tenido
acceso a una controladora RAID con soporte para SR-IOV, pero conside-
ramos muy interesante completar nuestros experimentos incluyendo esta
opción. También se considera interesante la exploración de la posibili-
dades para NFV que ofrecen otras arquitecturas hardware como las FP-
GAs, GPGPUs, etc.

• Superar las limitaciones actuales de HPCAP: a lo largo de esta tesis se
han expuesto los pros y contras de HPCAP. Sin embargo, a la hora de
implantar HPCAP en entornos industriales hemos encontrado que todavía
hay trabajo importante que debe ser realizado:

◦ cuando HPCAP trabaja con varias NICs a la vez, el tamaño del
buffer a nivel del kernel sigue siendo de 1 GB. Aunque se ha hecho
que sea fácilmente configurable la repartición de ese buffer entre
las diferentes NIC activas con proporciones a elección del usuario,
la drástica reducción que supone en el tamaño del buffer tiene efec-
tos negativos en el rendimiento de la captura de las interfaces. Se
sugiere por tanto incluir soporte para definir regiones de buffer uti-
lizando las "hugepages" de Linux, que eliminaría esta restricción.

◦ Si la cantidad de tráfico de red que se desee guardar es elevada,
sólo se podrá mantener durante un corto periodo en los dispositivos
de almacenamiento. Por ello, se propone el desarrollo de políticas
que permitan decidir si los datos de un paquete son interesantes ó
no de almacenar, o incluso cuántos datos de cada paquete interesa
almacenar, y alargar por tanto el ciclo de vida de los datos con valor.

Algunas de las líneas de trabajo futuro presentadas ya se han empezado a
desarrollar.

Vı́ctor Moreno Martı́nez 191

Bibliography

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, A
view of cloud computing, Commun. ACM 53 (2010), no. 4, 50–
58. 1.1, 6

[AGMM12] G. Antichi, S. Giordano, D.J. Miller, and A.W. Moore, Enabling
open-source high speed network monitoring on NetFPGA, Pro-
ceedings of IEEE/IFIP Network Operations and Management
Symposium, 2012. 1.1

[ALN12] S. Alcock, P. Lorier, and R. Nelson, Libtrace: A packet capture
and analysis library, ACM SIGCOMM Computer Communication
Review 42 (2012), no. 2, 42–48. 1.1

[Bar97] M. Barabanov, A linux-based real-time operating system, Ph.D.
thesis, New Mexico Institute of Mining and Technology, 1997.
4.2.1

[BDKC10] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle, Com-
paring and improving current packet capturing solutions based
on commodity hardware, Proceedings of ACM Internet Measure-
ment Conference, 2010. 1.1, 4.3, 5.1, 6.1

[BDPGP12] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, On multi-
gigabit packet capturing with multi-core commodity hardware,
Proceedings of Passive and Active Measurement Conference,
2012. 3.3, 3.3.4

[BGPA14] N. Bonelli, S. Giordano, G. Procissi, and L. Abeni, A purely
functional approach to packet processing, Proceedings of the
Tenth ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (New York, NY, USA), ANCS ’14,
ACM, 2014, pp. 219–230. 3.3.4

[BRE+15] A. Beifuß, D. Raumer, P. Emmerich, T.M. Runge, F. Wohlfart,
B.E. Wolfinger, and G. Carle, A study of networking software in-
duced latency, 2nd International Conference on Networked Sys-
tems, 2015. 4.2.1

BIBLIOGRAPHY

[BRV09] T. Broomhead, J. Ridoux, and D. Veitch, Counter availability
and characteristics for feed-forward based synchronization, Pro-
ceedings of IEEE Symposium on Precision Clock Synchroniza-
tion for Measurement Control and Communication, 2009. 4.2.1

[BY96] M. Barabanov and V. Yodaiken, Real-time linux, Linux Journal
23 (1996). 4.2.1

[BYBF+12] M. Ben-Yehuda, E. Borovik, M. Factor, E. Rom, A. Traeger, and
B. Yassour, Adding advanced storage controller functionality via
low-overhead virtualization, USENIX Conference on File & Stor-
age Technologies (FAST), 2012. 6.2.2

[CAI] CAIDA, Traffic analysis research, http://www.caida.org/
research/traffic-analysis/ [14th April 2015]. 3.4.2

[CCA+11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.H. An-
derson, S. Brown, and T. Czajkowski, Legup: High-level synthe-
sis for fpga-based processor/accelerator systems, Proceedings
of the 19th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 2011. 2.1.2

[CCMO11] G. Costa, A. Cuzzocrea, G. Manco, and R. Ortale, Data de-
duplication: A review, Learning Structure and Schemas from
Documents (Marenglen Biba and Fatos Xhafa, eds.), Studies in
Computational Intelligence, vol. 375, Springer Berlin Heidelberg,
2011, pp. 385–412. 4.4

[CFH+10] I. Csabai, A. Fekete, P. Haga, B. Hullar, G. Kurucz, S. Laki,
P. Matray, J. Steger, G. Vattay, F. Espina, S. Garcia-Jimenez,
M. Izal, D. Morato E. Magana, J. Aracil, F.J. Gomez, I. Gonzalez,
S. Lopez-Buedo, V. Moreno, and J. Ramos, ETOMIC Advanced
Network Monitoring System for Future Internet Experimentation,
6th International Conference on Testbeds and Research Infras-
tructures for the Development of Networks & Communities (Tri-
dentCom 2010), 2010. 2.2.1

[CGS14] Y. Chen, J. Guo, and Z. Sun, CPU-GPU System Designs for
High Performance Cloud Computing, High Performance Cloud
Auditing and Applications, Springer Berlin, 2014. 2.1.3

[ČKB+10] P. Čeleda, R. Krejčí, J. Barienčík, M. Elich, and V. Krmíček,
HAMOC—hardware-accelerated monitoring center, Tech. Re-
port 9/2010, CESNET, 2010, http://http://archiv.
cesnet.cz/doc/techzpravy/2010/hamoc/, [14th April

194 Tuning modern architectures for high-performance networking

http://www.caida.org/research/traffic-analysis/
http://www.caida.org/research/traffic-analysis/
http://http://archiv.cesnet.cz/doc/techzpravy/2010/hamoc/
http://http://archiv.cesnet.cz/doc/techzpravy/2010/hamoc/

BIBLIOGRAPHY

2015]. 5.5

[CKS+09] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fer-
nandes, and D. Sadok, A survey on Internet traffic identification,
IEEE Communications Surveys & Tutorials 11 (2009), no. 3, 37–
52. 3.5.2

[Com14] NetFPGA Community, NetFPGA Project, 2014, www.
netfpga.org, [14th April 2015]. 2.1.2, 2.2.1, 3.1.1

[CRKH05] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux device
drivers, 3rd edition, O’Reilly Media, O’Reilly Media, 2005. 4.1.3

[DAF11] M. Daga, A.M. Aji, and W.C. Feng, On the efficacy of a fused
cpu+ gpu processor (or apu) for parallel computing, Application
Accelerators in High-Performance Computing (SAAHPC), 2011
Symposium on, 2011. 2.1.3

[DAR12] M. Dobrescu, K. Argyraki, and S. Ratnasamy, Toward pre-
dictable performance in software packet-processing platforms,
Proceedings of USENIX Symposium on Networked Systems
Design and Implementation, 2012. 3.1.1

[DBS06] J.P. Deschamps, G.J.A. Bioul, and G.D. Sutter, Synthesis of
arithmetic circuits, John Wiley & Sons, Inc., 2006. 2.1.1

[DCF13] L. Deri, A. Cardigliano, and F. Fusco, 10 Gbit line rate packet-to-
disk using n2disk, Proceedings of Traffic Monitoring and Analy-
sis Workshop, 2013, pp. 441–446. 4.3.3

[DDDS11] M. Danelutto, L. Deri, and D. De Sensi, Network monitoring on
multicores with algorithmic skeletons, Proceedings of Interna-
tional Conference on Parallel Computing (PARCO), 2011. 3.5.2

[DdH+12] M. Dusi, N. d’Heureuse, F. Huici, A. di Pietro, N. Bonelli,
G. Bianchi, B. Trammell, and S. Niccolini, Blockmon: Flexible
and high-performance big data stream analytics platform and its
use cases, NEC Technical Journal 7 (2012), no. 2, 102–106.
3.5.1, 3.5.2

[DEA+09] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy, Routebricks:
exploiting parallelism to scale software routers, Proceedings of
ACM SIGOPS Symposium on Operating Systems Principles,
2009. 3.3

Vı́ctor Moreno Martı́nez 195

www.netfpga.org
www.netfpga.org

BIBLIOGRAPHY

[Der04] L. Deri, Improving passive packet capture: Beyond device
polling, Proceedings of System Administration and Network En-
gineering Conference, 2004. 3.3

[Der05] , nCap: wire-speed packet capture and transmission,
Proceedings of IEEE/IFIP Workshop on End-to-End Monitoring
Techniques and Services, 2005. 3.3

[DKSL04] S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull, and J.W. Lock-
wood, Deep packet inspection using parallel bloom filters, IEEE
Micro 24 (2004), no. 1, 52–61. 1.1

[DMLB+13] Sanchez-Roman D., V. Moreno, S. Lopez-Buedo, G. Sutter,
I. Gonzalez, F.J. Gomez-Arribas, and J. Aracil, FPGA accel-
eration using High-Level Languages of a Monte-Carlo method
for pricing complex options, Journal of Systems Architecture 59
(2013), no. 3. 2.1.2

[DPD15] DPDK, Data plane development kit, 2015, http://dpdk.org,
[14th April 2015]. 3.3.5

[DPHB+13a] A. Di Pietro, F. Huici, N. Bonelli, B. Trammell, P. Kastovsky,
T. Groleat, S. Vaton, and M. Dusi, Toward composable network
traffic measurement, Proceedings of IEEE INFOCOM, 2013.
3.5.1, 3.5.2

[dPHB+13b] A. di Pietro, F. Huici, N. Bonelli, B. Trammell, P. Kastovsky,
T. Groleat, S. Vaton, and M. Dusi, Toward composable network
traffic measurement, Procedings of IEEE INFOCOM, 2013. 5.5

[EAMEG11] E. El-Araby, S.G. Merchant, and T. El-Ghazawi, A frame-
work for evaluating high-level design methodologies for high-
performance reconfigurable computers, Parallel and Distributed
Systems, IEEE Transactions on (2011). 2.1.2

[EAMEG13] , Assessing productivity of high-level design method-
ologies for high-performance reconfigurable computers, High-
Performance Computing Using FPGAs, Springer New York,
2013. 2.1.2

[EIV07] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios, Duplicate
record detection: A survey, IEEE Transactions on Knowledge
and Data Engineering (2007). 4.4

