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• “Trading” is a business
• Sell derivatives to “franchise” clients who have a genuine 

requirement
• Institutional clients: managing future cashflows or liabilities, 

commodity hedging, M&A activity, cash management, loans
• Retail clients: directional trading, yield enhancement, mortgages

• Hedge the resulting franchise exposure in the market
• Exchanges, multi-dealer platforms, even decentralized.
• Hedge excess risk with “arbitrageurs”.

• Idea generation:
• Propose ideas for both groups of clients based on our knowledge 

of their business
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• Today’s derivative models
• Focus on “fitting the market”

• Interpolate desired hedging instruments (spot, forwards, option prices)

• Expand model with additional stylistic risk factors to capture higher order effects

• Examples
• Local Volatility (fits all forwards, discount factors, FX or Equity option prices)

• Hull-White fits ATM all swap rates, and a strip of swaptions e.g. ATM

• Great paper “The Smile Calibration Solved” [1]

• No statistical claim on those mechanics being particularly realistic
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The Smile Calibration Solved, Guyon and Labrodere 2011 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1885032
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• Today’s derivative models
• Focus on “fitting the market” 

• We compute “greeks” with respect to non-model parameters
• E.g. we compute “vega” for Local Volatility … but this is a one-factor process

𝑑𝑆𝑡
𝑆𝑡

= 𝜇𝑡𝑑𝑡 + 𝜎 𝑡, 𝑆𝑡 𝑑𝑊𝑡

• In fact, we will usually compute a whole host of greeks which doesn’t make sense in a 
“complete market”
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• Today’s derivative models
• Focus on “fitting the market” 

• We compute “greeks” with respect to non-model parameters

• “Greeks” are not good enough
• Every trading desk has their overwrites and heuristics to make the presumed replicating 

model work

• Capture wrongly captured model dynamics, most notably “vol skew” and other effects

• Account for transaction cost and other market frictions such as liquidity

• Express view on the market
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• Today’s derivative models
• Focus on “fitting the market” 

• We compute “greeks” with respect to non-model parameters

• “Greeks” are not good enough

• Theoretically dubious
• Assumption of unique martingale measure in the first place ...

… and that it is somewhat related to the stylistic model we are using (e.g. local vol).

• Absence of market frictions

• Absence of risk aversion
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• Today’s derivative models
• Focus on “fitting the market” 

• We compute “greeks” with respect to non-model parameters

• “Greeks” are not good enough

• Theoretically dubious

• Very few papers assess properly out-of-sample performance of automated 
hedging with the proposed derivative models
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[1] Volatility Markets: Consistent Modelling, Hedging and Practical Implementation, Buehler 2008
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1118245

Analysis of hedging performance for options on variance with classic models, 2008
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• Today’s derivative models
• Focus on “fitting the market” 
• We compute “greeks” with respect to non-model parameters
• “Greeks” are not good enough
• Theoretically dubious
• Very few papers assess properly out-of-sample performance of 

automated hedging with the proposed derivative models

• This is a historical effect: when derivatives analytics where 
developed
• Data and compute where sparse and expensive.

At the time of Black, Scholes, Merton a normal assumption was entirely 
reasonable

• Trading was a slower affair
• Fewer electronic platforms to trade automatically with
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• Machine Learning and AI
• Culture of using data to drive decisions

• Much more data available

• Availability of large scale specialized compute

• Modern “automatic adjunction differentiation” engines such as TensorFlow 
and PyTorch

• Requires programming; numerical math; cloud tech

• AI
• Do something good enough but at scale – detect cats and dogs in videos

• Do something better than humans – play chess
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• We want to let machine trade (mostly) by themselves

• Today’s derivative models … aren’t quite working

• Let’s go back to first principles

• We will look at two main ideas
• Do something good enough but at scale – “Statistical Hedging”

• Do something better – “Deep Hedging”
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The Market

• The market is observed under the statistical measure 𝑃.

• Everything is in discrete time →markets not complete.

• We call 𝑠𝑡 the state of the market. It represents all known information such as 
prices, bid/asks, twitter feeds, etc.*

• That means that any observable random variable 𝑅𝑡 can be written as 𝑅(𝑠𝑡).

