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• Notation
• Everything is in discrete time →markets not complete.
• We call 𝑠𝑡 the state of the market. It represents all known information. 
• That means that any observable random variable 𝑅𝑡 can be written as 𝑅(𝑠𝑡).
• At any point 𝑡 we observe the model prices 𝐻𝑡

𝑖 = 𝐻𝑖 𝑠𝑡 of 𝑛 hedging instruments.
• The (sum of the) model prices of our existing portfolio is 𝑍𝑡 ≡ 𝑍 𝑠𝑡 .
• The market is observed under the statistical measure 𝑃.

• Trading cost
• Trading 𝑎 ∈ R𝑛 units of 𝐻 at 𝑡 will cost 𝑐𝑡 𝑎 in excess of the model price 𝐻𝑡.
• The function 𝑐 is normalized to 𝑐𝑡 0 = 0, non-negative, and convex.
• Convexity excludes fixed trading cost.
• Trading is limited to where 𝑐 < ∞.
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• With Statistical Hedging, we looked at the return 𝑑𝑍𝑡 = 𝑍𝑡+𝑑𝑡 − 𝑍𝑡.

• Now do the other extreme:
• Assume 𝑇 is such that all instruments in our portfolio 𝑍 and any relevant hedging 

instruments are expired.

• Valuation of 𝑍𝑇 and 𝐻𝑇 is trivial, and model-independent: it is the sum of all 
cashflows until 𝑇.

• Instead of a single action 𝑎, we will now solve for an policy 𝑎 which is a function 
of the state, i.e. at any time 𝑡 the hedging action is 𝑎𝑡 ≡ 𝑎 𝑠𝑡 .

• Then

𝐺𝑎 ≔ 𝑍𝑇 − 𝑍𝑡 +

𝑟=𝑡

𝑇−1

𝑎𝑟 ⋅ 𝐻𝑇 − 𝐻𝑟 − 𝑐𝑟(𝑎𝑟)
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Vanilla Deep Hedging [1]
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[1] Deep Hedging, Buehler et all 2018, https://arxiv.org/pdf/1802.03042.pdf
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• Consider

𝐺𝑎 ≔ 𝑍𝑇 − 𝑍𝑡 +

𝑟=𝑡

𝑇−1

𝑎𝑟 ⋅ 𝐻𝑇 − 𝐻𝑟 − 𝑐𝑟(𝑎𝑟)

• We note that we will need the model prices 𝐻𝑟 of all our trading 
instruments along the path.

• We do not need the model price of our portfolio 𝑍 as its payoff is known 
in 𝑇
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Vanilla Deep Hedging

__
(*) We drop 𝑍𝑡 as it is a constant and will disappear from any optimization.

Electronic copy available at: https://ssrn.com/abstract=4151041



• Consider

𝐺𝑎 ≔ 𝑍𝑇 − 𝑍𝑡 +

𝑟=𝑡

𝑇−1

𝑎𝑟 ⋅ 𝐻𝑇 − 𝐻𝑟 − 𝑐𝑟(𝑎𝑟)

• Let 𝑎 ⋆ 𝐻𝑇: = σ𝑟=𝑡
𝑇−1 𝑎𝑟 ⋅ 𝐻𝑇 − 𝐻𝑟 and 𝐶𝑇 𝑎 := σ𝑟=𝑡

𝑇−1 𝑐𝑟(𝑎𝑟). 
Then above becomes essentially*

𝐺𝑎 ≔ 𝑍𝑇 + 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎
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Vanilla Deep Hedging

__
(*) We drop 𝑍𝑡 as it is a constant and will disappear from any optimization.
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• Let 𝑈 be a monetary utility. Then the Vanilla Deep Hedging problem is 
given as 

max
𝑎
: 𝑈 𝐺𝑎 with 𝐺𝑎 ≔ 𝑍𝑇 + 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎

• The main difference to our previous formulation is that 𝑎 is now a 
function which takes the current state and returns the next hedge.

• Natural machine learning approach: write 𝑎 as neural network with 
network weights 𝜃 i.e.

