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Learning to Trade TI-ITI

* “Trading” is a business

* Sell derivatives to “franchise” clients who have a genuine Franchise Clients
requirement

* Institutional clients: managing future cashflows or liabilities,
commodity hedging, M&A activity, cash management, loans N~

* Retail clients: directional trading, yield enhancement, mortgages

Trading business
* Hedge the resulting franchise exposure in the market

* Exchanges, multi-dealer platforms, even decentralized.
* Hedge excess risk with “arbitrageurs”. ~

Arbitrageurs

o I :
Idea generation: Open Market

* Propose ideas for both groups of clients based on our knowledge
of their business



Learning to Trade

* Today’s derivative models

* Focus on “fitting the market”
* Interpolate desired hedging instruments (spot, forwards, option prices)
* Expand model with additional stylistic risk factors to capture higher order effects

* Examples
* Local Volatility (fits all forwards, discount factors, FX or Equity option prices)
* Hull-White fits ATM all swap rates, and a strip of swaptions e.g. ATM
* Great paper “The Smile Calibration Solved” [1]

* No statistical claim on those mechanics being particularly realistic

The Smile Calibration Solved, Guyon and Labrodere 2011 https://papers.ssrn.com/sol3/papers.cfm?abstract id=1885032



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1885032

Learning to Trade TI-ITI

* Today’s derivative models

* We compute “greeks” with respect to non-model parameters

* E.g. we compute “vega” for Local Volatility ... but this is a one-factor process

ds,
S_ — ‘thdt + O-(t, St)th
t

* In fact, we will usually compute a whole host of greeks which doesn’t make sense in a
“complete market”



Learning to Trade TI-ITI

* Today’s derivative models

* “Greeks” are not good enough

Every trading desk has their overwrites and heuristics to make the presumed replicating
model work

Capture wrongly captured model dynamics, most notably “vol skew” and other effects
Account for transaction cost and other market frictions such as liquidity
Express view on the market



Learning to Trade TI-ITI

* Today’s derivative models

* Theoretically dubious

* Assumption of unique martingale measure in the first place ...
... and that it is somewhat related to the stylistic model we are using (e.g. local vol).

* Absence of market frictions
* Absence of risk aversion



Learning to Trade TI-ITI

* Today’s derivative models

* Very few papers assess properly out-of-sample performance of automated
hedging with the proposed derivative models



Learning to Trade

Hedging performance: OOV 1m ATM Call
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Analysis of hedging performance for options on variance with classic models, 2008

[_1] Volatility Markets: Consistent Modelling, Hedging and Practical Implementation, Buehler 2008
https://papers.ssrn.com/sol3/papers.cfm?abstract id=1118245

Early example of
analysis of hedging
performance


https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1118245

Learning to Trade TI-ITI

e Today’s derivative models
* Focus on “fitting the market”
 We compute “greeks” with respect to non-model parameters Hard to
* “Greeks” are not good enough " automate

* Theoretically dubious

* Very few papers assess properly out-of-sample performance of
automated hedging with the proposed derivative models

* This is a historical effect: when derivatives analytics where
developed

* Data and compute where sparse and expensive.
At the time of Black, Scholes, Merton a normal assumption was entirely

reasonable
* Trading was a slower affair
* Fewer electronic platforms to trade automatically with



Learning to Trade TI-ITI

* Machine Learning and Al
* Culture of using data to drive decisions
* Much more data available
Availability of large scale specialized compute

Modern “automatic adjunction differentiation” engines such as TensorFlow
and PyTorch

Requires programming; numerical math; cloud tech

* Al
* Do something good enough but at scale — detect cats and dogs in videos
* Do something better than humans — play chess

10



Learning to Trade TI-ITI

* We want to let machine trade (mostly) by themselves
* Today’s derivative models ... aren’t quite working
* Let’s go back to first principles

* We will look at two main ideas
* Do something good enough but at scale — “Statistical Hedging”
* Do something better — “Deep Hedging”

11



Framework



Deep Hedging Framework TI-ITI

The Market
e The market is observed under the statistical measure P.

e Everything is in discrete time = markets not complete.