• Our trading activity may affect the distribution of 𝑠𝑡+1 e.g. in markets with impact.
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(*) That means that the 𝜎-algebra 𝐹𝑡 of our underlying filtration at time 𝑡 is generated by 𝑠𝑡.
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• Hedging Instruments
• A key contribution of our work is providing a hedging framework for derivatives 

as hedging instruments e.g. swaps, futures, options.

• We allow for “floating” instrument definitions, i.e. at each time step a potentially 
different set of instrument is available to trade,
• For example the current on-the-run swaps, available listed options with some minimum 

liquidity etc.

• This is a strong departure from most of the hedging literature, which tends to focus on 
“perpetual” instruments such as stocks and and FX, or on “fixed” instruments such as a 
specific bond.
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Hedging Instruments

• For notional simplicity we will fix a total number of 𝑛 instruments. We can restrict their 
trading to ensure realistic behaviour. See [1] for a more detailed discussion.

• Any instrument we may trade has to have a mark-to-model price given for example by an 
official closing price, a weighted bid/ask, or a classic valuation model.
We denote at time 𝑡 the model prices by 𝐻𝑡

𝑖 ≡ 𝐻𝑖 𝑠𝑡 of 𝑛 hedging instruments.

• For simplicity, assume that all prices are expressed in our natural numeraire.

• E.g. if a model-price ෨𝑋𝑡 is in USD, and if our numeraire 𝐵𝑡
$ is the value of a USD bank account with a 

fixed notional, then 𝑋𝑡 ≔ ෨𝑋𝑡/𝐵𝑡
$.

• The model prices of (sum of) the instruments in our existing portfolio is 𝑍𝑡 ≡ 𝑍 𝑠𝑡 .
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• We split 𝑠𝑡 into
• True random drivers 𝑥𝑡 which we think are relevant risks. 

Mathematically, these are those that have a quadratic variation.
• Examples: spot prices, FX, option prices, swap rates

• States 𝜏𝑡 which do not have quadratic variation, and are absolutely continuous 

with respect to time, i.e. 𝜏𝑡 = ׬
𝑡
𝜏𝑡
′𝑑𝑡.

In particular, the vector 𝜏 contains time itself.
• Examples: interest payments, dividend payments, realized volatility

• See [1] for background
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(*) That means that the 𝜎-algebra 𝐹𝑡 of our underlying filtration at time 𝑡 is generated by 𝑠𝑡.
[1] Delta-Hedging Works: On Market Completeness in Diffusion Models, Buehler 2009, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1464865

Electronic copy available at: https://ssrn.com/abstract=4151040

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1464865


• Trading cost
• Trading 𝑎 ∈ R𝑛 units of 𝐻 at 𝑡 will cost 𝑐𝑡 𝑎 in excess of the model price 𝐻𝑡.
• The function 𝑐 is normalized to 𝑐𝑡 0 = 0, non-negative, and convex.
• Convexity excludes fixed trading cost.
• Trading is limited to where 𝑐 < ∞.

• Example of Trading Frictions
• Assume we trading vanilla options with mid-prices 𝐻𝑡

𝑖.
• Denote by Δ𝑖 their Black & Scholes Delta, and by 𝑉𝑖 their Black & Scholes Vega,
• Example non-trivial trading cost:

Ƹ𝑐𝑡 𝑎 ≔ 𝛾Δ 𝑎 ⋅ Δ + 𝛾𝑉
1 𝑎 ⋅ 𝑉 + 𝛾𝑉

2 𝑎 ⋅ 𝑉 2

• A maximum Vega capacity of 𝑉max is incorporated as follows

𝑐𝑡 𝑎 ≔ Ƹ𝑐𝑡 𝑎 +∞1 𝑎⋅𝑉 >𝑉max
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Markoviz-Type Hedging of Daily Derivatives Risk

Lesson 1.1: Parameter Hedging
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• Remember that risk management models have at least three roles
1. Provide an optimal hedge to minimize risk vs. implementation cost
2. Provide a “risk price”, i.e. a price irrespective of client of trader’s market view.
3. Provide the ability to run stress scenarios for adverse scenarios

• Let us start with only the first property

• Consider the actual situation on a trading floor:
• Every derivative in our books, and any derivative we might want to trade with our clients 

has a classic model price (banking regulation).
• Even a liquid instrument which is quoted on exchange has a “model” price: usually the 

mid-price of the actual bid/ask.
• Given those model prices we wish to establish the best hedging strategy for “one day”.