𝑎𝑡 ≡ 𝑎 𝑠𝑡 ≔ 𝑎 𝜃; 𝑠𝑡
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• Neural network with weights 𝜃 ∈ 𝑅𝐾 is a function approximator 𝐹 𝜃;⋅ for 
a function, say, 𝑓: 𝑅𝑛0 → 𝑅𝑛𝐾.
• Let 𝑥0 ∈ 𝑅𝑛0.
• 𝐾 is called depth.
• Define widths 𝑛1, … , 𝑛𝐾−1.
• Define weights 𝑤𝑘 ∈ 𝑅𝑛𝑘+1×𝑛𝑘 and biases 𝑏𝑘 ∈ 𝑅𝑛𝑘+1. 

The totality is 𝜃 = 𝑤0, … , 𝑤𝐾−1; 𝑏0, … , 𝑏𝐾−1 .
• Let 𝜎: 𝑅 → 𝑅 be a suitable function, called activation function
• Define a neural network by iterative application of 𝜎 to linear combinations of the 

nodes 𝑥:
𝑥𝑘+1
𝑖 : = 𝜎 𝑤𝑘

𝑖 ⋅ 𝑥𝑘 +𝑏𝑘
𝑖

• Point is that the approximator 𝐹 𝜃;⋅ ≈ 𝑓 ⋅ can be arbitrarily close for a 
wide range of functions 𝑓 (“universal approximation theorem”).
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• AI Deep Hedging problem

max
𝜃
: 𝑈 𝑍𝑇 + 𝑎 𝜃 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎 𝜃

• Actions 𝑎 are neural networks with weights 𝜃

𝑎𝑡 ≡ 𝑎 𝑠𝑡 ≔ 𝑎 𝜃; 𝑠𝑡
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• AI Deep Hedging problem

max
𝜃
: 𝑈 𝑍𝑇 + 𝑎 𝜃 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎 𝜃

• Numerically this is a Monte Carlo problem
if we use 𝐾 paths for an OCE 𝑈 𝑋 = sup

𝑦
: 𝐸 𝑢 𝑋 + 𝑦 − 𝑦 :

max
𝜃,𝑦

:
1

𝐾


𝜔=1

𝐾

𝑢 𝑍𝑇 + 𝑎 𝜃 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎 𝜃 + 𝑦 − 𝑦

• In Reinforcement Learning this is called “Periodic Policy Search”
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• AI Deep Hedging problem

max
𝜃
: 𝑈 𝑍𝑇 + 𝑎 𝜃 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎 𝜃

• We have proven in [1] that this scheme theoretically converges to the 
right optimal policy 𝑎∗.

• Requires that the state 𝑠 is indeed exhaustive and contains all relevant 
information → “feature engineering”
• Too big a state: difficult to converge.

• Too small a state: won’t converge to optimum 
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• Test first vs cases where we know or guess the theoretical answer [1]
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• Delta of a call spread in Black & Scholes [1]
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• Marginal Pricing: we wish to sell a derivative 𝐷 to our client

• Define
𝑈∗ 𝑍 ≔ max

𝑎
: 𝑈 𝑍𝑇 + 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎

• The marginal price of selling 𝐷 is given as

Π 𝐷 ≔ 𝑈∗ 𝑍 − 𝑈∗ 𝑍 − 𝐷

• It represents the minimal price we should charge to not be worse off 
with respect to 𝑈.
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• So it works … some git code to play around
https://github.com/hansbuehler/deephedging

• Problem solved? … not at all !

• No point solving Deep Hedging for classic diffusion dynamics…
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Lesson 2.2: Market Simulation
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• We are given a history of historic market data

• Aim is to write a simulator for the “entire market”

• Lack of data: for example index spot and option prices.
• 10Y of data ~ 2500 data points

• Typically index option surface has 100’s of options

• Arbitrage
• Need to find a parametrization which ensures absence of static arbitrage

• Static arbitrage = positive returns for free → Deep Hedging will exploit it 
emphatically 
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Market Simulation
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Data from Learning Risk-Neutral Implied Volatility Dynamics, Buehler et al 2021, https://arxiv.org/pdf/2103.11948.pdf
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Market Simulation for Implied Volatilities

• Arbitrage: parameterize grid of option prices 𝐶 𝑇𝑗 , 𝐾𝑖 in a space in 
which we can easily enforce absence of static arbitrage

• Discrete Local Volatility “DLV” [1] is a numerically robust form of local 
volatility. 

