

Learning to Trade I Statistical Hedging

TU Munich Visiting Prof. Hans Buehler Prof. Blanka Horvath

TU München 2022

http://deep-hedging.com

Electronic copy available at: https://ssrn.com/abstract=4151040

- "Trading" is a business
 - Sell derivatives to "franchise" clients who have a genuine requirement
 - Institutional clients: managing future cashflows or liabilities, commodity hedging, M&A activity, cash management, loans
 - Retail clients: directional trading, yield enhancement, mortgages
 - Hedge the resulting franchise exposure in the market
 - Exchanges, multi-dealer platforms, even decentralized.
 - Hedge excess risk with "arbitrageurs".
 - Idea generation:
 - Propose ideas for both groups of clients based on our knowledge of their business

- Today's derivative models
 - Focus on "fitting the market"
 - Interpolate desired hedging instruments (spot, forwards, option prices)
 - Expand model with additional stylistic risk factors to capture higher order effects
 - Examples
 - Local Volatility (fits all forwards, discount factors, FX or Equity option prices)
 - Hull-White fits ATM all swap rates, and a strip of swaptions e.g. ATM
 - Great paper "The Smile Calibration Solved" [1]
 - No statistical claim on those mechanics being particularly realistic

- Today's derivative models
 - Focus on "fitting the market"
 - We compute "greeks" with respect to non-model parameters
 - E.g. we compute "vega" for Local Volatility ... but this is a one-factor process

$$\frac{dS_t}{S_t} = \mu_t dt + \sigma(t, S_t) dW_t$$

 In fact, we will usually compute a whole host of greeks which doesn't make sense in a "complete market"

- Today's derivative models
 - Focus on "fitting the market"
 - We compute "greeks" with respect to non-model parameters
 - "Greeks" are not good enough
 - Every trading desk has their overwrites and heuristics to make the presumed replicating model work
 - Capture wrongly captured model dynamics, most notably "vol skew" and other effects
 - Account for transaction cost and other market frictions such as liquidity
 - Express view on the market

- Today's derivative models
 - Focus on "fitting the market"
 - We compute "greeks" with respect to non-model parameters
 - "Greeks" are not good enough
 - Theoretically dubious
 - Assumption of unique martingale measure in the first place and that it is somewhat related to the stylistic model we are using (e.g. local vol).
 - Absence of market frictions
 - Absence of risk aversion

- Today's derivative models
 - Focus on "fitting the market"
 - We compute "greeks" with respect to non-model parameters
 - "Greeks" are not good enough
 - Theoretically dubious
 - Very few papers assess properly out-of-sample performance of automated hedging with the proposed derivative models

Hedging performance: OOV 1m ATM Call

Analysis of hedging performance for options on variance with classic models, 2008

[1] Volatility Markets: Consistent Modelling, Hedging and Practical Implementation, Buehler 2008 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1118245 Electronic copy available at: https://ssrn.com/abstract=4151040

8

Early example of analysis of hedging performance

- Today's derivative models
 - Focus on "fitting the market"
 - We compute "greeks" with respect to non-model parameters
 - "Greeks" are not good enough
 - Theoretically dubious
 - Very few papers assess properly out-of-sample performance of automated hedging with the proposed derivative models
- This is a historical effect: when derivatives analytics where developed
 - Data and compute where sparse and expensive. At the time of Black, Scholes, Merton a normal assumption was entirely reasonable
 - Trading was a slower affair
 - Fewer electronic platforms to trade automatically with

Hard to

automate

- Machine Learning and AI
 - Culture of using data to drive decisions
 - Much more data available
 - Availability of large scale specialized compute
 - Modern "automatic adjunction differentiation" engines such as TensorFlow and PyTorch
 - Requires programming; numerical math; cloud tech
- AI
 - Do something good enough but at scale detect cats and dogs in videos
 - Do something better than humans play chess

- We want to let machine trade (mostly) by themselves
- Today's derivative models ... aren't quite working
- Let's go back to first principles
- We will look at two main ideas
 - Do something good enough but at scale "Statistical Hedging"
 - Do something better "Deep Hedging"

Framework

Electronic copy available at: https://ssrn.com/abstract=4151040

Deep Hedging Framework

The Market

- The market is observed under the **statistical measure** *P*.
- Everything is in discrete time \rightarrow markets not complete.
- We call *s_t* the **state** of the market. It represents all known information such as prices, bid/asks, twitter feeds, etc.^{*}
 - That means that any observable random variable R_t can be written as $R(s_t)$.
 - Our trading activity may affect the distribution of s_{t+1} e.g. in markets with **impact**.