19
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Statistical Hedging, Buehler 2017 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2913250
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• For 𝑋𝑡 ∈ 𝑍𝑡; 𝐻𝑡
1, … , 𝐻𝑡

𝑛 recall 𝑋𝑡 ≡ 𝑋 𝑠𝑡 we may use Taylor and obtain

𝑑𝑋𝑡 = 𝜕𝜏𝑋𝑡𝑑𝜏𝑡
𝑇ℎ𝑒𝑡𝑎

+ 𝜕𝑥𝑋𝑡𝑑𝑥𝑡
𝐷𝑒𝑙𝑡𝑎

+ 1
2𝜕𝑥𝑥

2 𝑋𝑡𝑑 𝑥 𝑡

𝐺𝑎𝑚𝑚𝑎

+ 𝑂 𝑥𝑡
3

• Important: even if the underlying model (e.g. Black Scholes) only has 
spot as “model state” we still compute derivatives to all other 
parameters (in the Black & Scholes case: interest rates, forward rates, 
volatility).
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Greek Hedging

• For 𝑋𝑡 ∈ 𝑍𝑡; 𝐻𝑡
1, … , 𝐻𝑡

𝑛 recall 𝑋𝑡 ≡ 𝑋 𝑠𝑡 we may use Taylor and obtain

𝑑𝑋𝑡 = 𝜕𝜏𝑋𝑡𝑑𝜏𝑡
𝑇ℎ𝑒𝑡𝑎

+ 𝜕𝑥𝑋𝑡𝑑𝑥𝑡
𝐷𝑒𝑙𝑡𝑎

+ 1
2𝜕𝑥𝑥

2 𝑋𝑡𝑑 𝑥 𝑡

𝐺𝑎𝑚𝑚𝑎

+ 𝑂 𝑥𝑡
3

• Our gains process is:
𝐺𝑎 ≔ 𝑑𝑍𝑡 + 𝑎 ⋅ 𝑑𝐻𝑡 − 𝑐𝑡 𝑎

• We can write the Taylor expansion for 𝑑𝑍 and 𝑑𝐻 including higher terms.
• Idea is to minimize exposure to each such “Greek” (derivative)
• As it stands, hard to tell which of the terms is most important to hedge… 
𝜕𝑆&𝑃 𝑠𝑝𝑜𝑡𝐺

𝑎 vs. 𝜕𝑆&𝑃 𝑣𝑜𝑙 𝐺
𝑎 vs 𝜕𝑈𝑆𝐷 3𝑚 𝑆𝑤𝑎𝑝 𝑅𝑎𝑡𝑒𝐺

𝑎 …. ?
• Relies on heuristics. Parameter Hedging formalizes this approach with data 21
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• Let 𝑑𝑥𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 under the statistical measure 𝑃. We sort above with 
some abuse of notation into

𝑑𝑋𝑡 ≈ 𝜕𝜏𝑋𝑡𝜏𝑡
′ + 𝜕𝑥𝑋𝑡𝜇𝑡 +

1
2
tr 𝜕𝑥𝑥

2 𝑋𝑡𝜎
2

𝐷𝑟𝑖𝑓𝑡

𝑑𝑡 + 𝜕𝑥𝑋𝑡𝜎𝑡
𝑅𝑖𝑠𝑘

𝑑𝑊𝑡

• This formula provides us with a normal approximation of the returns of any 
instrument.

• Therefore we have an estimate of the distribution of the portfolio for any 
trading action 𝑎.