𝜎𝑗,𝑖
2 ≔

𝐶 𝑇𝑗+1, 𝐾𝑖+1 − 𝐶 𝑇, 𝐾𝑖

2 𝐶 𝑇𝑗 , 𝐾𝑖+1 − 2𝐶 𝑇𝑗 , 𝐾𝑖 + 𝐶 𝑇𝑗 , 𝐾𝑖−1 𝐾𝑖
2 𝑇𝑗+1 − 𝑇𝑗

• Bijection between prices 𝐶 and DLV’s 𝜎.

• Positivity of 𝜎 is sufficient to define an arbitrage-free option surface

19
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Market Simulation for Implied Volatilities

20

Market Simulation

Spot and Option 
Prices at 𝑡

Spot and DLVs at 𝑡

__
[1] graph from Multi-Asset Spot and Option Market Simulation, Wiese et al 2021, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3980817
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Market Simulation for Implied Volatilities

• Dimensionality of the vector 𝑌𝑡 = (log 𝑆𝑡 , log 𝜎𝑗,𝑖) same as spot and 
options

• However, option prices are managed by humans and simple (non-ML) 
machines.

• Working assumption the change vector 𝑑𝑌𝑡 can be presented by a much 
lower dimensional state vector 𝑑𝑠𝑡.
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Market Simulation for Implied Volatilities

• Classic method: PCA [1] i.e. unconditional linear representation of the 
form

𝑑𝑌𝑡 = 𝐵𝑑𝑡 +𝐴𝑑𝑠𝑡

• Pure regression allows us matching mean and variance of 𝑑𝑌𝑡.

22

Market Simulation
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Market Simulation for Implied Volatilities

• Autoencoder [1]: learn a machine representation
• Decoder: non-linear form of PCA: learn weights 𝜉

𝑌𝑡 = 𝐴𝑑 𝜉; 𝑠𝑡

• Encoder: lean weights 𝜂 to reconstruct the relevant state space from the full 
surface 𝑌

𝑠𝑡 = 𝐴𝑒 𝜂; 𝑌𝑡
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Market Simulation for Implied Volatilities

• Autoencoder: learn a machine representation

𝑌𝑡 = 𝐴𝑑 𝜉; 𝑠𝑡 𝑠𝑡 = 𝐴𝑒 𝜂; 𝑌𝑡

• Plenty of freedom to build a “realistic” process for 𝑑𝑠𝑡.

• What means realistic

• For example
• Classic covariance, correlation, auto-correlation …

• Matching the signature representation →Wasserstein distance [1]

• … ?
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Market Simulation for Implied Volatilities

• Working assumption the change vector 𝑑𝑌𝑡 can be presented by a much 
lower dimensional state vector 𝑑𝑠𝑡.
• Variational Autoencoder [1]: learn a machine representation of a general 

distribution
𝑌𝑡 = 𝐴𝑑 𝜉; 𝑠𝑡 , 𝑑𝑊𝑡 with 𝑑𝑊𝑡~𝑁

𝑚( 𝑑𝑡)

• VAE can match many features of the distribution of 𝑑𝑌𝑡.

• What are the relevant characteristics … ?

• Engineer features which we assume are relevant for 𝑠𝑡

25
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• Used in JP Morgan for Cliquet Options
https://www.risk.net/derivatives/equity-derivatives/7921526/jp-morgan-testing-deep-hedging-of-exotics

• Good
• Promising, versatile, intuitive machinery
• Model-free in the sense that the machine is easily transferrable
• Takes into account market frictions
• Results deviate from classic models 

• But
• Very heavy numerically
• Results deviate from classic models and need explanation
• Vanilla Deep Hedging requires re-training every time 𝑍 changes → “Bellman” Deep 

Hedging: joint research and patent pending. Not a trivial topic at all.