[End14a] Endace, Endace EMULEX, 2014, www.endace.com/, [14th

196 Tuning modern architectures for high-performance networking

http://dpdk.org
www.endace.com/

BIBLIOGRAPHY

April 2015]. 3.1.1

[End14b] , Packet capture performance evaluation, 2014, http:
//www.emulex.com, [14th April 2015]. 1.1

[FD10] F. Fusco and L. Deri, High speed network traffic analysis with
commodity multi-core systems, Proceedings of ACM Internet
Measurement Conference, 2010. 3.3

[FML+03] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and S.C. Diot, Packet-level traffic measure-
ments from the Sprint IP backbone, IEEE Network 17 (2003),
6–16. 1.1

[FMM+11] A. Finamore, M. Mellia, M. Meo, M.M. Munafò, and D. Rossi, Ex-
periences of Internet traffic monitoring with Tstat, IEEE Network
25 (2011), no. 3, 8 –14. 5.5

[FQKYS04] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, Gpu clus-
ter for high performance computing, Proceedings of the 2004
ACM/IEEE Conference on Supercomputing, 2004. 2.1.3

[FSLB+14] M. Forconesi, G. Sutter, S. Lopez-Buedo, J.E. Lopez de Vergara,
and J. Aracil, Bridging the gap between hardware and software
open-source network developments, IEEE Network 28 (2014),
no. 5, 13–19. 6

[GDFM+12] J. L. García-Dorado, A. Finamore, M. Mellia, M. Meo, and M. Mu-
nafò, Characterization of ISP traffic: Trends, user habits, and
access technology impact, IEEE Transactions on Network and
Service Management 9 (2012), no. 2, 142–155. 1.1, 5.1

[GDMR+13] J.L. García-Dorado, F. Mata, J. Ramos, P.M. Santiago del Río,
V. Moreno, and J. Aracil, High-performance network traffic pro-
cessing systems using commodity hardware, Data Traffic Mon-
itoring and Analysis, Lecture Notes in Computer Science, vol.
7754, Springer Berlin Heidelberg, 2013, pp. 3–27. 1.1, 4.3,
5.1.2, 6, 6.1

[GDSdRR+14] J. L. García-Dorado, P. M. Santiago del Río, J. Ramos, D. Mue-
las, V. Moreno, J. E. Lopez de Vergara, and J. Aracil, Low-cost
and high-performance: VoIP monitoring and full-data retention at
multi-Gb/s rates using commodity hardware, International Jour-
nal of Network Management 24 (2014), no. 3, 181–199. 3.5.1,
3.5.2, 5.4.2

Vı́ctor Moreno Martı́nez 197

http://www.emulex.com
http://www.emulex.com

BIBLIOGRAPHY

[GES12] F. Gringoli, A. Este, and L. Salgarelli, MTCLASS: Traffic classifi-
cation on high-speed links with commodity hardware, Proceed-
ings of IEEE Conference on Communications, 2012. 5.5

[GLBS+12] I. Gonzalez, S. Lopez-Buedo, G. Sutter, D. Sanchez-Roman, F.J.
Gomez-Arribas, and J. Aracil, Virtualization of reconfigurable co-
processors in hprc systems with multicore architecture, Journal
of Systems Architecture 58 (2012), no. 6. 2.1.3

[Glo] HiTech Global, NetFPGA10G, http://www.
hitechglobal.com/boards/PCIExpress_SFP+.htm
[14th April 2015]. 4.2.1

[HD10] S. Hauck and A. DeHon, Reconfigurable computing: the the-
ory and practice of fpga-based computation, Morgan Kaufmann,
2010. 2.1.2

[Hig13] High Performance Computing and Networking Group, Uni-
versidad Autónoma de Madrid (HPCN-UAM), HPCAP and
M3Omon, 2013, https://github.com/hpcn-uam/, [14th

April 2015]. 5.1.2, 5.6

[HJPM10] S. Han, K. Jang, K S Park, and S. Moon, PacketShader:
a GPU-accelerated software router, Proceedings ACM SIG-
COMM, 2010. 3.1, 3.2.1, 1, 5, 7, 3.3, 3.3.2, 3.4.2, 3.5.1, 3.5.2,
4.1.1, 4.2.1, 5.3

[HPC15] HPCAP, High-performance 10G network capture engine, 2015,
http://github.com/hpcn-uam/HPCAP, [14th April 2015].
iii, iv, v, iii, iv

[HRW14] J. Hwang, K.K. Ramakrishnan, and T. Wood, NetVM: High per-
formance and flexible networking using virtualization on com-
modity platforms, 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14) (Seattle, WA),
USENIX Association, April 2014, pp. 445–458. 6.2.1

[inf] The infodups tool for duplicate detection, https://github.
com/Enchufa2/nantools, [14th April 2015]. 4.4.1

[Int12] Intel, 82599 10 Gbe controller datasheet,
2012, http://www.intel.com/content/
www/us/en/ethernet-controllers/
82599-10-gbe-controller-datasheet.html, [14th

April 2015]. 3.1, 4.4

198 Tuning modern architectures for high-performance networking

http://www.hitechglobal.com/boards/PCIExpress_SFP+.htm
http://www.hitechglobal.com/boards/PCIExpress_SFP+.htm
https://github.com/hpcn-uam/
http://github.com/hpcn-uam/HPCAP
https://github.com/Enchufa2/nantools
https://github.com/Enchufa2/nantools
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html

BIBLIOGRAPHY

[Int14a] , Intel Data Plane Development Kit (Intel DPDK)
Programmer’s Guide, 2014, http://www.intel.com/
content/dam/www/public/us/en/documents/
guides/intel-dpdk-programmers-guide.pdf, [14th

April 2015]. 3.3.5

[Int14b] , Intel Data Plane Development Kit (Intel DPDK) Release
Notes, 2014, http://www.intel.com/content/dam/
www/public/us/en/documents/release-notes/
intel-dpdk-release-notes.pdf, [14th April 2015]. 3.3,
3.3.5, 6.1

[Int14c] , IXP4XX Product Line of Network Processors,
2014, www.intel.com/p/en_US/embedded/hwsw/
hardware/ixp-4xx, [14th April 2015]. 3.1.1

[JLM+12] M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and
K.S. Park, Kargus: a highly-scalable software-based intrusion
detection system, Proceedings of ACM Conference on Com-
puter and Communications Security, 2012. 5.5

[KC00] K. Keutzer and D. G. Chinnery, Closing the gap between asic
and custom: an asic perspective, Design Automation Confer-
ence, 2000. 2.1.1

[KKA13] A.O. Kudryavtsev, V.K. Koshelev, and A.I. Avetisyan, Prospects
for virtualization of high-performance x64 systems, Program-
ming and Computer Software 39 (2013), no. 6, 285–294 (En-
glish). 6.2

[KKH+04] M.S. Kim, H.-J Kong, S.-C. Hong, S.-H. Chung, and J.W. Hong,
A flow-based method for abnormal network traffic detection, Pro-
ceedings of IEEE/IFIP Network Operations and Management
Symposium, 2004. 1.1

[KKL+07] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, kvm: the
linux virtual machine monitor, Proceedings of the Linux Sympo-
sium (Ottawa, Ontario, Canada), vol. 1, June 2007, pp. 225–230.
6.2.2

[KMC+00] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek,
The Click modular router, ACM Transactions on Computer Sys-
tems 18 (2000), no. 3, 263–297. 3.5.1, 3.5.2

[Kra12] M. Krasnyansky, UIO-IXGBE, 2012, https://opensource.

Vı́ctor Moreno Martı́nez 199

http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-dpdk-programmers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-dpdk-programmers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-dpdk-programmers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/release-notes/intel-dpdk-release-notes.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/release-notes/intel-dpdk-release-notes.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/release-notes/intel-dpdk-release-notes.pdf
www.intel.com/p/en_US/embedded/hwsw/hardware/ixp-4xx
www.intel.com/p/en_US/embedded/hwsw/hardware/ixp-4xx
https://opensource.qualcomm.com/wiki/UIO-IXGBE
https://opensource.qualcomm.com/wiki/UIO-IXGBE

BIBLIOGRAPHY

qualcomm.com/wiki/UIO-IXGBE [14th April 2015]. 3.3

[KWH06] M.S. Kim, Y. J. Won, and J. W. Hong, Characteristic analysis of
Internet traffic from the perspective of flows, Computer Commu-
nications 29 (2006), no. 10, 1639–1652. 1.1, 3.4.1

[LCSR11] M. Laner, S. Caban, P. Svoboda, and M. Rupp, Time syn-
chronization performance of desktop computers, Proceedings of
IEEE Symposium on Precision Clock Synchronization for Mea-
surement Control and Communication, 2011. 4.2.1

[Lin14] Linux Foundation, NAPI, 2014, www.linuxfoundation.
org/collaborate/workgroups/networking/napi,
[14th April 2015]. 3.1.2

[LLC+12] Y.D. Lin, P.C. Lin, T.H. Cheng, I.W. Chen, and Y.C. Lai, Low-
storage capture and loss recovery selective replay of real flows,
IEEE Communications Magazine 50 (2012), no. 4, 114–121. 4.3

[LLK14] S. Lee, K. Levanti, and H.S. Kim, Network monitoring: Present
and future, Computer Networks 65 (2014), no. 1, 84–98. 1.1

[Lov02] R. Love, Kernel korner: Kernel locking techniques, Linux Journal
(2002). 4.1.2

[LSBG13] B. Li, J. Springer, G. Bebis, and M. H. Gunes, A survey of net-
work flow applications, Journal of Network and Computer Appli-
cations 36 (2013), no. 2, 567 – 581. 1.1, 5.1.1

[LSI14] LSI, APP3000 Network, 2014, http://www.lsi.com/
products/mobile-communication-processors/
pages/app-network-processors.aspx, [14th April
2015]. 3.1.1

[Luc14] Alcatel Lucent, FP3: Breakthrough 400G network processor,
2014, http://www3.alcatel-lucent.com/products/
fp3/, [14th April 2015]. 3.1.1

[LXB11] G. Liao, Znu. X., and L. Bnuyan, A new server I/O architecture
for high speed networks, Proceedings of Symposium on High-
Performance Computer Architecture, 2011. 3.2.1, 1, 3, 4

[MAB+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner, Openflow: en-
abling innovation in campus networks, ACM SIGCOMM Com-

200 Tuning modern architectures for high-performance networking

https://opensource.qualcomm.com/wiki/UIO-IXGBE
https://opensource.qualcomm.com/wiki/UIO-IXGBE
https://opensource.qualcomm.com/wiki/UIO-IXGBE
www.linuxfoundation.org/collaborate/workgroups/networking/napi
www.linuxfoundation.org/collaborate/workgroups/networking/napi
http://www.lsi.com/products/mobile-communication-processors/pages/app-network-processors.aspx
http://www.lsi.com/products/mobile-communication-processors/pages/app-network-processors.aspx
http://www.lsi.com/products/mobile-communication-processors/pages/app-network-processors.aspx
http://www3.alcatel-lucent.com/products/fp3/
http://www3.alcatel-lucent.com/products/fp3/