• This gives us the gains process

𝐺𝑎 ≔ 𝑑𝑍𝑡 + 𝑎 ⋅ 𝑑𝐻𝑡 − 𝑐𝑡(𝑎)

• Meaningful data-driven weighting scheme for our Greeks when compared to 
Greek Hedging.
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• We now have an approximation of the statistical distribution of 

𝐺𝑡
𝑎 ≔ 𝑑𝑍𝑡 + 𝑎 ⋅ 𝑑𝐻𝑡 − 𝑐𝑡(𝑎)

• Lends itself rather obviously to optimization programs of the form

max
𝑎
: 𝑈 𝐺𝑎

• What should 𝑈 be?
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• Classic choices for 𝑑𝐺𝑎 ≔ 𝑑𝑍𝑡 + 𝑎 ⋅ 𝑑𝐻𝑡 − 𝑐𝑡(𝑎) with

𝑑𝐺𝑡
𝑎 ≈ 𝑑𝑋𝑡 ≈ 𝜕𝜏𝑋𝑡𝜏𝑡

′ + 𝜕𝑥𝑋𝑡𝜇𝑡 +
1
2tr 𝜕𝑥𝑥

2 𝑋𝑡𝜎
2

𝐷𝑟𝑖𝑓𝑡

𝑑𝑡 + 𝜕𝑥𝑋𝑡𝜎𝑡
𝑅𝑖𝑠𝑘

𝑑𝑊𝑡 − 𝑐𝑡 𝑎
𝐶𝑜𝑠𝑡

• Markowitz seminal work [1] suggests using
• Markowitz Mean-Variance 𝐸 𝑋 − 1

2
𝜆𝐸 𝑋 − 𝐸𝑋 2

• Markowitz Mean-Volatility 𝐸 𝑋 − 𝜆𝐸 𝑋 − 𝐸𝑋 2
1

2

• General form: 𝑈 𝑋 = 𝐸 𝑋 − 𝑞

𝑝
𝜆𝐸 𝑋 − 𝐸𝑋 𝑝

1

𝑞 for 𝑞 ∈ {1, 𝑝}. 𝜆 ≥ 0 represents our risk 
aversion.

• Close form for Mean-Variance for 𝑐 ≡ 0

𝑎 =

1
𝜆
Drift[𝐻] − Covar[𝑍, 𝐻]

Var[𝑍]

24
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[1] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.
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• Mean-Volatility in particular has an easy interpretation:
• The value 𝑈(𝑋) for 𝜆 = 2 denotes the level of returns 𝑋 will achieve in 98% of 

cases.*

• However, Mean-Volatility is also coherent i.e. 𝑈 𝑎𝑋 = 𝑎𝑈(𝑋).
• This means that we do not care about the size (notional) of our risk outside 

trading cost.

25
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(*) A normal with mean 𝜇 and volatility 𝜎 is has probability 96% to be within [𝜇 − 2𝜎, 𝜇 + 2𝜎]. Useful: https://en.wikipedia.org/wiki/Standard_deviation
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• Markoviz Optimization is a very well developed field

• Used traditionally for “linear” asset allocation where a normal 
assumption is natural
• Equity

• FX

• Long-dated debt

• Commercial covariance estimators are available for such assets

• Main challenge is modelling cost and … the drift, 𝜇. 
Called alpha when it comes to a directional forecast.
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Parameter Hedging: with normal assumption solve

max
𝑎
: 𝑈( 𝐺𝑎 )

• Trivial and fast implementation.

• No machine learning required.

• A number of observation:
• Our approach will naturally take care of second order cross-parameter dynamics

• This is already a much more robust approach than used in most financial 
institutions. 

• Classic Greek Hedging is equivalent to some arbitrary choices of 𝜇, 𝜎 … c.f. [1]

27

Parameter Hedging

__
[1] In “Volatility Markets: Consistent Modelling, Hedging and Practical Implementation” we discussed the use of L1/L2 optimizers for managing 
derivatives risk without “statistics” https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1118245
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Statistical Hedging of Daily Derivatives Risk

Lesson 1.2: Statistical Hedging
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• We assumed our portfolio returns are normal
• In this situation there is not much more to do than Markoviz optimization.
• However, it is questionable to approximate a portfolio of derivatives by essentially 

symmetric returns.