Deep Hedging & Market Simulation
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• Data-Driven Risk Management for Derivatives – a new topic in quant finance

• Data challenges
• Not that much relevant data, in particular when expanding into multi-asset simulation across asset classes
• Data hard to access outside finance making validation of papers hard
• Trading cost beyond simple bid/ask spread often hard to obtain

• Modelling challenges
• Adhere to static no-arbitrage conditions, e.g. butterfly spreads cannot have negative prices.
• Consistent interpolation onto a large number of hedging instruments

• Statistical challenges
• Create realistic data – where “realistic” is defined by “it works in hedging”.
• Non-stationarity of financial data

• Machine Learning challenges
• Non-linear data generators beyond diffusion-like approaches
• Managing explosions / interpolation / extrapolation
• Robustness against outliers in data, including outliers which are simply there (e.g. March 2019)

27
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Managing Uncertainty

Lesson 2.3: Statistical Arbitrage
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• Back to Deep Hedging … on our market simulator

• We have earlier defined

𝑈∗ 𝑍 ≔ max
𝑎
: 𝑈 𝑍𝑇 + 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎

• What about 𝑈∗(0) which represents the “value” of an initially empty 
portfolio?

• We say that the market exhibits statistical arbitrage if 𝑈∗ 0 > 0.

• Happens naturally.

Statistical Arbitrage
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• Statistical Arbitrage is an economic fact
• Selling insurance commands a risk premium

• Selling puts

• Selling long-term rates vs. short term rates

• Selling credit protection

• …

• Arbitrageurs exploit opportunities to make the market more efficient
• Hedge funds’ economic role is to find such opportunities and drive markets towards 

efficiency

• Some use forms of crowd sourcing to add signals

• Entire (well paid) industry

30

Statistical Arbitrage
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• Indeed, naïve application to Deep Hedging to the S&P500 with data 
for the last 5 years leads to
• Going long the index

• Selling puts

• Ignore hedging any derivative

31
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• Statistical Arbitrage is also result of Model Uncertainty
• Assume we observe a market generated by a normal asset price 𝑋

• Annualized volatility 20%

• Annualized drift 20% i.e. sharpe is 1

• In practise, we observe one path. On that path we estimate the mean of the 
process.

mean 𝑑𝑋 =
1

𝑚


𝑡=1

𝑚

𝑑𝑋𝑡 =
1

𝑚
(𝑋𝑚 − 𝑋0)

• The estimator itself is a random variable

• How does this look like statistically?

32
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Statistical Arbitrage

The naïve mean estimator is uncertain as it depends on the path we are on.
Effect is called Knightian Uncertainty
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• Why does the Knightian Uncertainty of the mean matter?

𝑈 𝑋 = 𝐸𝑄 𝑋 + 𝑈 𝑋 − 𝐸𝑄 𝑋

𝑅𝑖𝑠𝑘 𝑡𝑒𝑟𝑚

• Finding an optimal hedging strategy is very sensitive to the mean.

• Machine thinks it can make money … but it doesn’t work because of 
the estimation error.

34
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• Knightian Uncertainty: classic problem in systematic investment 
strategies – plenty of heuristics to address the issue even for classic 
“Markoviz” portfolio construction [1]

• This is a lot less difficult for estimators of higher moments. That also 
makes theoretical sense – the arbitrage is in the mean !

• Two main ideas:
• Remove the Drift → published work with Imperial College London

This approach is robust and does not attempt to construct a drift.

• Managing Knightian Uncertainty → research project with TU Munich
Use the drift, but appreciate that it is subject to estimation noise

35
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[1] good summary: Marcos Lopez de Prado: Advances in Financial Machine Learning, Wiley, 2018
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Removing the Drift

• Objective is first remove the sampling drift, and then in a second step 
set it to a judiciously researched target drift with higher confidence.