BIBLIOGRAPHY

puter Communication Review 38 (2008), no. 2, 69–74. 1.1

[MGAG+11] V. Moreno, F.J. Gomez-Arribas, I. Gonzalez, D. Sanchez-
RomÃ¡n, D. Sutter, and S. Lopez-Buedo, Comparativa del uso
de HLLs en FPGA, GPU y Multicore para la aceleracion de una
aplicacion de red IP, XI Edicion Jornadas de ComputaciÃ³n Re-
configurable y Aplicaciones (JCRA2011), 2011. 2.2.2, 4.4

[MGDA12] F. Mata, J. L. García-Dorado, and J. Aracil, Detection of traf-
fic changes in large-scale backbone networks: The case of
the Spanish academic network, Computer Networks 56 (2012),
no. 2, 686 – 702. 5.4.1

[MGGA+11] V. Moreno, J. Garnica, F.J. Gomez-Arribas, S. Lopez-Buedo,
I. Gonzalez, J. Aracil, M. Izal, E. Magana, and D. Morato, High-
accuracy network monitoring using etomic testbed, 7th EURO-
NF Conference on Next Generation Internet (NGI 2011), June
2011. 4.2.1

[Mic] Microsoft, Receive Side Scaling, http://msdn.
microsoft.com/en-us/library/windows/
hardware/ff567236(v=vs.85).aspx [14th April 2015].
3.1

[MLCN05] M. Mellia, R. Lo Cigno, and F. Neri, Measuring IP and TCP be-
havior on edge nodes with tstat, Computer Networks 47 (2005),
no. 1, 1–21. 1.1

[Mor12] V. Moreno, Development and evaluation of a low-cost scal-
able architecture for network traffic capture and storage for
10Gbps networks, Master’s thesis, Universidad Autónoma
de Madrid, 2012, http://www.ii.uam.es/~vmoreno/
Publications/morenoTFM2012.pdf, [14th April 2015].
3.3, 3.4.2, 6.1

[MPN+10] C.R. Meiners, J. Patel, E. Norige, E. Torng, and A.X. Liu,
Fast regular expression matching using small TCAMs for net-
work intrusion detection and prevention systems, Proceedings
of USENIX Conference on Security, 2010. 1.1

[MRF+13] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
Composing software-defined networks, Proceedings of the 10th
USENIX Conference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA), nsdi’13, USENIX Association,
2013, pp. 1–14. 1.1, 6

Vı́ctor Moreno Martı́nez 201

http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://www.ii.uam.es/~vmoreno/Publications/morenoTFM2012.pdf
http://www.ii.uam.es/~vmoreno/Publications/morenoTFM2012.pdf

BIBLIOGRAPHY

[MSD+08] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson,
and F. Schneider, Enriching network security analysis with time
travel, ACM SIGCOMM, 2008, pp. 183–194. 4.2, 4.3, 5.5, 6.1

[MSdRR+12] V. Moreno, P. M. Santiago del Río, J. Ramos, J.J. Garnica, and
J. L. García-Dorado, Batch to the future: Analyzing timestamp
accuracy of high-performance packet I/O engines, IEEE Com-
munications Letters 16 (2012), no. 11, 1888–1891. 1.1, 4, 3.4.1,
3.4.2, 6.1

[MSdRR+14a] V. Moreno, P. M. Santiago del Río, J. Ramos, D. Muelas,
J. L. García-Dorado, F. J. Gomez-Arribas, and J. Aracil, Multi-
granular, multi-purpose and multi-Gb/s monitoring on off-the-
shelf systems, International Journal of Network Management 24
(2014), no. 4, 221–234. 3.5.1, 6.1, 6.2.4

[MSdRR+14b] V. Moreno, P.M. Santiago del Rio, J. Ramos, J.L. Garcia-Dorado,
I. Gonzalez, F.J. Gomez-Arribas, and J. Aracil, Packet storage at
multi-gigabit rates using off-the-shelf systems, 16th IEEE Inter-
national Conference on High Performance Computing and Com-
munications (HPCC2014), August 2014. 3.3, 3.4.2, 3.5.1, 3.5.2,
4.3.3, 6.1

[MW12] G. Motika and S. Weiss, Virtio network paravirtualization driver:
Implementation and performance of a de-facto standard, Com-
puter Standards & Interfaces 34 (2012), no. 1, 36 – 47. 6.2.2

[NA08] T.T.T. Nguyen and G. Armitage, A survey of techniques for Inter-
net traffic classification using machine learning, IEEE Communi-
cations Surveys & Tutorials 10 (2008), no. 4, 56–76. 3.5.2

[Nap10] Napatech Inc., A guide to building high performance capture and
replay appliances, Tech. report, 2010. 4.3

[nau13] naudit, Detect-Pro, 2013, http://www.naudit.es/
index.php?s=3&p=5&l=1, [14th April 2015]. 5.1.2

[Nau15] Naudit High Performance Computing and Networking, 2015,
http://www.naudit.es/, [14th April 2015]. 7.2, 8.2

[ND10a] J. Nickolls and W.J. Dally, The gpu computing era, Micro, IEEE
(2010). 2.1.3

[ND10b] , The GPU computing era, IEEE Micro 30 (2010), no. 2,
56–69. 3.5.1, 3.5.2

202 Tuning modern architectures for high-performance networking

http://www.naudit.es/index.php?s=3&p=5&l=1
http://www.naudit.es/index.php?s=3&p=5&l=1
http://www.naudit.es/

BIBLIOGRAPHY

[net14a] netmap, The fast packet I/O framework, 2014, http://info.
iet.unipi.it/~luigi/netmap, [14th April 2015]. 3.3.3

[Net14b] Network Functions Virtualisation (NFV) ETSI Industry Specifica-
tion Group (ISG), Network Functions Virtualisation (NFV); NFV
Performance & Portability Best Practises, Tech. report, ETSI,
2014. 6

[nto14] ntop, Libzero for DNA, 2014, www.ntop.org/products/
pf_ring/libzero-for-dna/, [14th April 2015]. 3.3.1

[OHL+08] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and
J.C. Phillips, Gpu computing, Proceedings of the IEEE (2008).
2.1.3

[Pac12] PacketShader, Packet I/O Engine, 2012, http://shader.
kaist.edu/packetshader/io_engine/index.html,
[14th April 2015]. 3.3.2

[PFQ15] PFQ, PFQ homepage, 2015, http://netserv.iet.
unipi.it/software/pfq, [14th April 2015]. 3.3.4

[PMAO04] M. Polychronakis, E.P. Markatos, K.G. Anagnostakis, and
A Oslebo, Design of an application programming interface for
IP network monitoring, Proceedings of IEEE/IFIP Network Op-
erations and Management Symposium, 2004. 1.1

[PP11] Y. Park and K.H. Park, High-performance scalable flash file
system using virtual metadata storage with phase-change ram,
IEEE Transactions on Computers 60 (2011), no. 3, 321–334.
4.3.2

[PT05] D. Pellerin and S. Thibault, Practical fpga programming in c,
Prentice Hall Press, 2005. 2.1.2

[PVA+12] A. Papadogiannakis, G. Vasiliadis, D. Antoniades, M. Polychron-
akis, and E.P. Markatos, Improving the performance of passive
network monitoring applications with memory locality enhance-
ments, Computer Communications 35 (2012), no. 1, 129–140.
3.2.1

[RCC12] L. Rizzo, M. Carbone, and G. Catalli, Transparent acceleration of
software packet forwarding using netmap, Proceedings of IEEE
INFOCOM, 2012. 3.5.1, 3.5.2

Vı́ctor Moreno Martı́nez 203

http://info.iet.unipi.it/~luigi/netmap
http://info.iet.unipi.it/~luigi/netmap
www.ntop.org/products/pf_ring/libzero-for-dna/
www.ntop.org/products/pf_ring/libzero-for-dna/
http://shader.kaist.edu/packetshader/io_engine/index.html
http://shader.kaist.edu/packetshader/io_engine/index.html
http://netserv.iet.unipi.it/software/pfq
http://netserv.iet.unipi.it/software/pfq

BIBLIOGRAPHY

[RDC12] L. Rizzo, L. Deri, and A. Cardigliano, 10 Gbit/s line rate packet
processing using commodity hardware: survey and new propos-
als, 2012, Online: http://luca.ntop.org/10g.pdf [14th

April 2015]. 1.1, 3.3, 3.3.1

[Riz12a] L. Rizzo, netmap: a novel framework for fast packet I/O, Pro-
ceedings of USENIX Annual Technical Conference, 2012. 3.1.2,
3.2.1, 3, 3.3, 3.3.3, 3.4.2

[Riz12b] , Revisiting network I/O apis: The netmap framework,
ACM Queue 10 (2012), no. 1, 30–39. 3.3

[Riz12c] , Revisiting network I/O APIs: the netmap framework,
Communications of the ACM 55 (2012), no. 3, 45–51. 4.1.1

[Riz14] , Portable packet processing modules for OS kernels,
IEEE Network 28 (2014), no. 2, 6–11. 3.3

[RLM13] L. Rizzo, G. Lettieri, and V. Maffione, Speeding up packet i/o
in virtual machines, Proceedings of the Ninth ACM/IEEE Sym-
posium on Architectures for Networking and Communications
Systems (Piscataway, NJ, USA), ANCS ’13, IEEE Press, 2013,
pp. 47–58. 6.2.2

[Rus08] R. Russell, Virtio: Towards a de-facto standard for virtual i/o de-
vices, SIGOPS Operating Systems Review 42 (2008), no. 5, 95–
103. 6.2.2

[Sch12] H. Scholz, IETFInternet-Draft: RTP stream information export
using IPFIX, Tech. report, Network Working Group, 2012. 5.4.2

[SdRRG+12] P. M. Santiago del Río, D. Rossi, F. Gringoli, L. Nava, L. Sal-
garelli, and J. Aracil, Wire-speed statistical classification of net-
work traffic on commodity hardware, Proceedings of ACM Inter-
net Measurement Conference, 2012. 3.5.1, 3.5.2, 5.5

[SE10] J. Sanders and Kandrot E., Cuda by example: An introduction
to general-purpose gpu programming, Addison Wesley, 2010.
2.1.3

[SG08] Ilger M. Stampfel G, Gansterer WN, Implications of the EU data
retention directive 2006/24/EC, Proceedings of Sicherheit, 2008.
5.4.2

[SGV+10] G. Szabó, I. Gódor, A. Veres, S. Malomsoky, and S. Molnár,

204 Tuning modern architectures for high-performance networking

http://luca.ntop.org/10g.pdf

BIBLIOGRAPHY

Traffic classification over Gbit speed with commodity hardware,
Journal of Communications Software and Systems 5 (2010),
no. 3, –. 3.5.1, 3.5.2