Deep Hedging Framework

- Hedging Instruments
 - A key contribution of our work is providing a hedging framework for **derivatives as hedging instruments** e.g. swaps, futures, options.
 - We allow for **"floating" instrument definitions**, i.e. at each time step a potentially different set of instrument is available to trade,
 - For example the current on-the-run swaps, available listed options with some minimum liquidity etc.
 - This is a strong departure from most of the hedging literature, which tends to focus on "perpetual" instruments such as stocks and and FX, or on "fixed" instruments such as a specific bond.

Deep Hedging Framework

Hedging Instruments

- For notional simplicity we will fix a total number of *n* instruments. We can restrict their trading to ensure realistic behaviour. See [1] for a more detailed discussion.
- Any instrument we may trade has to have a mark-to-**model price** given for example by an official closing price, a weighted bid/ask, or a classic valuation model. We denote at time t the **model prices** by $H_t^i \equiv H^i(s_t)$ of n hedging instruments.
- For simplicity, assume that all prices are expressed in our natural *numeraire*.
 - E.g. if a model-price \tilde{X}_t is in USD, and if our numeraire $B_t^{\$}$ is the value of a USD bank account with a fixed notional, then $X_t \coloneqq \tilde{X}_t / B_t^{\$}$.
- The model prices of (sum of) the instruments in our existing portfolio is $Z_t \equiv Z(s_t)$.

Framework

ТΠ

- We split s_t into
 - True random drivers x_t which we think are relevant risks. Mathematically, these are those that have a quadratic variation.
 - Examples: spot prices, FX, option prices, swap rates
 - States τ_t which do not have quadratic variation, and are absolutely continuous with respect to time, i.e. $\tau_t = \int^t \tau'_t dt$. In particular, the vector τ contains time itself.
 - Examples: interest payments, dividend payments, realized volatility
 - See [1] for background

[1] Delta-Hedging Works: On Market Completeness in Diffusion Models, Buehler 2009, <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1464865</u>

^(*) That means that the σ -algebra F_t of our underlying filtration at time t is generated by s_t .

Framework

- Trading cost
 - Trading $a \in \mathbb{R}^n$ units of H at t will cost $c_t(a)$ in excess of the model price H_t .
 - The function c is normalized to $c_t(0) = 0$, non-negative, and convex.
 - Convexity excludes fixed trading cost.
 - Trading is limited to where $c < \infty$.
- Example of Trading Frictions
 - Assume we trading vanilla options with mid-prices H_t^i .
 - Denote by Δ^i their Black & Scholes Delta, and by V^i their Black & Scholes Vega,
 - Example non-trivial trading cost:

$$\hat{c}_t(a) \coloneqq \gamma_\Delta |a \cdot \Delta| + \gamma_V^1 |a \cdot V| + \gamma_V^2 |a \cdot V|^2$$

• A maximum Vega capacity of V_{max} is incorporated as follows

 $c_t(a) \coloneqq \hat{c}_t(a) + \infty \mathbb{1}_{|a \cdot V| > V_{\max}}$

Lesson 1.1: Parameter Hedging

Markoviz-Type Hedging of Daily Derivatives Risk

Electronic copy available at: https://ssrn.com/abstract=4151040

Parameter Hedging [1]

- Remember that risk management models have at least three roles
 - 1. Provide an optimal hedge to minimize risk vs. implementation cost
 - 2. Provide a "risk price", i.e. a price irrespective of client of trader's market view.
 - 3. Provide the ability to run stress scenarios for adverse scenarios
- Let us start with only the first property
- Consider the actual situation on a trading floor:
 - Every derivative in our books, and any derivative we might want to trade with our clients *has* a classic model price (banking regulation).
 - Even a liquid instrument which is quoted on exchange has a "model" price: usually the mid-price of the actual bid/ask.
 - Given those model prices we wish to establish the best hedging strategy for "one day".

ТΠ

Parameter Hedging

• For $X_t \in \{Z_t; H_t^1, \dots, H_t^n\}$ recall $X_t \equiv X(s_t)$ we may use Taylor and obtain

$$dX_{t} = \underbrace{\partial_{\tau} X_{t} d\tau_{t}}_{Theta} + \underbrace{\partial_{x} X_{t} dx_{t}}_{Delta} + \underbrace{\frac{1}{2} \partial_{xx}^{2} X_{t} d\langle x \rangle_{t}}_{Gamma} + O(x_{t}^{3})$$

• Important: even if the underlying model (e.g. Black Scholes) only has spot as "model state" we still compute derivatives to all other parameters (in the Black & Scholes case: interest rates, forward rates, volatility).