• Much more powerful as proposed in [1]:
• Estimate returns of today’s hedging instrument and portfolio using historic scenarios.
• Key is to use the relative-same instruments not “the same” fixed instruments:

• Keep time-to-maturity constant in business time
• Keep moneyness for strikes and barriers constant relative to market levels
• Ensure that past events such as barrier breaches are kept 

• We are still using our classic derivative model values !
• We can even extend the “one day” horizon by longer periods such as a week with 

intermittent (mechanical) hedging.
• First discussed 2012, 2013 on the Global Derivatives conferences.
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[1] Statistical Hedging, Buehler 2017 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2913250
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• When we do this … why would we penalize gains of 𝐺𝑎 as much as loses?
• Markoviz semi-variance 𝑈 𝑋 = 𝐸 𝑋 − 1

2
𝜆𝐸[2min 0, 𝑋 − 𝐸𝑋 2]

• Markoviz semi-volatility 𝑈 𝑋 = 𝐸 𝑋 − 𝜆𝐸 2min 0, 𝑋 − 𝐸𝑋 2
1

2

30
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“Values” of long puts are decreasing for increasing strikes for some risk aversions.

• Attractive from a practical point of view but they are not monotone.
• That means that it is possible that 𝑋1 > 𝑋2 but 𝑈 𝑋1 < 𝑈 𝑋2 … in which case 

our optimizer would falsely return 𝑋2.
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• Another intuitive measure is the confidence level which we will also 
loosely call VaR*

VaR 𝑋 ≔ 𝑃 𝑋 ≤⋅ −1 1 − 𝛼

• Assume that 𝛼 is your confidence level, e.g. 90%.

• Then 𝑋 will with 90% VaR 𝑈 𝑋 .

• This generalizes the mean-volatility intuition.

• It is well-known, however, that VaR is not concave*, and therefore not risk 
averse.  
• This happens because VaR does not consider the size of the loss beyond the confidence 

level. Therefore we can have a variable 𝑋1 which in 95% of cases is just slightly above 𝑋2
(and therefore is better), but whose loss in the 5% case way exceeds that of 𝑋2.

32
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__
(*) Actual Value at Risk, VaR, is defined as –U(X).
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• This is rectified with Expected Shortfall or CVaR* which computes the 
average loss below VaR.

𝑈 𝑋 ≔ CVaR 𝑋 ≔ 𝐸 𝑋 𝑋 ≤ VaR(𝑋 ]

• This metric has a number of attractive properties
• It is monotone, i.e. if 𝑋1 ≥ 𝑋2 then 𝑈 𝑋1 ≥ 𝑈(𝑋2) … “more is better”

• It is concave. This means it is risk-averse wrt 𝐸 ⋅ i.e. 𝑈 𝑋 ≤ 𝑈 𝐸 𝑋 .**

• It is cash-invariant in the sense that 𝑈 𝑋 + 𝑦 = 𝑈 𝑋 + 𝑦 for any real 𝑦.
This means in particular that finding any hedge is invariant of current wealth

33
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(*) Classic Expected Shortfall or, mostly equivalently, CVaR, is –U(X)

(**) Note that the relation 𝐸𝑄 𝑈 𝑋 ≤ 𝑈 𝐸𝑄 𝑋 is not necessarily true if the measure 𝑄 is different than the measure 𝑈 was defined with.
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• Motivating Cash Invariance
• Assume ෩𝑈 is concave and monotone (a “pre-kernel” in [1])

• Assume now that we allow “writing off” any part 𝑊 of a portfolio 𝑋 for the 
benefit its worst outcome, e.g.

𝑈 𝑋 ≔ sup
𝑊>−∞

෩𝑈 𝑋 −𝑊 + inf𝑊

• Since ෩𝑈 was monotone −𝑊 ≤ − inf𝑊 hence

𝑈 𝑋 ≔ sup
𝑤∈𝑅

෩𝑈 𝑋 − 𝑤 +𝑤

• The functional 𝑈 is cash-invariant [1]

__
34
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[1] Statistical Hedging; Buehler 2013 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2913250
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• We call a monotone, concave, and cash-invariant functional 𝑈 which is 
normalized to 𝑈 0 = 0 a monetary utility.
• Then −𝑈(𝑋) is a (normalized) convex risk measure.

• A monetary utility is called law-invariant with respect to a measure 𝑄 if 
𝑈 𝑋 = 𝑈(𝑌) for all variables which have the same law under 𝑄.