[SWF07] F. Schneider, J. Wallerich, and A. Feldmann, Packet capture
in 10-Gigabit Ethernet environments using contemporary com-
modity hardware, Proceedings of Passive and Active Measure-
ment Conference (PAM’13), 2007. 3.5.2

[Sys12] Cisco Systems, White paper: Introduction to Cisco IOS
NetFlow, 2012, http://www.cisco.com/c/en/us/
products/ios-nx-os-software/ios-netflow/
white-paper-listing.html, [14th April 2015]. 3.5.2

[Sys13] , Cisco network convergence system, 2013,
http://www.cisco.com/en/US/products/ps13132/
index.html, [14th April 2015]. 1.1, 5.1.2

[Sys14] , Network Analysis Module (NAM) Products, 2014, www.
cisco.com/go/nam, [14th April 2015]. 3.1.1

[SZTG12] W. Su, L. Zhang, D. Tang, and X. Gao, Using direct cache ac-
cess combined with integrated NIC architecture to accelerate
network processing, Proceedings of IEEE Conference on High
Performance Computing and IEEE Conference on Embedded
Software and Systems, 2012. 7

[UAM] Campus de excelencia internacional UAM-CSIC,
http://campusexcelencia.uam-csic.es/, [14th April 2015]. 7.2,
8.2

[UMMI13] I. Ucar, D. Morato, E. Magana, and M. Izal, Duplicate detection
methodology for ip network traffic analysis, IEEE International
Workshop on Measurements and Networking, 2013. 2.2.2, 4.4

[VPI11] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, MIDeA: a
multi-parallel intrusion detection architecture, Proceedings of
ACM Conference on Computer and Communications Security,
2011. 3.5.1, 3.5.2, 5.5

[WAcAa] C. Walsworth, E. Aben, k.c. claffy, and D. Andersen, The
CAIDA anonymized 2009, 2012 and 2014 Internet traces,
http://www.caida.org/data/passive/passive_
2009_dataset.xml; http://www.caida.org/
data/passive/passive_2012_dataset.xml;http:

Vı́ctor Moreno Martı́nez 205

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/white-paper-listing.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/white-paper-listing.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/white-paper-listing.html
http://www.cisco.com/en/US/products/ps13132/index.html
http://www.cisco.com/en/US/products/ps13132/index.html
www.cisco.com/go/nam
www.cisco.com/go/nam
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml

BIBLIOGRAPHY

//www.caida.org/data/passive/passive_2014_
dataset.xml [14th April 2015]. 3.4.2, 4.2.1, 5.3, 5.4.1, 6.1

[WACAb] C. Walsworth, E. Aben, k.c. Claffy, and D. Andersen, The CAIDA
anonymized 2009 Internet traces, http://www.caida.
org/data/passive/passive_2009_dataset.xml,
[14th April 2015]. 4.3.1

[WDC11] W. Wu, P. DeMar, and M. Crawford, Why can some advanced
Ethernet NICs cause packet reordering?, IEEE Communications
Letters 15 (2011), no. 2, 253–255. 1.1, 2, 3.4.2, 4.2.1

[WOL02] J. Wolkerstorfer, E. Oswald, and M. Lamberger, An asic imple-
mentation of the aes sboxes, Topics in Cryptology — CT-RSA
2002, Lecture Notes in Computer Science, Springer Berlin Hei-
delberg, 2002. 2.1.1

[WP12] S. Woo and K. Park, Scalable TCP session monitoring with Sym-
metric Receive-Side Scaling, Tech. report, KAIST, 2012. 3.1

[Xtr] XtremeData Inc., XtremeData XD2000i in-socket accelerator,
http://www.altima.co.jp/products/xtremeData/
download/XD2000i_PF_WEB.pdf, [14th April 2015]. 2.1.2,
2.2.2

[YHB+11] AJ. Younge, R. Henschel, J.T. Brown, G. von Laszewski, J. Qiu,
and G.C. Fox, Analysis of virtualization technologies for high per-
formance computing environments, Cloud Computing (CLOUD),
2011 IEEE International Conference on, July 2011, pp. 9–16.
1.1, 6

[YKL04] F. Yu, R.H. Katz, and T.V. Lakshman, Gigabit rate packet pattern-
matching using TCAM, Proceedings of IEEE Conference on Net-
work Protocols, 2004. 1.1, 6

[YLWH14] C.T. Yang, J.C. Liu, H.Y. Wang, and C.H. Hsu, Implementation
of gpu virtualization using pci pass-through mechanism, The
Journal of Supercomputing 68 (2014), no. 1, 183–213 (English).
6.2.3

[YZ10] J. Yu and X. Zhou, Ultra-high-capacity DWDM transmission sys-
tem for 100G and beyond, IEEE Communications Magazine 48
(2010), no. 4, S56–S64. 1.1

[ZFP12] L. Zabala, A. Ferro, and A. Pineda, Modelling packet capturing in

206 Tuning modern architectures for high-performance networking

http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.altima.co.jp/products/xtremeData/download/XD2000i_PF_WEB.pdf
http://www.altima.co.jp/products/xtremeData/download/XD2000i_PF_WEB.pdf

BIBLIOGRAPHY

a traffic monitoring system based on Linux, Proceedings of Per-
formance Evaluation of Computer and Telecommunication Sys-
tems, 2012. 3.1.2

Vı́ctor Moreno Martı́nez 207

Glossary

— A —
accuracy, 86, 114
affinity, 39, 54, 83, 134
ASIC, 10
atomic operations, 81

— B —
batch, 38, 87
buffer, 80

— C —
cache, 34, 40, 102, 103

— D —
duplicate, 112
duplicates, 18

— F —
flow record, 23, 123, 125, 130, 131,

134, 137
FPGA, 11
FPR, 115
full virtualization, 155

— G —
GPGPU, 12

— H —
hash, 23, 112
HLL, 12
hypervisor, 153

— K —
KPT, 78, 91

— L —
listener, 42, 81, 130, 132

— M —
MRTG, 124, 131, 132, 136

— N —
network stack, 28
NTSS, 109
NUMA, 169

— P —
passthrough, 159
polling, 78, 91

— R —
RAID, 101, 157, 165

— S —
SSD, 101, 106, 108
stream, 38, 80

— T —
tcpdump, 100
timestamp, 15, 86
TPR, 115

— U —
UDTS, 88

— V —
virtio, 155
virtual function, 160
VNMA, 168
VNP, 164
VoIP, 139

— W —
WDTS, 89

208

A
Capture engines’ usage
examples

A.1 Getting started

Prior to setting up capture engines, some knowledge of the system architec-
ture must be obtained in advance to exploit NUMA capabilities and perform and
optimize scheduling.

The first step consists in getting an overview of the NUMA architecture and
the devices attached to each node. To this end, the lstopo command should
be used.

As can be observed in Listing A.1 the command returns a text output with a
tree scheme describing each NUMA node and the devices attached to it. Note
that each output line containing L# references a processing core. In the exam-
ple shown it can be observed that two processors (sockets) are present. Each
processor is assigned to a NUMA node with 6 processing cores and 64 GB of
memory. Focusing on the NICs, two different NICs with two interfaces each are
attached to the NUMA node 0. In this case, the system presents an architecture
similar to Fig. 3.2(b) where PCIe lines are directly connected to one processor.
In this scenario, our 10 GbE NIC corresponds to the interfaces eth2 and eth3
which are assigned to NUMA node 0. Conversely, packet capture and process-
ing tasks must be assigned to cores 0 to 5 in order to exploit memory locality.

It is worth pointing out that storage hardware is attached to NUMA node 1 (a
RAID-0 volume recognized as sda). If packet storage is needed. a processing
overhead may exist as data has to be transferred from processor 0 where traffic
is received to processor 1 where traffic is stored. The numactl command can
be used to get an idea of how expensive this data transfer is in computational
terms. Code A.2 shows the execution and output of this command. The output
shows the available NUMA nodes specifying the processing cores and memory
assigned as well as the distance matrix. Note that the figures shown in the
distance matrix do not correspond to CPU cycles nor time measurements. Such
numbers only provide a priority relationship where the higher value the slower
the processor’s access to that memory chunk.

CAPTURE ENGINES’ USAGE EXAMPLES

1 > lstopo
2 Machine (128GB)
3 NUMANode L#0 (P#0 64GB)
4 Socket L#0 + L3 L#0 (15MB)
5 L2 L#0 (256KB) + L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
6 L2 L#1 (256KB) + L1 L#1 (32KB) + Core L#1 + PU L#1 (P#1)
7 L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#2)
8 L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)
9 L2 L#4 (256KB) + L1 L#4 (32KB) + Core L#4 + PU L#4 (P#4)

10 L2 L#5 (256KB) + L1 L#5 (32KB) + Core L#5 + PU L#5 (P#5)
11 HostBridge L#0
12 PCIBridge
13 PCI 8086:1521
14 Net L#0 "eth0"
15 PCI 8086:1521
16 Net L#1 "eth1"
17 PCIBridge
18 PCI 8086:10fb
19 Net L#2 "eth2"
20 PCI 8086:10fb
21 Net L#3 "eth3"
22 PCIBridge
23 PCI 8086:1d6b
24 PCIBridge
25 PCI 102b:0532
26 PCI 8086:1d02
27 NUMANode L#1 (P#1 64GB)
28 Socket L#1 + L3 L#1 (15MB)
29 L2 L#6 (256KB) + L1 L#6 (32KB) + Core L#6 + PU L#6 (P#6)
30 L2 L#7 (256KB) + L1 L#7 (32KB) + Core L#7 + PU L#7 (P#7)
31 L2 L#8 (256KB) + L1 L#8 (32KB) + Core L#8 + PU L#8 (P#8)
32 L2 L#9 (256KB) + L1 L#9 (32KB) + Core L#9 + PU L#9 (P#9)
33 L2 L#10 (256KB) + L1 L#10 (32KB) + Core L#10 + PU L#10

(P#10)
34 L2 L#11 (256KB) + L1 L#11 (32KB) + Core L#11 + PU L#11

(P#11)
35 HostBridge L#5
36 PCIBridge
37 PCI 1000:005b
38 Block L#4 "sda"

Code A.1: Usage and output examples of the
lstopo command

210 Tuning modern architectures for high-performance networking

A.1. GETTING STARTED

1 >numactl − −hardware
2
3 available: 2 nodes (0−1)
4 node 0 cpus: 0 1 2 3 4 5
5 node 0 size: 65503 MB
6 node 0 free: 61844 MB
7 node 1 cpus: 6 7 8 9 10 11
8 node 1 size: 65536 MB
9 node 1 free: 60506 MB

10 node distances:
11 node 0 1
12 0: 10 21
13 1: 21 10

Code A.2: Usage and output examples of the
numactl command

Taking this memory access latency matrix into account, the memory alloca-
tion of the processes can be adjusted. Focusing on this example, if a capture
or a processing task is assigned to cores 0 to 5, memory should be allocated in
NUMA node 0. This configuration can be achieved by either using the numactl
command or using the libnuma C API. Code A.3 gives an example of the
former. In this case using the option --membind followed by a list of NUMA
nodes, the memory used by the my program application will be allocated on
NUMA node 0 until no more memory is available and then subsequent alloca-
tions will use NUMA node 1. If no memory is available in neither node 0 nor 1 the
application will terminate. Note that the execution of a program with numactl
--membind does not guarantee CPU affinity.