Greek Hedging

• For $X_t \in \{Z_t; H_t^1, \dots, H_t^n\}$ recall $X_t \equiv X(s_t)$ we may use Taylor and obtain

$$dX_{t} = \underbrace{\partial_{\tau} X_{t} d\tau_{t}}_{Theta} + \underbrace{\partial_{x} X_{t} dx_{t}}_{Delta} + \underbrace{\frac{1}{2} \partial_{xx}^{2} X_{t} d\langle x \rangle_{t}}_{Gamma} + O(x_{t}^{3})$$

• Our gains process is:

$$G^a \coloneqq dZ_t + a \cdot dH_t - c_t(a)$$

- We can write the Taylor expansion for dZ and dH including higher terms.
- Idea is to minimize exposure to each such "Greek" (derivative)
- As it stands, hard to tell which of the terms is most important to hedge... $\partial_{S\&P \ spot}G^a$ vs. $\partial_{S\&P \ vol}G^a$ vs $\partial_{USD \ 3m \ Swap \ Rate}G^a$?
- Relies on heuristics. *Parameter Hedging* formalizes this approach with data

• Let $dx_t = \mu_t dt + \sigma_t dW_t$ under the *statistical* measure *P*. We sort above with some abuse of notation into

$$dX_t \approx \underbrace{\left\{\partial_{\tau} X_t \tau'_t + \partial_x X_t \mu_t + \frac{1}{2} \text{tr} \ \partial_{xx}^2 X_t \sigma^2\right\}}_{Drift} dt + \underbrace{\partial_x X_t \sigma_t}_{Risk} dW_t$$

- This formula provides us with a normal approximation of the **returns of any instrument**.
- Therefore we have an estimate of the distribution of the portfolio for any trading **action** *a*.
- This gives us the gains process

$$G^a \coloneqq dZ_t + a \cdot dH_t - c_t(a)$$

 Meaningful data-driven weighting scheme for our Greeks when compared to Greek Hedging.

• We now have an approximation of the statistical distribution of

$$G_t^a \coloneqq dZ_t + a \cdot dH_t - c_t(a)$$

• Lends itself rather obviously to optimization programs of the form

 $\max_{a}: U(G^{a})$

• What should *U* be?

ТЛ

Parameter Hedging

• Classic choices for $dG^a \coloneqq dZ_t + a \cdot dH_t - c_t(a)$ with

$$dG_t^a \approx dX_t \approx \underbrace{\left\{ \partial_\tau X_t \tau'_t + \partial_x X_t \mu_t + \frac{1}{2} \text{tr} \, \partial_{xx}^2 X_t \sigma^2 \right\}}_{Drift} dt + \underbrace{\partial_x X_t \sigma_t}_{Risk} dW_t - \underbrace{c_t(a)}_{Cost}$$

- Markowitz seminal work [1] suggests using
 - Markowitz Mean-Variance $E[X] \frac{1}{2}\lambda E[(X EX)^2]_1$
 - Markowitz Mean-Volatility $E[X] \lambda E[(X EX)_1^2]^{\frac{1}{2}}$
 - General form: $U(X) = E[X] \frac{q}{p}\lambda E[(X EX)^p]^{\overline{q}}$ for $q \in \{1, p\}$. $\lambda \ge 0$ represents our **risk** aversion.
- Close form for Mean-Variance for $c \equiv 0$

$$a = \frac{\frac{1}{\lambda} \operatorname{Drift}[H] - \operatorname{Covar}[Z, H]}{\operatorname{Var}[Z]}$$

[1] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

25

- Mean-Volatility in particular has an easy interpretation:
 - The value U(X) for $\lambda = 2$ denotes the level of returns X will achieve in 98% of cases.^{*}
- However, Mean-Volatility is also **coherent** i.e. U(aX) = aU(X).
 - This means that we do not care about the size (notional) of our risk outside trading cost.

- Markoviz Optimization is a very well developed field
- Used traditionally for "linear" asset allocation where a normal assumption is natural
 - Equity
 - FX
 - Long-dated debt
- Commercial covariance estimators are available for such assets
- Main challenge is modelling *cost* and ... the drift, μ . Called **alpha** when it comes to a directional forecast.