• A 𝑄-law invariant monetary utility is risk averse in the sense that

𝑈 𝐸𝑄 𝑋 ≥ 𝑈(𝑋)

• We call 𝑈 coherent if 𝑈 𝑛𝑋 = 𝑛𝑈(𝑋) for positive 𝑛.
Coherence is not usually a desirable property.
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• Optimized Certainty Equivalent [1]: let 𝑢 be an increasing, concave 
𝐶1 utility function normalized to 𝑢 0 = 0 and 𝑢′ 0 = 1.**

• Let 𝑄 be a measure. Then the following functional is a 𝑄-law invariant 
monetary utility:

𝑈 𝑋 ≔ sup
𝑦∈𝑅

: 𝐸𝑄 𝑈 𝑋 + 𝑦 − 𝑦

• We call the OCE strict if it is strictly increasing and strictly concave. 

• We note that cash invariance implies

𝑈 𝐺𝑎 = 𝑈 𝑍𝑡+𝑑𝑡 + 𝑎 ⋅ 𝐻𝑡+𝑑𝑡 − 𝑍𝑡 − 𝑎 ⋅ 𝐻𝑡 − 𝑐𝑡 𝑎
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• Optimized Certainty Equivalent [1]: let 𝑢 be a strictly increasing, 
strictly concave 𝐶1 utility function normalized to 𝑢 0 = 0 and 
𝑢′ 0 = 1.*

• Let 𝑄 be a measure. Then the following functional is a 𝑄-law invariant 
monetary utility:

𝑈 𝑋 ≔ sup
𝑦∈𝑅

: 𝐸𝑄 𝑈 𝑋 + 𝑦 − 𝑦

• We note that cash invariance implies

𝑈 𝐺𝑎 = 𝑈 𝑍𝑡+𝑑𝑡 + 𝑎 ⋅ 𝐻𝑡+𝑑𝑡 − 𝑍𝑡 − 𝑎 ⋅ 𝐻𝑡 − 𝑐𝑡 𝑎
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• Exponential utility 𝑢 𝑥 ≔ (1 − 𝑒−𝜆𝑥)/𝜆
• Exponential utility is the generalization of mean-variance.

Indeed, if 𝑋 = 𝜇 + 𝜎𝑌 for a normal 𝑌 then 𝐸 𝑈 𝑋 = 𝜇 − 1

2
𝜆𝜎2.

• Annoyingly, the exponential is very averse vs large losses. Indeed a short position in a Black 
Scholes stock has infinite negative utility.

• Truncated exponential utility: use quadratic on the downside.

• CVaR: 𝑢 𝑥 = 1 + 𝜆 min{0, 𝑥}

• Handerson and Hobson [1] proposed 𝑢 𝑥 = (1 + 𝜆𝑥 + 1 + 𝜆2𝑥2)/𝜆

• “Quadratic” utility: quadratic function cut off and shifted to satisfy 𝑢′ 0 = 1.
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• Practical Comment
For most practical applications, we look at delta-hedged returns of 
instruments. In this case, monotonicity seems to matter a lot less.
So far we found only pathological examples for when this becomes an 
issue.
That means semi mean-variance and semi mean-volatility remain a 
popular return metrics.
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Statistical Hedging

• Returns for 𝐺𝑎 are based on historic scenarios using the “relative-
same” instruments.

• Due to non-normality non-trivial objective functions are preferred

• Sound choice is the concept of optimized certainty equivalents as 
they are numerically very efficiently solvable using standard cone 
optimizers (use cvxpy for experimentation) 

𝑈 𝐺𝑎 = 𝑈 𝑍𝑡+𝑑𝑡 + 𝑎 ⋅ 𝐻𝑡+𝑑𝑡 − 𝑍𝑡 − 𝑎 ⋅ 𝐻𝑡 − 𝑐𝑡 𝑎
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Statistical Hedging
• Used at scale in JP Morgan for Flow Derivatives

https://www.risk.net/awards/7928696/equity-derivatives-house-of-the-year-jp-morgan

• Good
• Provides base line hedging strategy for “any” portfolio of derivatives
• Very versatile, robust, and “model-free”.
• Conceptually trivial, but represents a major progress towards automated trading:

• No arbitrarily defined greeks required
• All major (local) dynamics naturally captured

• But
• Price of an instrument given by “classic model”. What if that is wrong – as it likely is?
• Hedge only locally optimal.

There isn’t any machine learning … ?
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