1 numactl − −membind=0,1 ./my_program

Code A.3: Usage example of the numactl
command to allocate memory

Using libnuma1, memory allocation can be assigned to a specific NUMA
node via programing by using the C API shown in Code A.4

1 void *numa_alloc_local(size_t size);
2 void *numa_alloc_on_node(size_t size,int node);

Code A.4: Libnuma memory allocation API

1http://linux.die.net/man/3/numa

Vı́ctor Moreno Martı́nez 211

http://linux.die.net/man/3/numa

CAPTURE ENGINES’ USAGE EXAMPLES

Another task of paramount importance when running captures or process-
ing applications is assigning tasks to processing cores. These can be assigned
with the taskset command. As can be seen in Code A.5, using the param-
eter -c followed by the number of a processing core assigns the execution of
my program to the core indicated. If multiple processing cores are needed,
a comma separated list can be defined. Additionally, the assignment process
can be done programmatically by means of the pthread library as shown in
Code A.6.

1 taskset −c=1 ./my_program
2 taskset −c=1,3,5 ./my_program

Code A.5: Usage example of the taskset
command

1 int pthread_seta�nity_np(pthread_t thread, size_t cpusetsize, const
cpu_set_t *cpuset);

Code A.6: pthread processes assignment API

The isolcpus kernel option may be used to maximize the efficiency of the
assignment of tasks to processing cores. This option allows a set of processing
cores to be isolated from the general kernel SMP balancing and scheduler al-
gorithms. Thus, the only way a process can be assigned to such a set of cores
is by explicitly attaching it through the taskset command or similar. With this
approach, a capture or processing application can be exclusively assigned to a
processing core. Code A.7 shows a sample kernel boot configuration in which
processing cores 0,1,2,3,4,5 are isolated.

1 linux /boot/vmlinuz−3.8.0−29−generic
root=UUID=b11691e7−f968−4023−aa28−3f5a4d831fa5
isolcpus=0,1,2,3,4,5 ro

Code A.7: Usage example of the isolcpu option

212 Tuning modern architectures for high-performance networking

A.2. SETTING UP CAPTURE ENGINES

A.2 Setting up capture engines

The goal of this subsection is to provide a quick reference guide for the com-
mands and applications used to configure the driver and receive traffic for each
capture engine. All commands shown in this subsection except compilation-
related ones must be executed with superuser privileges.

A.2.1 Default driver

First, we describe how the affinity-aware tests have been used in the de-
fault mechanism, i.e. the ixgbe driver plus the PCAP library. The ixgbe
driver version used is 3.11.33-k, and the version of the PCAP library is 1.1.1-
10. With regard to the number of queues to be used, this value can be modified
by means of the RSS parameter at driver load time (insmod command), as
shown in Code A.8. The next step is to wake up the network interface and us-
ing the ethtool utility to disable pause frames (we do not want the network
probe to stop the other side’s transmission) and the offload options (in order to
prevent the NIC from merging incoming packets into bigger ones and polluting
our sampling of the network). Once the number of desired queues has been set,
a different core must be assigned to fetch packets from each queue in order to
obtain maximum performance. An example of how this can be done using the
system /proc interface is shown in the usage example. In this scenario, we
have set 5 RSS queues to be used, assigning them to cores 0 to 4. Finally, we
have developed a simple application that fetches incoming packets and counts
them using the PCAP library and we have called it test. This application has
been scheduled to run on core 5 (still in the same NUMA node as the 5 cores
fetching packets from the different queues) via the taskset Linux command.

Vı́ctor Moreno Martı́nez 213

CAPTURE ENGINES’ USAGE EXAMPLES

1 cd ixgbe−3.11.33−k/src/
2 make
3 insmod ixgbe.ko MQ=1,1 RSS=5,5
4 #wake up interface in promisc mode
5 #disable pause negotiation and o�oad settings
6 ifcon�g eth1 up promisc
7 ethtool −A eth1 rx o� tx o�
8 ethtool −K eth1 tso o� gso o� gro o� lro o�
9 #con�gure IRQ a�nity

10 core=0
11 cat /proc/interrupts | grep eth1 |
12 awk split($1,a,":");print a[1] |
13 while read irq
14 do

15 echo $core > /proc/${irq}/smp_a�nity_list
16 core=$(($core + 1))
17 done

18 taskset −c 5 ./test eth1

Code A.8: Usage example of the ixgbe driver in
an affinity-aware scenario

A.2.2 PF_RING DNA

In the case of PF_RING, we used version 6.0.0.1. Once we have entered the
downloaded folder, we must compile both the pf ring and the PF_RING-aware
version of our NIC driver (see Code A.9). When both drivers have been com-
piled, they can be installed using the script provided: load dna driver.sh.
Changing the number of receive queues must be done by editing the driver load
script, changing the RSS parameter in the line inserting the ixgbe driver into
the system. The load dna driver.sh script also adjusts all interrupt affinity
issues for each receive queue. To receive traffic using PF_RING, we executed
the pfcount multichannel application. The arguments of this program are
as follows: -i indicates the device name, -a enables active packet waiting, -e
sets reception only mode and -g specifies the thread affinity for the different
queues. In the example, only one receive thread mapped to core 0 is used; if
more threads are to be used, the core affinity for each one must be separated
using ’:’.

214 Tuning modern architectures for high-performance networking

A.2. SETTING UP CAPTURE ENGINES

1 cd PF_RING−6.0.0.1/
2 cd kernel/
3 make
4 cd ../drivers/DNA/ixgbe−*/src/
5 make
6 ./load_dna_driver.sh
7 cd ../../../../userland/examples/
8 pfcount_multichannel −i dna0 −a −e 1 −g 0

Code A.9: PF RING usage example

A.2.3 PacketShader

With respect to PacketShader, its version 0.2 was used. We installed the
driver using the install.py script provided, whose arguments are the num-
ber of RX and TX queues to be used by each NIC controlled by PacketShader.
As Code A.10 shows, the engine provides an installation script to decide the
number of receive queues, and it configures the interrupt affinity schedule. The
bundle downloaded includes a sample application named rxdump, designed to
dump incoming packet information through the standard output just as tcpdump
would do. We have slightly modified this sample program so it only receives and
counts incoming packets and launched it, with the desired network device as its
argument. The execution of this sample program was attached to core 0 via the
taskset utility as the installation script set the receive queue management to
this core.

1 cd io−engine−0.2/
2 cd driver/
3 make
4 ./install.py 1 1
5 cd ../samples/rxdump/
6 taskset −c 0 ./rxdump <args>

Code A.10: PacketShader usage example

A.2.4 netmap

We downloaded the latest version of netmap from the author’s github repos-
itory, specifically, we downloaded the version committed on April 1, 2014. In or-
der to use it, first both the netmap kernel module and the netmap-aware ixgbe

Vı́ctor Moreno Martı́nez 215

CAPTURE ENGINES’ USAGE EXAMPLES

driver must be compiled. Before inserting any of those modules, the user must
disable or enable CPUs in the system to accommodate the number of receive
queues desired to be used. Note that netmap’s default behavior is to use all
available CPUs. The sample code shown in Code A.11 shows a way of doing
that for one CPU (num cpus=1). Once the corresponding CPUs have been dis-
abled/enabled, the netmap.ko and ixgbe.ko drivers must be inserted in that
order. Now it is time to wake up our interface, disable pause frames and offload
settings, and configure interrupt affinity. Finally, the pkt-gen sample applica-
tion can be used to receive network traffic. The -i parameter tells the program
which device to receive traffic from, and the -f rx parameter indicates that the
program is to work in rx-only mode. When using this application, the core affinity
must be set via the taskset utility. Note that the program should be scheduled
on the cores the queues’ interrupts were previously mapped to. It is important to
remember to re-enable all CPUs once you have finished using netmap.

1 cd netmap/
2 cd LINUX/
3 make KSRC=/usr/src/linux−kernel−headers−dir
4 #Set the number of active CPUs
5 totall_cpus=12
6 num_cpus=1
7 for i in $(seq 0 $(($total_cpus − 1)))
8 do

9 if [$i −ge $num_cpus]
10 then

11 echo 0 | tee /sys/devices/system/cpu/cpu${i}/online
12 else

13 echo 1 | tee /sys/devices/system/cpu/cpu${i}/online
14 �

15 done

16 insmod netmap_lin.ko
17 cd ixgbe/
18 make
19 insmod ixgbe.ko
20 #wake up interface in promisc mode
21 #disable pause negotiation and o�oad settings
22 ...
23 #con�gure IRQ a�nity as with plain ixgbe
24 ...
25 cd ../../examples/
26 taskset −c 0 ./pkt−gen −i eth1 −f rx

Code A.11: Netmap usage example

216 Tuning modern architectures for high-performance networking

A.2. SETTING UP CAPTURE ENGINES

A.2.5 PFQ

The version of PFQ, used is the 3.7. First we install the pfq driver and
then the custom version of ixgbe setting the desired amount of queues, which
is set to 2 in the example shown in Code A.12. We must then wake up the
interface, disable pause frame and offload setting and set interrupt affinity, just
as shown before in Code A.8. To receive packets from eth1 using two queues
with the right CPU affinity, we run the pfq-counters sample application. This
application allows to instantiate different socket groups, each receiving all or a
fraction of the traffic assigned to a certain interface. Those groups must be
defined with their CPU binding via the -t parameter with the following syntax:
sock id.core.iface[.queue.queue...]. Where core is the CPU in
which the thread receiving this socket’s traffic will be executed, this core should
be mapped not to collide with those configured to run the interface’s interrupt
code. Note that if no queues are specified, the traffic from all queues belonging
to the specified interface will be processed.

1 modprobe ioatdma
2 modprobe dca
3 nqueues=2
4 pfq−load −q $nqueues −c pfq.conf
5 #wake up interface in promisc mode
6 #disable pause negotiation and o�oad settings
7 ...
8 #con�gure IRQ a�nity as with plain ixgbe
9 ...