* We call s; the state of the market. It represents all known information such as
prices, bid/asks, twitter feeds, etc.”
* That means that any observable random variable R; can be written as R(s;).
* Our trading activity may affect the distribution of s;, 4 e.g. in markets with impact.

(*) That means that the o-algebra F; of our underlying filtration at time t is generated by s;. .



Deep Hedging Framework TI-ITI

* Hedging Instruments

* A key contribution of our work is providing a hedging framework for derivatives
as hedging instruments e.g. swaps, futures, options.

* We allow for “floating” instrument definitions, i.e. at each time step a potentially
different set of instrument is available to trade,
* For example the current on-the-run swaps, available listed options with some minimum
liquidity etc.

* This is a strong departure from most of the hedging literature, which tends to focus on
“perpetual” instruments such as stocks and and FX, or on “fixed” instruments such as a
specific bond.



Deep Hedging Framework TI-ITI

Hedging Instruments

* For notional simplicity we will fix a total number of n instruments. We can restrict their
trading to ensure realistic behaviour. See [1] for a more detailed discussion.

* Any instrument we may trade has to have a mark-to-model price given for example by an
official closing price, a weighted bid/ask, or a classic valuation model.
We denote at time t the model prices by H; = H' (s;) of n hedging instruments.

* For simplicity, assume that all prices are expressed in our natural numeraire.

* E.g. if a model-price X, is in USD, and if our numeraire Bf is the value of a USD bank account with a
fixed notional, then X, == X,/B}.

* The model prices of (sum of) the instruments in our existing portfolio is Z; = Z(s;).

D_eep Hedging: Learning to Remove the Drift under, Buehler et al 2022, httos://arxiv.org/odf/2111.07844.pdf 15



https://arxiv.org/pdf/2111.07844.pdf

Framework TI-ITI

* We split s; into
* True random drivers x; which we think are relevant risks.
Mathematically, these are those that have a quadratic variation.
* Examples: spot prices, FX, option prices, swap rates
 States 7; which do not have quadratic variation, and are absolutely continuous
with respect to time, i.e. 7, = [ T.dLt.
In particular, the vector T contains time itself.
* Examples: interest payments, dividend payments, realized volatility

e See [1] for background

(_*) That means that the o-algebra F; of our underlying filtration at time ¢ is generated by s;.
[1] Delta-Hedging Works: On Market Completeness in Diffusion Models, Buehler 2009, https://papers.ssrn.com/sol3/papers.cfm?abstract id=1464865 16
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Framework TI-ITI

* Trading cost
» Trading a € R™ units of H at t will cost c;(a) in excess of the model price H;.
* The function c is normalized to ¢;(0) = 0, non-negative, and convex.
* Convexity excludes fixed trading cost.
* Trading is limited to where ¢ < oo.

* Example of Trading Frictions

* Assume we trading vanilla options with mid-prices Ht
* Denote by Al their Black & Scholes Delta, and by V! their Black & Scholes Vega,
* Example non-trivial trading cost:

é:(@) =vyala-Al+yyla-V]+yfla-V|?

* A maximum Vega capacity of V[,,5« is incorporated as follows

ct(a) = ¢(a) + olgysy ...

17



Lesson 1.1: Parameter Hedging

Markoviz-Type Hedging of Daily Derivatives Risk



Parameter Hedging [1] TI-ITI

* Remember that risk management models have at least three roles
1. Provide an optimal hedge to minimize risk vs. implementation cost
2. Provide a “risk price”, i.e. a price irrespective of client of trader’s market view.
3. Provide the ability to run stress scenarios for adverse scenarios

* Let us start with only the first property

* Consider the actual situation on a trading floor:

* Every derivative in our books, and any derivative we might want to trade with our clients
has a classic model price (banking regulation).

* Even a liguid instrument which is quoted on exchange has a “model” price: usually the
mid-price of the actual bid/ask.

* Given those model prices we wish to establish the best hedging strategy for “one day”.

Statistical Hedging, Buehler 2017 https://papers.ssrn.com/sol3/papers.cfm?abstract id=2913250

19
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Parameter Hedging TI-ITI

* For X, € {Z;; H}, ..., H'} recall X, = X(s;) we may use Taylor and obtain

dX, = 0 X, dt, + 0, Xpdx, + 502X, d(x), + O(x7)
Theta Delta Gamma
* Important: even if the underlying model (e.g. Black Scholes) only has
spot as “model state” we still compute derivatives to all other

parameters (in the Black & Scholes case: interest rates, forward rates,
volatility).