• In classic portfolio optimization we only have “linear” assets

• To remove the drift, we simply divide each return by the mean return 
over the sample period

𝑑 ෨𝑋𝑡
𝑖 ≔

𝑑𝑋𝑡
𝑖

1
𝑚
(𝑋𝑚 − 𝑋0)

36
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(*) strictly speaking we will set the drift to the prevailing overnight interest rate
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Removing the Drift

• Objective is first remove the sampling drift, and then in a second step 
set it to a judiciously researched target drift with higher confidence.

• For markets with complex assets removing the drift distorts the co-
dependence of the instruments, e.g. stock and options thereon.

• Instead of changing the paths we aim now to reweight the observed 
paths such that the drift disappears – that means constructing a new 
equivalent measure 𝑄.

37

Statistical Arbitrage

__
[1] Marcos Lopez de Prado: Advances in Financial Machine Learning, Wiley, 2018

Electronic copy available at: https://ssrn.com/abstract=4151041



• Assume using the entropy 𝑢 𝑥 ≔
1−𝑒−𝜆𝑥

𝜆

• Cost zero for illustration.

• Under a measure 𝑄 define

𝑈𝑄 𝑋 ≔ sup
𝑦
: 𝐸𝑄 𝑢 𝑋 + 𝑦 − 𝑦 = −

1

𝜆
log 𝐸𝑄 𝑒−𝜆𝑋

• We wish to chose 𝑄 ≈ 𝑃 such that

0 = max
𝑎
: 𝑈𝑄 𝑎 ⋆ 𝐻𝑇

38
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• Step 1: under 𝑃 find the optimal strategy 𝑎0 for the empty portfolio

𝑎0 ≔ argmax𝑎: 𝑈𝑃 𝑎 ⋆ 𝐻𝑇 = argmax𝑎:
1

𝜆
log 𝐸𝑃 𝑒−𝜆 𝑎⋆𝐻𝑇

• Step 2: define the measure

𝑑𝑄 ≔
𝑒−𝜆 𝑎0⋆𝐻𝑇

𝐸𝑃[𝑒
−𝜆 𝑎0⋆𝐻𝑇 ]

𝑑𝑃

39
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• Step 3: under the monetary utility 𝑈𝑄:

max
𝑎
: 𝑈𝑄 𝑎 ⋆ 𝐻𝑇

= max
𝑎
:
1

𝜆
log 𝐸𝑃

𝑒−𝜆 (𝒂+𝑎0)⋆𝐻𝑇

𝐸𝑃[𝑒
−𝜆 𝑎0⋆𝐻𝑇 ]

∼ max
𝑎
:
1

𝜆
log 𝐸𝑃 𝑒−𝜆 (𝒂+𝑎0)⋆𝐻𝑇

= 0
• Because 𝑎0 was optimally chosen under 𝑃.

• This shows that the optimal 𝑎 is zero – in other words, the monetary 
utility 𝑈𝑄 is free of statistical arbitrage
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• The measure 𝑄 is one of many equivalent martingale measures.

• Our specific choice minimizes the entropy of 𝑄 with respect to 𝑃
among all equivalent martingale measures [1] i.e.

𝑄 ↦ 𝐸𝑃
𝑑𝑄

𝑑𝑃
log

𝑑𝑄

𝑑𝑃
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• In the case of the entropy, without transaction cost we have the 
following intuitive result [1]:

• For a portfolio 𝑍 the optimal strategy 𝑎∗ under 𝑈𝑃 is given as

𝑎∗ ≔ 𝑎0 + 𝑎

• Where:
• 𝑎0 is the optimal “prop trading” strategy for the empty portfolio under 𝑃.

• 𝑎 is the optimal “pure hedging” strategy under the risk-neutral 𝑄.
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• Fun fact: in discrete time, we can change also the volatility of a 
process by changing measure.
• Experiment: market with 15% annual realized volatility. Option traded with 

20% volatility. Statistical arbitrage is selling the option and delta hedge.