10 core=$nqueues
11 pfq−counters −c 1514 −t 0.${core}.eth1

Code A.12: PFQ usage example

A.2.6 Intel DPDK

We used version 1.6.0r2 of Intel DPDK. As mentioned in the previous sec-
tion, DPDK uses hugepages in order to gain performance, so the user must
boot their system with the proper hugepages options. The example shown in
Code A.13 allocates 4 hugepages each of 1 GB. Note that hugepages are evenly
distributed between the different NUMA nodes of your system, which in our case
means two hugepages per node. After booting the system, a hugetlbfs must
be mounted for use by DPDK-based applications. Once the user has compiled
DPDK’s driver, both the system’s uio and the compiled igb uio.ko drivers
must be loaded in that order. Intel’s documentation encourages DPDK users
to disable CPU frequency scaling governor in order to avoid performance losses

Vı́ctor Moreno Martı́nez 217

CAPTURE ENGINES’ USAGE EXAMPLES

due to power saving adjustments. Code A.13 shows a way of disabling it. Finally,
the testpmd application is executed in interactive mode. Its invocation requires
a large set of parameters which includes CPU affinity masks, queue configura-
tion, the number of hugepages and mount point, number of memory channels,
... After properly launching testpmd, we must set the rx-only mode and give
the capture start order.

1 # add to the grub boot line of your kernel
2 # ... default_hugepagesz=1G hugepagesz=1G hugepages=4
3 mount −t hugetlbfs −o pagesize=1G,size=4G none /mnt/huge
4
5 cd dpdk−1.6.0r2
6 cd build/kmod/
7 make
8 modprobe uio
9 insmod igb_uio.ko

10 #properly set CPUs scaling governor
11 for g in /sys/devices/system/cpu/*/cpufreq/scaling_governor
12 do

13 echo performance > $g
14 done

15 cd ../app/
16 #launch testpmd application
17 ./testpmd <... parameter list ...>
18 testpmd> set fwd rxonly
19 testpmd> start

Code A.13: Intel DPDK usage example

A.2.7 HPCAP

Finally, we have used the version 4 of the HPCAP capture engine. This solu-
tion comes with a configuration file that the user may edit to change the engine’s
settings. A complete documentation of this file can be found in HPCAP’s github
repository. Once the parameters have been properly set, the user launches the
install hpcap.bash script which compiles the code, installs the driver, and
configures the interface settings (interrupt affinity included). After running the
installation script, users can use the hpcapdd sample application to receive
traffic from the network, as shown in Code A.14. This application receives both
the interface and queue indexes to receive traffic from (in the example, the appli-
cation will receive traffic from interface hpcap0’s queue 0). The third argument
is a directory path the program will write the incoming traffic to, but a null value
means that nothing will be written (packets will only be captured from the net-
work). CPU-affinty scheduling must be done with the taskset command. In

218 Tuning modern architectures for high-performance networking

A.2. SETTING UP CAPTURE ENGINES

our example, the hpcapdd application was scheduled in core 1 because the
kernel-level thread was being executed in core 0 (which was set in the configu-
ration file).

1 cd HPCAP4
2 #change con�guration parameters
3 vi params.cfg
4 ./install_hpcap.bash
5 cd samples/hpcapdd
6 make
7 taskset −c 1 ./hpcapdd 1 0 null

Code A.14: HPCAP usage example

Vı́ctor Moreno Martı́nez 219

B
HPCAP manual

B.1 Using the HPCAP driver

The first step you must follow to use HPCAP in your system is obtain the
HPCAPX (where X = release number) containing all the files related to the cor-
responding release. Inside this folder you will find:

B.1.1 Installing all the required packages

Inside the deps folder you will a install.bash script that will install the
required packages in a Debian-based distro. It is possible to use both the HP-
CAP driver and the detect-Pro10G in a different distro, but you will have to man-
ually install the required dependencies.

B.1.2 Configure your installation

All the scripts used for the installation and management of the HPCAP driver
make use of the information specified in the params.cfg file that is located in
the root level of the HPCAPX folder. Consequently, this file has to be properly
modified so the HPCAP driver and dependant applications can properly run in
your system.

Here you can find a list with parameters you must make sure to have properly
configured before you run HPCAP:

• basedir: this parameter contains the path to your installation. For ex-
ample, if you install HPCAP in the home folder of user foo the value that
must be written in this file is: /home/foo/HPCAPX.

• nif: this parameter must contain the number of network interfaces avail-
able in your system (only the ones that would be managed by Intel’s ixgbe
driver). This number is ussually two times the number of PCI network

HPCAP MANUAL

cards plugged in your system (assuming you plug only 2-port cards), but
this could vary if you use, for example, 1-port, 4-port network cards.

• nrxq,ntxq: number of RSS/Flow-Director queues that you want to use
in your 10Gb/s network interfaces for both RX and TX purposes. The
default value for this parameter is 1, which is recommended to be kept
unless you know what changing this value implies.

• ifs: this is the list of interfaces that you want to be automatically woken up
once the HPCAP driver has been installed. For each of those interfaces a
monitoring script will be launched and will keep record of the received and
lost packets and bytes (inside the data subfolder, see B.1.4). Check B.1.3
for more information regarding the interface naming and numbering policy.
Warning: only a subset those interfaces configured to work in HPCAP
mode should appear on this list (no standard-working interfaces).

• Interface-related parameters: those parameters must be configured for
each one of the interfaces listed by the ifs parameter. All those pa-
rameters follow the format <param name><itf index> where <itf
index> is the number identifying the index regardless the prefix to that
number in the system’s interface name (see B.1.3). Those parameters
are:

◦ mode<itf index>: this parameter changes the working mode of
the interface between HPCAP mode (when the value is 2) and stan-
dard mode (if the value is 1). Note that an interface working in stan-
dard mode will not be able to fetch packets as interface in HPCAP
mode would be able to, but the standard mode allows users to use
for TX purposes (E.g.: launching a scp through this interface). An
interface working in standard mode will no be able to be benefited
byt the usage of the detect-Pro10G versions that can be found
in the samples subfolder.

◦ core<itf index>: this parameter fixes the processor core of the
machine that will poll the interface for new packets. As this poll pro-
cess will use the 100% of this CPU, affinity issues must be taken into
account when executing more applications, such as detect-Pro10G.
For further information see B.4.

◦ vel<itf index>: this parameter allows the user to force the link
speed that will be negotiated for each interface. Allowed values are
1000 and 10000.

◦ caplen<itf index>: this parameter sets the maximum amount
of bytes that the driver will fetch from the NIC for each incoming
packet.

◦ pages<itf index>: amount of kernel pages to be assigned to
this interface’s kernel-level buffer. The installation script will check

222 Tuning modern architectures for high-performance networking

B.1. USING THE HPCAP DRIVER

the amount of pages to be used and make sure the sum of the pages
used by all interfaces in HPCAP mode is the total. If this condition is
not met, the installation script will issue an error message with useful
information for changing this configuration.

Warning: changing any of the above mentioned parameters will take no
effect until the driver is re-installed.

Once all the configuration parameters have been properly set, the execution
of the script install_hpcap.bash will take charge of all the installation steps
that need to be made in order to install the HPCAP driver.

B.1.3 Interface naming and numbering

This version of the driver allows choosing whether each interface is to work in
HPCAP or standard (traditional, ixgbe-alike) modes. Consequently, a decision
regarding the naming policy for those interfaces was made.

The target of this policy was always being able to identify each of the in-
terfaces of our system regardless the mode it is working on (so you will be
able to know which <param name><itf index> of the params.cfg file
maps to each interface). This leaded to each interface being named as <mode
identifyer><interface index>, where:

• <mode identifyer>: can be hpcap when the interface is working in
the HPCAP mode, or xgb if the interface works in standard mode.

• <interface index>: this number will always identify the same inter-
face regardless its working mode. For example, if the first interface found
in the system is told to work in standard mode and second interface in the
HPCAP mode, you will see that your system has the xgb0 and hpcap1
interfaces. If you revert the working mode for such interfaces you will then
find interfaces named hpcap0 and xgb1.

B.1.4 Per-interface monitored data

Once the driver has been properly installed, a monitoring script will be launched
for each of the interfaces specified in the ifs configuration parameter. The data
generated by those monitoring scripts can be found in the data subfolder. In
order to avoid the generation of single huge files, the data is stored in subfolders
whose names follow the format <year>-<week number of year>.

Inside each of those <year>-<week number of year> subfolders, you

Vı́ctor Moreno Martı́nez 223

HPCAP MANUAL

will find a file for each of the active interface plus a file with CPU and memory
consumption related information.

On the one hand, the fields appearing in each of the hpcapX files are:

<timestamp> <RX bps> <RX pps> <lost bps estimate>
<lost pps>

On the other hand, the fields of the cpus file are:

<timestamp> <%-of-used-CPU(one for each CPU)> <total
memory> <used memory> <free memory> <cached memory>

B.1.5 Waking up an interface in standard mode

If a interface configured to work in standard mode wants to be configured,
the wake_standard_iface.bash script is provided. Its usage is the follow-
ing:

./wake_standard_iface.bash <iface> <ip addr> <netmask>
<core> [<speed, default 10000>]

Where:

• iface is the interface you want to wake up. As this is thought for inter-
faces working in standard mode, the interface should be some xgbN.

• <ip addr> <netmask> are the parameters needed to assign an IP
address and a network mask for this interface.

• core is the processor where all the interrupts regarding this will be sent,
so we can make sure that such interrupts do not affect the capture perfor-
mance of an HPCAP interface.

• speed is an optional parameter that allows you to force the link speed of
this interface. Its values can be 1000 or 10000.

B.1.6 Sample applications

hpcapdd

hpcapdd is a sample program that maps HPCAP’s kernel packet buffer for
a certain interface and write its contents into the desired destination directory.
Note that, in order to obtain maximum performance, the data access is made in
a byte-block basis. This byte-block access policy has consequences regarding

224 Tuning modern architectures for high-performance networking

B.1. USING THE HPCAP DRIVER

its usability, as it must be assured that the application starts running in a correct
state. hpcapdd will generate data files following the RAW format (see B.2).

hpcapdd has been programmed so it preformas an orderly close when
receiving a SIGINT signal, so it must be ended with:

kill -s SIGINT ...
or

killall -s SIGINT ...

Importantly, the HPCAP driver must be re-installed before launching a new
instance of hpcapdd.

hpcapdd_p

hpcapdd p is a sample program that maps HPCAP’s kernel packet buffer
for a certain interface and write its contents into the desired destination directory.
Note that hpcapdd p accesses the data in a per-packet rather than in a byte-
block basis. This have an effect damaging the write throughput performance but
may result of interest as it has some interesting usability effects. hpcapdd p
will generate data files following the RAW format (see B.2).

hpcapdd p has been programmed so it preformas an orderly close when
receiving a SIGINT signal, so it must be ended with:

kill -s SIGINT ...
or

killall -s SIGINT ...

Differently from hpcapdd, hpcapdd p does not require the HPCAP driver to
be reinstalled before launching a new instance of the program.

Importantly, if an instance of hpcapdd is to be run after closing an instance
of hpcapdd p, the HPCAP drriver must be re-intalled. In the opposite case
(launching an hpcapdd instance and then an hpcapdd p one) no driver re-
installation is needed.

Vı́ctor Moreno Martı́nez 225

HPCAP MANUAL

B.2 Working with the RAW file format

This section describes the structure of the "raw" format files generated by
the usage of the HPCAP driver.