Parameter Hedging TI-ITI

Greek Hedging
 For X, € {Z;; H}, ..., H*} recall X; = X(s;) we may use Taylor and obtain

dX, = 0. X dt, + 0, X dx, + 302, X, d(x), + 0(x})

Théta De'lta Gantlma

* Qur gains process is:
G*:=dZ;+a -dH; — c;(a)

We can write the Taylor expansion for dZ and dH including higher terms.
ldea is to minimize exposure to each such “Greek” (derivative)
As it stands, hard to tell which of the terms is most important to hedge...

aS&P spotGa Vs. aS&P vol G*vs aUSD 3m Swap RateGa es ?
Relies on heuristics. Parameter Hedging formalizes this approach with data

21



Parameter Hedging TI-ITI

* Let dx; = pydt + o, dW;, under the statistical measure P. We sort above with
some abuse of notation into

dX, = {0, X, T} + 0x Xepte + 2tr 02, X0} dt + 0, X 0, AW,
~ . " %,—/
Drift Risk
* This formula provides us with a normal approximation of the returns of any
instrument.

* Therefore we have an estimate of the distribution of the portfolio for any
trading action a.

* This gives us the gains process
G*:=dZ;+a-dH; — c;(a)

* Meaningful data-driven weighting scheme for our Greeks when compared to
Greek Hedging.



Parameter Hedging TI-ITI

* We now have an approximation of the statistical distribution of

Gl =dZ; +a-dH; —c.(a)

* Lends itself rather obviously to optimization programs of the form

max: U(G%)
a

e What should U be?

23



Parameter Hedging TI-ITI

* Classic choices for dG®* :=dZ; + a - dH; — c;(a) with

dGf =~ dX; = {0, Xt + 0y Xe e + 5tr 02, X,0%} dt + 0, X0, AW, — ci(a)
h Drift i Risk Cost

* Markowitz seminal work [1] suggests using
* Markowitz Mean-Variance E[X]| — %AE[(X — EX)zl

« Markowitz Mean-Volatility E[X] — AE[(X — EX)lz]E

* General form: U(X) = E[X] — %AE[(X — EX)P]a for q € {1,p}. 2 = 0 represents our risk
aversion.

* Close form for Mean-Varianceforc =0

% Drift[H] — Covar|Z, H]
Var|[Z]

[_1] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77-91, 1952. 24

a =



Parameter Hedging TI-ITI

* Mean-Volatility in particular has an easy interpretation:

* The value U(X) for A = 2 denotes the level of returns X will achieve in 98% of
cases.”

* However, Mean-Volatility is also coherent i.e. U(aX) = aU (X).

* This means that we do not care about the size (notional) of our risk outside
trading cost.

(*) A normal with mean u and volatility o is has probability 96% to be within [u — 20, u + 20]. Useful: https://en.wikipedia.org/wiki/Standard _deviation 25
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Parameter Hedging TI-ITI

* Markoviz Optimization is a very well developed field

* Used traditionally for “linear” asset allocation where a normal
assumption is natural
* Equity
* FX
* Long-dated debt

e Commercial covariance estimators are available for such assets

* Main challenge is modelling cost and ... the drift, p.
Called alpha when it comes to a directional forecast.



Parameter Hedging TI-ITI

Parameter Hedging: with normal assumption solve
max: U( G%)
a

* Trivial and fast implementation.
* No machine learning required.

* A number of observation:
* Our approach will naturally take care of second order cross-parameter dynamics
* This is already a much more robust approach than used in most financial

institutions.
* Classic Greek Hedging is equivalent to some arbitrary choices of u, o ... c.f. [1]

[1] In “Volatility Markets: Consistent Modelling, Hedging and Practical Implementation” we discussed the use of L1/L2 optimizers for managing
derivatives risk without “statistics” https://papers.ssrn.com/sol3/papers.cfm?abstract id=1118245 -



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1118245

Lesson 1.2: Statistical Hedging

Statistical Hedging of Daily Derivatives Risk



Statistical Hedging TI-ITI

* We assumed our portfolio returns are normal
* In this situation there is not much more to do than Markoviz optimization.