• What happens when we change our measure:
The measure will put more weight on paths with lower realized (discrete 
time) variance per path
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• Experiment [1]: market with 15% annual realized volatility. Option traded with 
20% volatility. Statistical arbitrage is selling the option and delta hedge.

• The measure will put more weight on paths with lower realized (discrete 
time) variance per path
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Left: paths given the highest 0.1% of probabilities under 𝑄; right: lowest 0.1%
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Generalization to cost and arbitrary 𝒖

• Define “marginal cost” 𝑚𝑡 as linearization of 𝑐 in zero as follows [1]:
• Denote by ∇±𝑐𝑡 0 the gradients in zero in positive and negative direction;

• Let 𝑎± ≔ max ±𝑎, 0 ;

• Define

𝑚𝑡 𝑎𝑡 ≔

𝑖

𝑎𝑡
+ ⋅ ∇+𝑐𝑡 0 − 𝑎𝑡

− ⋅ ∇−(0)

and

𝑀𝑇 𝑎 ≔

𝑡

𝑚𝑡 𝑎𝑡
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• Apply similar idea to before [1]: find 𝑎0, 𝑦0 as solution to

max
𝑎,𝑦

: 𝐸𝑃 𝑢 𝑎 ⋆ 𝐻𝑇 −𝑀𝑇 𝑎 + 𝑦0 − 𝑦0

• Define the measure 𝑄 via

𝑑𝑄 ≔ 𝑢′ 𝑎0 ⋆ 𝐻𝑇 −𝑀𝑇 𝑎0 + 𝑦0 𝑑𝑃

48

Statistical Arbitrage

__
[1] Deep hedging: learning to remove the drift, Buehler et al 2022 https://www.risk.net/cutting-
edge/banking/7932226/deep-hedging-learning-to-remove-the-drift and https://arxiv.org/abs/2111.07844

Electronic copy available at: https://ssrn.com/abstract=4151041

https://www.risk.net/cutting-edge/banking/7932226/deep-hedging-learning-to-remove-the-drift
https://arxiv.org/abs/2111.07844


• Under the new measure the expected returns of all instruments are 
within marginal bid/ask spread in the following sense:
• Let 𝛾𝑡

𝑖± ≔ ∇±(𝑒𝑖) be the marginal cost of buying/selling a small quantity of the 
𝑖th asset. Then [1] the measure 𝑄 is a near-martingale measure in the sense that

𝐻𝑡
𝑖 − 𝛾𝑡

𝑖− ≤ 𝐸𝑄 𝐻𝑇
𝑖 |𝑠𝑡 ≤ 𝐻𝑡

𝑖 − 𝛾𝑡
𝑖+

• There is no statistical arbitrage under 𝑄 with full (or marginal) transaction cost:

0 = max
𝑎
: 𝑈𝑄( 𝑎 ⋆ 𝐻𝑇 − 𝐶𝑇 𝑎 )

• The measure 𝑄 minimizes the 𝑢-divergence to 𝑃 among all near-martingale 
measures [1].
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Full market simulation results [1]: left are expected returns under 𝑃, right under 𝑄 under transaction cost
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• We built a market simulator for (a form of) implied volatilities

• We then removed the drift … such that the price processes become 
martingales

• We have created with machine learning a stochastic implied volatility 
model … a task not achieved through years of quantitative finance 
research !

51

Stochastic Implied Volatility

Electronic copy available at: https://ssrn.com/abstract=4151041



• Good
• Nice theoretical framework
• Model-free approach that works for any market model, any currency etc
• Same numerical complexity as Deep Hedging

• But
• Removing the drift is akin to giving up coming up on a better estimate on 

where the market goes → research into Knightian Uncertainty instead
• Numerically not quite robust enough

• Measure 𝑄 still has some marginal statistical arbitrage.
• Static arbitrage and statistical arbitrage are very close to each other.

For example, lack of sampling of rare events can introduce numerical “static” arbitrage 
(e.g. short term OTM puts never pay in our MC simulation)

Statistical Arbitrage
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Please ask questions
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