RAW files are generated by the programs that fetch traffic from the network
using the HPCAP driver (see B.1.6).

B.2.1 File data structures

A raw file is composed by a set of consecutive packets. Each packet is
preceded by its corresponding header which contains information related to the
packet just as shown in Fig.B.1:

• Seconds 4 bytes containing the seconds field of the packet timestamp.

• Nanoseconds 4 bytes containing the nanoseconds field of the packet
timestamp.

• Caplen 2 bytes containing the amount of bytes of the packet included in
the file.

• Len 2 bytes containing the real size of the packet.

Raw data file

Packet K Packet K+1

...

...

Packet data (Caplen bytes)Seconds

(4B)
Nanosecs

(4B)
Caplen

(2B)
Len
(2B)

Packet 1

Padding pseudo-packet

Padding invalid data (Padlen bytes)0x00000000
(4B)

0x00000000
(4B)

Padlen
(2B)

Padlen
(2B)

Figure B.1: Raw file format

226 Tuning modern architectures for high-performance networking

B.2. WORKING WITH THE RAW FILE FORMAT

The end of the file is denoted by the appearance of a pseudo packet showing
the amount of padding bytes added at the end of the file (in order to generate
files of the same size). The padding pseudo-packet has a similar header than
any other packet in the file with the difference that both the "Seconds" and the
"Nanoseconds" fields are set to zeros. Once the padding pseudo-packet has
been located, the padding size can be read from any of the "Len" or "Caplen"
fields. Note that the padding length could be zero.

B.2.2 Example code

The next pages show an example code for a programs that reads a raw file
and generates a new pcap file with the contents of the first one.

Vı́ctor Moreno Martı́nez 227

HPCAP MANUAL

1 while(1)
2 {
3 /* Read packet header */
4 if(fread(&secs,1,sizeof(u_int32_t),fraw)!=sizeof(u_int32_t))
5 {
6 printf("Segundos\n");
7 break;
8 }
9 if(fread(&nsecs,1,sizeof(u_int32_t),fraw)!=sizeof(u_int32_t))

10 {
11 printf("Nanosegundos\n");
12 break;
13 }
14 if((secs==0) && (nsecs==0))
15 {
16 fread(&caplen,1,sizeof(u_int16_t),fraw);
17 fread(&len,1,sizeof(u_int16_t),fraw);
18 if(len != caplen)
19 printf("Wrong padding format [len=%d,caplen=%d]\n", len,

caplen);
20 else

21 printf("Padding de %d bytes\n", caplen);
22 break;
23 }
24
25 if(fread(&caplen,1,sizeof(u_int16_t),fraw)!=sizeof(u_int16_t))
26 {
27 printf("Caplen\n");
28 break;
29 }
30 if(fread(&len,1,sizeof(u_int16_t),fraw)!=sizeof(u_int16_t))
31 {
32 printf("Longitud\n");
33 break;
34 }
35 /* Fill header */
36 h.ts.tv_sec=secs;
37 h.ts.tv_usec=nsecs/1000;
38 h.caplen=caplen;
39 h.len=len;
40
41 /* Read packet data*/
42 if(caplen > 0)
43 {
44 ret = fread(buf,1,caplen,fraw);
45 /* whatever process required*/
46 }
47 }

Code B.1: raw2pcap code example

228 Tuning modern architectures for high-performance networking

B.3. QUICK START GUIDE

B.3 Quick start guide

This section shows how to properly install HPCAP in your system. We will
assume you already have a HPCAPX.tar.gz file in your system, and we will
show how to continue from there.

1. Check that your kernel is compatible with HPCAP. Nowadays HPCAP has
been tested with 2.6.32, 3.2, 3.5 and 3.8 kernels.

2. Save your current network interface mapping so you can easily identify
(using the MAC address) which interface is connected to which link:

ifconfig -a > old_interfaces.txt

3. Decompress the contents of the data file.

tar xzvf HPCAPX.tar.gz

This command will create the HPCAPX directory in your system.

4. Enter the HPCAPX directory.

cd HPCAPX

5. Edit the params.cfg file according to your current configuration1 (see B.1.2).

6. Install the driver using the installation script (you will need superuser priv-
ileges). The script will compile both the driver ans the user-level library if
they have not been compiled before.

./install_hpcap.bash

7. Check that the monitoring script is on by checking the contents of the data
files:

tail -f data/<year>-<week/hpcapX

Note that traffic counters will not be valid until there is at least one applica-
tion fetching data from the corresponding (ifterface,queue) pair.

1In order to identify the NICs you may need to launch the installation script once in order to
use the MAC to identify which interfaces are to work on HPCAP or standard mode, the re-edit the
params.cfg file and install the driver using the script again.

Vı́ctor Moreno Martı́nez 229

HPCAP MANUAL

B.3.1 Launching hpcapdd

Once you have properly installed HPCAP on your system, you can use hpcapdd
(or similar programs) to store the traffic from the network into your system.

1. Make sure you have enough space for traffic storage. it is recommended
to use a different volume than the used for your operating system. You can
check by executing

df -h

2. Go to the hpcapdd directory (assuming we are already at the HPCAPX
directory).

cd samples/hpcapdd

3. Launch the application (you will need superuser privileges)

taskset -c 1 ./hpcapdd 3 0 /storage 2

B.3.2 Checking traffic storage

1. Check the counter files in the data subdirectory.

2. In your storage target directory, list the files that have already been written

ls -l /storage/*

All of the generated files should have a size of 2GB = 2147483648bytes.

3. Convert one file from raw to pcap

cd HPCAPX/samples/raw2
./raw2 /storage/<dir>/<raw_file> <pcap_file>

If the capture is being properly made, the program should end showing the
message:

Padding de XX bytes

with XX being the amount bytes added at the end of the file for obaining a
file size multiple of the filesystem’s block size.

2In this case the application will fetch the traffic arriving to the queue 0 on hpcap3. The
core 1 has been chosen in order to not interfere with the kernel-level capture thread and to avoid
interception from different NICs, as in this example it is assumed that core 0 has been assigned to
the kernel receive thread)

230 Tuning modern architectures for high-performance networking

B.4. FREQUENTLY ASKED QUESTIONS

B.4 Frequently asked questions

• Which Linux kernel versions does HPCAP support?
HPCAP has been written for working under diverse Linux kernel/distribu-
tion combinations. Specifically, it has been tested for the following ver-
sions:

◦ OpenSuse: 2.6.32 .

◦ Ubuntu/Debian: 2.6.32, 3.2.0, 3.13.0 .

◦ Fedora: 3.5.3, 3.14.7 .

• Should I always use all the available interfaces in hpcap mode?
No. The reason for this is that the total amount of memory that this driver
can use as internal buffer is 1GB, and this amount is divided between the
hpcapX interfaces present in your system. Thus, if you are not going to
capture packets from one interface configure it to work in standard mode
and you will have bigger buffers for your capturing interfaces. The amount
of memory assigned to each interface out of this 1GB is configured via the
pages parameter (see B.1.2).

• Can I use more than one RX queue?
If you are going to use Detect-Pro the answer is no. The current version
of Detect-Pro support packet capture for just one RX queue. Otherwise
you can use more than one RX queue by changing nrxq parameter in the
params.cfg file. Notice that if you use more than one queue per inter-
face you will need to instantiate several packet-consuming applications (at
least one per queue) in order to fetch all the data).

• Can I simultaneously capture data from an interface with dd and
hpcapdd?
Yes. In fact, you can use any amount of dd or hpcapdd instances over
the same pair (interface,queue). The limit on the amount of simultaneous
applications fetching data from the same pair (interface,queue) is defined
in the include/hpcap.h file with the MAX_LISTENERS constant. Note
that a change in this value will take no effect if the driver is not recompiled
and re-installed in your system.

• Is there a way to make sure that my system and user processes will
not interfere in the capture process?
Yes. First of all, you must make sure of which CPUs you are going to use
for the HPCAP driver and Detect-Pro. At this point we have a list of CPUs
that we want to isolate from the system scheduler. Now, depending on the
distribution we are using:

◦ OpenSuse: you have to edit the /boot/grub/menu.lst file and
add into the boot desired command line the following:

Vı́ctor Moreno Martı́nez 231

HPCAP MANUAL

isolcpus=0,1,2,..,k

(with 0,1,2,..,k are the CPUs to be isolated). The next time you
boot your system your changes will have taken effect.

◦ Ubuntu/Debian: you have to edit the /boot/grub/menu.lst
file, and in the GRUB_CMDLINE_LINUX_ DEFAULT parameter add
the following:

isolcpus=0,1,2,..,k

Then, execute update-grub and the next time you boot your sys-
tem your changes will have taken effect.

• I am not obtaining the expected network capture performance, what
is happening
Make sure that you have properly set the processor affinity for your stor-
age programs (dd, hpcapdd) via the taskset command. You should
check that the assigned processor is not used by any kernel capture thread
(the ones specifies by the coreX parameters in the params.cfg file,
see B.1.2).
Furthermore, you might be obtaining a poor performance because the ker-
nel capture threads are not assigned to the same NUMA node where NIC
is connected. In order to check that you should see the content of the file
/sys/bus/pci/devices/<pci_identifier>/numa_nodewhere
<pci_identifier> can be obtained searching for your NIC in the lspci
command’s output. This file will tell you the NUMA node3 you should
schedule the capture threads for your NIC (a value of −1 means that there
will be no performance difference regardless the NUMA node you use).
If you’re still obtaining a poor performance this may be due to the kernel-
level memory buffer being stored in the opposite NUMA node than where
the NIC is placed. In such cases you should keep the kernel capture
thread in the NUMA node attached to your NIC (via the coreX param-
eter in params.cfg file), but should schedule your storage processes
in the opposite NUMA node (via the taskset command). This way the
inter-node memory transfers are minimized and maximum performance is
met.

• I see no traffic from the counters that appear on the interface’s counter
data files located on data/<year>-<week>
This is normal behaviour. Until there is at least one application listening,
the kernel driver will not fetch packets and thus all the counters will be
zero. Nevertheless, if the traffic intensity is very high, it is possible that the
lost counter will be incremented but the amount is not to be trusted. This
is a known issue that has not been solved yet.

3Using the numactl --hardware command you can check which processors belong to each
NUMA node.

232 Tuning modern architectures for high-performance networking

B.4. FREQUENTLY ASKED QUESTIONS

• Is it possible the size of the RAW files generated by hpcapdd or
Detect-Pro?
Yes, you can. Remember the default file size is 2GB, which was chosen
as a tradeoff between write performance ans data accesibility. However, if
this file size does not fit your requirements you can change it (altough it is
not reccommended due to the delicate operations involved) by editing the
following parameter in the HPCAPX/include/hpcap.h file:

#define HPCAP BS (1048576ul)
#define HPCAP COUNT (2048ul)

#define HPCAP FILESIZE (HPCAP BS*HPCAP COUNT)

Changing the block size (HPCAP BS parameter) is discouraged, so the
right way of changing the generated files’ size is changing the HPCAP COUNT
parameter.
Important: after changing these parameters (or anyone in the hpcap.h
header file, it is required to re-compile the driver and any of the sample
applications based on HPCAP used.