 However, it is questionable to approximate a portfolio of derivatives by essentially
symmetric returns.

 Much more powerful as proposed in [1]:
e Estimate returns of today’s hedging instrument and portfolio using historic scenarios.

* Key is to use the relative-same instruments not “the same” fixed instruments:
* Keep time-to-maturity constant in business time
* Keep moneyness for strikes and barriers constant relative to market levels
* Ensure that past events such as barrier breaches are kept

We are still using our classic derivative model values !

We can even extend the “one day” horizon by longer periods such as a week with
intermittent (mechanical) hedging.

First discussed 2012, 2013 on the Global Derivatives conferences.

[_1] Statistical Hedging, Buehler 2017 https://papers.ssrn.com/sol3/papers.cfm?abstract id=2913250 29
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Statistical Hedging TI-ITI

* When we do this ... why would we penalize gains of G% as much as loses?
* Markoviz semi-variance U(X) = E[X] — JAE[2 min{0, X — EX}4]

 Markoviz semi-volatility U(X) = E[X] — AE[2 min{0, X — EX}?]

1
2

30



Statistical Hedging TI-ITI

 Attractive from a practical point of view but they are not monotone.

* That means that it is possible that X; > X, but U(X;) < U(X5) ... in which case
our optimizer would falsely return X,.

mean_vol for long puts mean_semi_vol for long puts

0.050 - 0.050 -

0025 + 0.025 ~

0.000 - - B 0.000 { &
=0.025 1 -0.025 A
=0.050 ~ =0.050 ~
—0.075 A —0.075 A
=0.100 - =0.100 -
=0.125 ~ =0.125 A

D‘;E I]I‘IBE- 1{:'1[!! 1';12 1{.]4 [J':B‘B {#‘;B ltl]i} 1{1]2 164
Strike Strike

“Values” of long puts are decreasing for increasing strikes for some risk aversions. 31



Statistical Hedging TI-ITI

* Another intuitive measure is the confidence level which we will also
loosely call VaR*

VaR(X) = P[X < ]7'(1 — a)

* Assume that « is your confidence level, e.g. 90%.
* Then X will with 90% VaR U(X).
* This generalizes the mean-volatility intuition.

 |tis well-known, however, that VaR is not concave®*, and therefore not risk
averse.

* This happens because VaR does not consider the size of the loss beyond the confidence
level. Therefore we can have a variable X; which in 95% of cases is just slightly above X,
(and therefore is better), but whose loss in the 5% case way exceeds that of X,.

(_*) Actual Value at Risk, VaR, is defined as —U(X).



Statistical Hedging TI-ITI

* This is rectified with Expected Shortfall or CVaR* which computes the
average loss below VaR.

U(X) := CVaR(X) := E[X|X < VaR(X)]

* This metric has a number of attractive properties
* It is monotone, i.e. if X; = X, then U(X;) = U(X,) ... “more is better”
* |t is concave. This means it is risk-averse wrt E[-] i.e. U(X) < U(E[X]).”

* It is cash-invariant in the sense that U(X + y) = U(X) + y for any real y.
This means in particular that finding any hedge is invariant of current wealth

(_*) Classic Expected Shortfall or, mostly equivalently, CVaR, is —U(X)
(**) Note that the relation EQ[U(X)] < U(EQ [X]) is not necessarily true if the measure Q is different than the measure U was defined with.



Statistical Hedging TI-ITI

* Motivating Cash Invariance

e Assume U is concave and monotone (a “pre-kernel” in [1])

* Assume now that we allow “writing off” any part W of a portfolio X for the
benefit its worst outcome, e.g.

UX):= sup UX — W) +infW

W>—o0
e Since U was monotone —W < —infW hence

UX)=supUX —w)+w
WER
* The functional U is cash-invariant [1]

[_1] Statistical Hedging; Buehler 2013 https://papers.ssrn.com/sol3/papers.cfm?abstract id=2913250
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Statistical Hedging TI-ITI

* We call a monotone, concave, and cash-invariant functional U which is
normalized to U(0) = 0 a monetary utility.