Parameter Hedging: with normal assumption solve

 $\max_{a}: U(G^{a})$

- Trivial and fast implementation.
- No machine learning required.
- A number of observation:
 - Our approach will naturally take care of second order cross-parameter dynamics
 - This is already a much more robust approach than used in most financial institutions.
 - Classic Greek Hedging is equivalent to some arbitrary choices of μ, σ ... c.f. [1]

^[1] In "Volatility Markets: Consistent Modelling, Hedging and Practical Implementation" we discussed the use of L1/L2 optimizers for managing derivatives risk without "statistics" <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1118245</u>

Lesson 1.2: Statistical Hedging

Statistical Hedging of Daily Derivatives Risk

Electronic copy available at: https://ssrn.com/abstract=4151040

- We assumed our portfolio returns are normal
 - In this situation there is not much more to do than Markoviz optimization.
 - However, it is questionable to approximate a portfolio of derivatives by essentially symmetric returns.
- Much more powerful as proposed in [1]:
 - Estimate returns of today's hedging instrument and portfolio using historic scenarios.
 - Key is to use the *relative-same* instruments not "the same" fixed instruments:
 - Keep time-to-maturity constant in business time
 - Keep moneyness for strikes and barriers constant relative to market levels
 - Ensure that past events such as barrier breaches are kept
 - We are still using our classic derivative model values !
 - We can even extend the "one day" horizon by longer periods such as a week with intermittent (mechanical) hedging.
 - First discussed 2012, 2013 on the Global Derivatives conferences.

- When we do this ... why would we penalize gains of G^a as much as loses?
 - Markoviz semi-variance $U(X) = E[X] \frac{1}{2}\lambda E[2\min\{0, X EX\}^2]$
 - Markoviz semi-volatility $U(X) = E[X] \lambda E[2\min\{0, X EX\}^2]^{\frac{1}{2}}$

- Attractive from a practical point of view but they are not *monotone*.
 - That means that it is possible that $X_1 > X_2$ but $U(X_1) < U(X_2)$... in which case our optimizer would falsely return X_2 .

"Values" of long puts are decreasing for increasing strikes for some risk aversions.

- ПΠ
- Another intuitive measure is the *confidence level* which we will also loosely call VaR*

$$\operatorname{VaR}(X) \coloneqq P[X \leq \cdot]^{-1}(1 - \alpha)$$

- Assume that α is your confidence level, e.g. 90%.
- Then X will with 90% VaR U(X).
- This generalizes the mean-volatility intuition.
- It is well-known, however, that VaR is not concave*, and therefore not *risk averse*.
 - This happens because VaR does not consider the size of the loss beyond the confidence level. Therefore we can have a variable X_1 which in 95% of cases is just slightly above X_2 (and therefore is better), but whose loss in the 5% case way exceeds that of X_2 .

^(*) Actual Value at Risk, VaR, is defined as –U(X).

• This is rectified with *Expected Shortfall* or CVaR* which computes the average loss below VaR.

$$U(X) \coloneqq \mathrm{CVaR}(X) \coloneqq E[X|X \leq \mathrm{VaR}(X)]$$

- This metric has a number of attractive properties
 - It is **monotone**, i.e. if $X_1 \ge X_2$ then $U(X_1) \ge U(X_2)$... "more is better"
 - It is **concave**. This means it is risk-averse wrt $E[\cdot]$ i.e. $U(X) \leq U(E[X])$.**
 - It is **cash-invariant** in the sense that U(X + y) = U(X) + y for any real y. This means in particular that <u>finding any hedge is invariant of current wealth</u>

^(*) Classic Expected Shortfall or, mostly equivalently, CVaR, is –U(X)

^(**) Note that the relation $E_Q[U(X)] \le U(E_Q[X])$ is not necessarily true if the measure Q is different than the measure U was defined with.

- Motivating Cash Invariance
 - Assume \widetilde{U} is concave and monotone (a "pre-kernel" in [1])
 - Assume now that we allow "writing off" any part W of a portfolio X for the benefit its worst outcome, e.g.

$$U(X) \coloneqq \sup_{W > -\infty} \widetilde{U}(X - W) + \inf W$$

• Since \widetilde{U} was monotone $-W \leq -\inf W$ hence

$$U(X) \coloneqq \sup_{w \in R} \widetilde{U}(X - w) + w$$

• The functional *U* is cash-invariant [1]

- We call a **monotone**, **concave**, and **cash-invariant** functional U which is normalized to U(0) = 0 a **monetary utility**.
 - Then -U(X) is a (normalized) convex risk measure.
- A monetary utility is called **law-invariant** with respect to a measure Q if U(X) = U(Y) for all variables which have the same law under Q.
- A Q-law invariant monetary utility is **risk averse** in the sense that

 $U(E_Q[X]) \ge U(X)$

• We call U coherent if U(nX) = nU(X) for positive n. Coherence is not usually a desirable property.