• Is there a way to know which NUMA node is my NIC connected to?
Yes. The easiest way of obtaining this information is via the lstopo Linux
command (which requires the installation of the hwloc package. An ex-
ample of this command is Code A.1.
In this example both NICs are connected to NUMA node 0.
Other way of getting this information is by means of the lspci command
and the /sys/ system’s interface. An example of this is the following:

1 > lspci
2 ...
3 05:00.0 Ethernet controller: Intel Corporation 82599EB

10−Gigabit SFI/SFP+ Network Connection (rev 01)
4 05:00.1 Ethernet controller: Intel Corporation 82599EB

10−Gigabit SFI/SFP+ Network Connection (rev 01)
5 ...
6
7 > cat /sys/bus/pci/devices/0000\:05\:00.0/numa_node
8 1
9 > cat /sys/bus/pci/devices/0000\:05\:00.1/numa_node

10 1

Code B.2: Obtaining NUMA information
using lscpi and sysfs

In this exampleboth NICs are connected to NUMA node 1.
Nota that this procedures are also valid for obtaining NUMA-related infor-
mation for other PCI devices (i.e., an RAIC controller card, etc.).

Vı́ctor Moreno Martı́nez 233

Lists

List of codes
4.1 Contents of the /dev/ directory in a system running HPCAP 82

A.1 lstopo command example . 210
A.2 numactl command example . 211
A.3 numactl membind option . 211
A.4 Libnuma API . 211
A.5 taskset command example . 212
A.6 pthread API . 212
A.7 isolcpu option . 212
A.8 ixgbe example . 214
A.9 PF_RING example . 215
A.10 PacketShader example . 215
A.11 Netmap example . 216
A.12 PFQ example . 217
A.13 DPDK example . 218
A.14 HPCAP example . 219

B.1 raw2pcap code example . 228
B.2 Obtaining NUMA information using lscpi and sysfs 233

LISTS

List of equations
4.1 Packet transfer time for in a 10 Gb/s network 86
4.2 Packet transfer time for 60 byte packets in a 10 Gb/s network 86
4.3 Uniform Distribution of TimeStamp . 89
4.4 Weighted Distribution of TimeStamp . 91

236 Tuning modern architectures for high-performance networking

List of figures
2.1 Argos’ block scheme . 16
2.2 Packet burst train structure . 17
2.3 One-way delay measurements . 17
2.4 Twin−1’s architecture . 18
2.5 Throughput obtained by different hardware alternatives for du-

plicate removal over real traffic . 19

3.1 RSS architecture . 24
3.2 NUMA architectures topology examples 27
3.2 NUMA architectures topology examples 28
3.3 Legacy Linux RX scheme . 30
3.4 Linux NAPI RX scheme . 32
3.5 Legacy Linux Network Stack (serialized paths) 35
3.6 Optimized Linux Network Stack (independant parallel paths) 37
3.7 PF_RING DNA’s RX scheme . 44
3.8 PacketShader’s RX scheme . 46
3.9 PFQ’s RX scheme . 50
3.10 Intel DPDK’s architecture . 51
3.11 Engines’ performance for worst and average scenarios 57
3.12 Engine’s performance comparison . 60
3.12 Engine’s performance comparison . 61

4.1 HPCAP kernel packet buffer . 79
4.2 HPCAP kernel packet buffer . 80
4.3 HPCAP packet reception scheme . 85
4.4 Batch timestamping effect on inter-arrival times 88
4.5 Degradation on timestamping accuracy with batch size 89
4.6 Inter-packet gap distribution . 90
4.7 Packet capture performance for different timestamping policies 96
4.8 Effect of packet timestamping on performance 97
4.8 Effect of packet timestamping on performance 98
4.9 tcpdump’s packet storage performance 100
4.10 Write throughput scalability for mechanical and solid-state drives 107
4.11 Effect of the FS on write throughput (mechanical drives) 108
4.12 Effect of the FS on write throughput (SSD) 109
4.13 Percentage of stored packets by high-performance NTSS . . . 111
4.14 Duplicate packet removal hash table structure 113
4.15 Duplicate removal performance evaluation 118
4.15 Duplicate removal performance evaluation 119

Vı́ctor Moreno Martı́nez 237

LISTS

5.1 Contrast between our approach and a conventional one 126
5.2 M3Omon’s Architecture . 129
5.3 Network time series during an anomalous event 138
5.4 Flow concurrence and throughput for both directions 139
5.5 SIP VoIP network and VoIPCallMon architectures 140
5.6 Active calls and new calls managed by VoIPCallMon 142

6.1 Percentage of packets captured by different solutions 150
6.2 Full-virtualization and paravirtualization 154
6.3 Virtualized I/O device . 158
6.4 Packet capture performance for different VF alternatives 162
6.5 Virtual network probe . 167
6.6 Network monitoring agent . 169

B.1 Raw file format . 226

238 Tuning modern architectures for high-performance networking

List of tables
2.1 Pros and cons summary for different hardware alternatives . 10

3.1 Comparison of the diverse capture engines 42
3.2 Maximum throughput in a 10GbE link according to packet size 54
3.3 Memory and CPU usage in a 10 Gb/s average scenario 62
3.4 Network applications over novel capture engines 67

4.1 Experimental timestamp error: synthetic traffic 92
4.2 Experimental timestamp error: real traffic 93
4.3 Packet header effect in effective throughput 102
4.4 Write throughput summary results for mechanical drives 104
4.5 Write throughput summary results for solid-state drives 106
4.6 Characteristics of the traces used for duplicate removal testing 114
4.7 Duplicate classification accuracy for different real traces varying

the hash table configuration . 115

5.1 Packet sniffer and dumper modules performance 134
5.2 Throughput and packet loss of the different modules 135

6.1 Write throughput summary results for a virtualized RAID 0 . . 157
6.2 Bare-metal and passthrough packet capture performance . . . 159
6.3 Packet capture performance using different VF-generators . . 161
6.4 Percentage of packets processed for a VNP 165
6.5 VNMA packet capture performance . 169
6.6 VNMA capture and storage performance 170

Vı́ctor Moreno Martı́nez 239

Acronyms

API Application Program Interface

ASIC Application-Specific Integrated Circuit

CAPEX. CAPital EXpenditures

CPU. Central Processing Unit

CUDA Compute Unified Device Architecture

DMA Direct Memory Access

DNA. Direct NIC Access

DNS. Domain Name System

FPGA Field Programmable Gate Array

GPGU. General-Purpose Graphic Processing Unit

HDL Hardware Description Language

HLL High-Level Language

I/O Input/Output

IP Internet Protocol

IPSec Internet Protocol security

ISP Internet Service Provider

ixgbe Intel’s 10 Gigabit Ethernet Linux driver

KPT Kernel-level Polling Thread

MRTG Multi-Router Traffic Grapher

NAPI New API

NIC Network Interface Card

NTP Network Time Protocol

NTSS Network Traffic Storage Solution

ACRONYMS

NUMA. Non Uniform Memory Access

OPEX OPErational EXpenditures

P2P Peer-to-peer

PCAP Packet Capture API

PCI. Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PF. Physical Function

POSIX Portable Operating System Interface

PSTN Public Switched Telephone Network

PTP Precision Time Protocol

QoE Quality of Experience

QoS Quality of Service

RSS. Receive Side Scaling

RTP Real-time Transport Protocol

RX Reception

SIP Session Initiation Protocol

SLA Service Level Agreement

SMP Symmetric Multi Processor

SPMC Single Producer, Multiple Consumer

SSD. Solid-Sate Drive

TCP Transmission Control Protocol

TS. Timestamp

TX. Transmission

UDP. User Datagram Protocol

UDTS Uniform Distribution of TimeStamp

VF. Virtual Function

242 Tuning modern architectures for high-performance networking

VM Virtual Machine

VNMA Virtual Network Monitoring Agent

VNP. Virtual Network Probe

VoIP Voice over IP

WBC Write-Back Cache

WDTS. Weighted Distribution of TimeStamp

WTC Write-Through Cache

Vı́ctor Moreno Martı́nez 243

	Introduction
	Overview and motivation
	Objectives
	Thesis structure

	Architectures for network monitoring
	Hardware components
	Application-Specific Integrated Circuits
	Field Programmable Gate Arrays
	General-Purpose Graphical Processing Units
	Commodity hardware

	Background experience
	ARGOS
	Twin-1

	Conclusions

	Packet capture using commodity hardware
	Commodity Hardware
	NUMA architectures
	Current and past operating system network stacks

	Packet capturing
	Limitations: wasting the potential performance
	How to overcome limitations

	Capture Engine implementations
	PF_RING DNA
	PacketShader
	netmap
	PFQ
	Intel DPDK
	HPCAP

	Testing your traffic capture performance
	General concerns
	Captures engines performance evaluation

	Use cases of novel capture engines
	Creating a high-performance network application
	Application examples

	Conclusions

	HPCAP implementation details and features
	HPCAP's design
	Kernel polling thread
	Multiple listeners
	User-level API
	HPCAP packet reception scheme

	Packet timestamping
	Accuracy issues
	Performance evaluation

	Packet storage
	Motivation
	Storing data on hard-drives
	Network traffic storage solutions

	Duplicates detection and removal
	Accuracy
	Performance

	Conclusions

	M3OMon: a framework on top of HPCAP
	Introduction
	Novel features: multi-granular / multi-purpose
	High-performance in off-the-self systems
	Contributions

	System Overview
	M3Omon
	M3Omon's API

	Performance Evaluation Results
	Industrial application samples
	DetectPro
	VoIPCallMon

	Related Work
	Conclusions

	Network monitoring in virtualized environments
	High-performance network processing
	Virtualized environments and I/O processing
	Full-virtualization
	Paravirtualization and VirtIO
	PCI passthrough
	PCI virtual functions

	Virtual network probe
	Virtual network monitoring agent
	Conclusions

	Conclusions and future work
	Results dissemination and publications
	Industrial applications
	Future work

	Conclusiones y trabajo futuro
	Diseminación y divulgación de los resultados alcanzados
	Aplicaciones industriales
	Trabajo futuro

	Bibliography
	Glossary
	Capture engines' usage examples
	Getting started
	Setting up capture engines
	Default driver
	PF_RING DNA
	PacketShader
	netmap
	PFQ
	Intel DPDK
	HPCAP

	HPCAP manual
	Using the HPCAP driver
	Installing all the required packages
	Configure your installation
	Interface naming and numbering
	Per-interface monitored data
	Waking up an interface in standard mode
	Sample applications

	Working with the RAW file format
	File data structures
	Example code

	Quick start guide
	Launching hpcapdd
	Checking traffic storage

	Frequently asked questions

	Lists