* Then —U(X) is a (normalized) convex risk measure.

* A monetary utility is called law-invariant with respect to a measure Q if
U(X) = U(Y) for all variables which have the same law under Q.

* A Q-law invariant monetary utility is risk averse in the sense that

U(Eq[X]) = UX)

* We call U coherent if U(nX) = nU(X) for positive n.
Coherence is not usually a desirable property.



Statistical Hedging TI-ITI

. O?timized Certainty Equivalent [1]: let u be an increasing, concave
C* utility function normalized to u(0) = 0 and u'(0) = 1.™

* Let Q be a measure. Then the following functional is a Q-law invariant
monetary utility:

U(X) = sup: Eq[U(X +y)] -y
YER

* We call the OCE strict if it is strictly increasing and strictly concave.
* We note that cash invariance implies

U(G?) =U(Ziyar + @ Heyqe) —Zy —a - Hy — ¢ (a)

[_1] Aharon Ben-Tal and Marc Teboulle. An old-new concept of convex risk measures: The optimized certainty equivalent.
Mathematical Finance, 17(3):449-476, July 2007.



Statistical Hedging TI-ITI

* Optimized Certainty Equivalent [1]: let u be a strictly increasing,
strictly concave C* utility function normalized to u(0) = 0 and

u'(0)=1."
* Let Q be a measure. Then the following functional is a Q-law invariant
monetary utility:

UX) =sup:ExlUX +y)] -y
YER

* We note that cash invariance implies

U(Ga) — U(Zt+dt +a- Ht+dt) — Zt —a- Ht - Ct(a)

[1] Aharon Ben-Tal and Marc Teboulle. An old-new concept of convex risk measures: The optimized certainty equivalent. Mathematical Finance, 17(3):449-476, July 2007.
(*) strict monotonicity and concavity are only required for some of the results here. See [1].



Statistical Hedging TI-ITI

Exponential utility u(x) = (1 — e ™*) /2
* Exponential utility is the generalization of mean-variance.
Indeed, if X = u + oY foranormal Y then E[U(X)] = u — %Aaz.

* Annoyingly, the exponential is very averse vs large losses. Indeed a short position in a Black
Scholes stock has infinite negative utility.

Truncated exponential utility: use quadratic on the downside.

CVaR: u(x) = (1 + A) min{0, x}

Handerson and Hobson [1] proposed u(x) = (1 + Ax + V1 + 12x2) /A

e “Quadratic” utility: quadratic function cut off and shifted to satisfy u’(0) = 1.

[_1] V. Henderson and D. Hobson. Utility indifference pricing: An overview. 2004.
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/henderson/publications/indifference survey.pdf 38



https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/henderson/publications/indifference_survey.pdf

Statistical Hedging

CvaR Quad Vicky TruncatedEntropy Entropy
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Statistical Hedging TI-ITI

* Practical Comment
For most practical applications, we look at delta-hedged returns of
instruments. In this case, monotonicity seems to matter a lot less.
So far we found only pathological examples for when this becomes an
Issue.
That means semi mean-variance and semi mean-volatility remain a
popular return metrics.

40



Statistical Hedging TI-ITI

Statistical Hedging

* Returns for G¢ are based on historic scenarios using the “relative-
same” instruments.

* Due to non-normality non-trivial objective functions are preferred

e Sound choice is the concept of optimized certainty equivalents as
they are numerically very efficiently solvable using standard cone
optimizers (use cvxpy for experimentation)

UG?) =U(Zgyqr +a-Hevaqe) —Zy —a - Hy — ¢ (a)



Statistical Hedging TI-ITI

Statistical Hedging

e Used at scale in JP Morgan for Flow Derivatives
https://www.risk.net/awards/7928696/equity-derivatives-house-of-the-year-jp-morgan

* Good
* Provides base line hedging strategy for “any” portfolio of derivatives
* Very versatile, robust, and “model-free”.
* Conceptually trivial, but represents a major progress towards automated trading:

* No arbitrarily defined greeks required
e All major (local) dynamics naturally captured

* But
* Price of an instrument given by “classic model”. What if that is wrong — as it likely is?
* Hedge only locally optimal.

There isn’t any machine learning ... ?

42
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Please ask questions