- Optimized Certainty Equivalent [1]: let u be an increasing, concave C^1 utility function normalized to u(0) = 0 and u'(0) = 1.**
- Let Q be a measure. Then the following functional is a Q-law invariant monetary utility:

$$U(X) \coloneqq \sup_{y \in R} E_Q[U(X+y)] - y$$

- We call the OCE *strict* if it is strictly increasing and strictly concave.
- We note that cash invariance implies

$$U(G^{a}) = U(Z_{t+dt} + a \cdot H_{t+dt}) - Z_{t} - a \cdot H_{t} - c_{t}(a)$$

[1] Aharon Ben-Tal and Marc Teboulle. An old-new concept of convex risk measures: The optimized certainty equivalent. Mathematical Finance, 17(3):449–476, July 2007.

- Optimized Certainty Equivalent [1]: let u be a strictly increasing, strictly concave C^1 utility function normalized to u(0) = 0 and u'(0) = 1.*
- Let Q be a measure. Then the following functional is a Q-law invariant monetary utility:

$$U(X) \coloneqq \sup_{y \in R} E_Q[U(X+y)] - y$$

• We note that cash invariance implies

$$U(G^a) = U(Z_{t+dt} + a \cdot H_{t+dt}) - Z_t - a \cdot H_t - c_t(a)$$

[1] Aharon Ben-Tal and Marc Teboulle. An old-new concept of convex risk measures: The optimized certainty equivalent. Mathematical Finance, 17(3):449–476, July 2007.
(*) strict monotonicity and concavity are only required for some of the results here. See [1].

- Exponential utility $u(x) \coloneqq (1 e^{-\lambda x})/\lambda$
 - Exponential utility is the generalization of mean-variance. Indeed, if $X = \mu + \sigma Y$ for a normal Y then $E[U(X)] = \mu - \frac{1}{2}\lambda\sigma^2$.
 - Annoyingly, the exponential is *very* averse vs large losses. Indeed a short position in a Black Scholes stock has infinite negative utility.
- Truncated exponential utility: use quadratic on the downside.
- CVaR: $u(x) = (1 + \lambda) \min\{0, x\}$
- Handerson and Hobson [1] proposed $u(x) = (1 + \lambda x + \sqrt{1 + \lambda^2 x^2})/\lambda$
- "Quadratic" utility: quadratic function cut off and shifted to satisfy u'(0) = 1.

[1] V. Henderson and D. Hobson. Utility indifference pricing: An overview. 2004. https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/henderson/publications/indifference_survey.pdf Electronic copy available at: https://ssrn.com/abstract=4151040

CVaR Quad

39

Entropy

Vicky

TruncatedEntropy

Statistical Hedging

Practical Comment

For most practical applications, we look at delta-hedged returns of instruments. In this case, monotonicity seems to matter a lot less. So far we found only pathological examples for when this becomes an issue.

That means semi mean-variance and semi mean-volatility remain a popular return metrics.

Statistical Hedging

- Returns for G^a are based on historic scenarios using the "relativesame" instruments.
- Due to non-normality non-trivial objective functions are preferred
- Sound choice is the concept of optimized certainty equivalents as they are numerically very efficiently solvable using standard cone optimizers (use cvxpy for experimentation)

$$U(G^{a}) = U(Z_{t+dt} + a \cdot H_{t+dt}) - Z_{t} - a \cdot H_{t} - c_{t}(a)$$

Statistical Hedging

- Used at scale in JP Morgan for Flow Derivatives https://www.risk.net/awards/7928696/equity-derivatives-house-of-the-year-jp-morgan
- Good
 - Provides base line hedging strategy for "any" portfolio of derivatives
 - Very versatile, robust, and "model-free".
 - Conceptually trivial, but represents a major progress towards automated trading:
 - No arbitrarily defined greeks required
 - All major (local) dynamics naturally captured
- But
 - Price of an instrument given by "classic model". What if that is wrong as it likely is?
 - Hedge only locally optimal.

There isn't any machine learning ... ?

Please ask questions

Electronic copy available at: https://ssrn.com/abstract=4151040