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AI for Derivatives Trading

Recap: Vanilla Deep Hedging
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Notation
• Everything is in discrete time markets not complete.
• We call 𝑠𝑠𝑡𝑡 the state of the market. It represents all known information. 
• That means that any observable random variable 𝑅𝑅𝑡𝑡 can be written as 
𝑅𝑅(𝑠𝑠𝑡𝑡).

• At any point 𝑡𝑡 we observe the model prices 𝐻𝐻𝑡𝑡𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑠𝑠𝑡𝑡 of 𝑛𝑛 hedging 
instruments. 

• Any cashflows etc are aggregated. That means if 𝑡𝑡 is beyond the expiry of 
the instrument, then 𝐻𝐻𝑡𝑡𝑖𝑖 represents the sum of all its cashflows

• The (sum of the) model prices of our existing portfolio is 𝑍𝑍𝑡𝑡 ≡ 𝑍𝑍 𝑠𝑠𝑡𝑡 .
• The market is observed under the statistical measure 𝑃𝑃.
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Trading cost
• Trading 𝑎𝑎 ∈ R𝑛𝑛 units of 𝐻𝐻 at 𝑡𝑡 will cost 𝑐𝑐𝑡𝑡 𝑎𝑎 in excess of the model 

price 𝐻𝐻𝑡𝑡.
• The function 𝑐𝑐 is normalized to 𝑐𝑐𝑡𝑡 0 = 0, non-negative, and convex.
• Convexity excludes fixed trading cost.
• Trading is limited to where 𝑐𝑐 < ∞.
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• Assume 𝑇𝑇 is such that all instruments in our portfolio 𝑍𝑍 and any relevant 
hedging instruments are expired.

• Valuation of 𝑍𝑍𝑇𝑇 and 𝐻𝐻𝑇𝑇 is trivial, and model-independent: it is the sum of 
all cashflows until 𝑇𝑇.

• We will not solve for an policy 𝑎𝑎 which is a function of the state, i.e. at 
any time 𝑡𝑡 the hedging action is 𝑎𝑎𝑡𝑡 ≡ 𝑎𝑎 𝑠𝑠𝑡𝑡 .

• Total gains are

𝐺𝐺𝑎𝑎 ≔ 𝑍𝑍𝑇𝑇 − 𝑍𝑍𝑡𝑡 + �
𝑟𝑟=𝑡𝑡

𝑇𝑇−1

𝑎𝑎𝑟𝑟 ⋅ 𝐻𝐻𝑇𝑇 − 𝐻𝐻𝑟𝑟 − 𝑐𝑐𝑟𝑟(𝑎𝑎𝑟𝑟)
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• We call a monotone, concave, and cash-invariant functional 𝑈𝑈𝑡𝑡 which 
is normalized to 𝑈𝑈𝑡𝑡 0 = 0 a conditional monetary utility.

• Then −𝑈𝑈𝑡𝑡(𝑋𝑋) is a normalized conditional convex risk measure.

• Let 𝑢𝑢 be 𝐶𝐶1, monotone, and concave and normalized to 𝑢𝑢 0 =
0,𝑢𝑢′ 0 = 1. Its Optimised Certainty Equivalent (OCE)

𝑈𝑈𝑡𝑡 𝑋𝑋 ≔ sup
𝑦𝑦𝑡𝑡

:𝐸𝐸𝑡𝑡 𝑢𝑢 𝑋𝑋 + 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡

is a monetary utility.

Vanilla Deep Hedging
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• Let 𝑈𝑈 be a monetary utility. Then the Vanilla Deep Hedging problem [1] 
is given as 

max
𝑎𝑎=𝑎𝑎𝑡𝑡,…,𝑎𝑎𝑇𝑇−1

:𝑈𝑈𝑡𝑡 𝑍𝑍𝑇𝑇 − 𝑍𝑍𝑡𝑡 + �
𝑟𝑟=𝑡𝑡

𝑇𝑇−1

𝑎𝑎𝑟𝑟 ⋅ 𝐻𝐻𝑇𝑇 − 𝐻𝐻𝑟𝑟 − 𝑐𝑐𝑟𝑟(𝑎𝑎𝑟𝑟)

• Natural machine learning approach: write 𝑎𝑎 as neural network.
• Called periodic policy search in reinforcement learning [2]
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[1] Deep Hedging, Buehler et all 2018, https://arxiv.org/pdf/1802.03042.pdf
[2 Reinforcement Learning, Sutton and Barto, 2018 
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Deep Hedging for Optimal Order Scheduling
Joint work with Richard Gramblicka (JPM and ETH)

3.1 Deep Hedging with Impact
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• We now use our framework for the case where 𝑡𝑡 = 0 represent the 
market open, 𝑇𝑇 is the close, and where 𝜏𝜏𝑟𝑟 are intraday hedging 
decision points. We formally set 𝜏𝜏0 ≔ 0, 𝜏𝜏𝑇𝑇 ≔ 1 as we will operate in 
business time.

• Our task is to “delta”-hedge a given portfolio 𝑍𝑍.
• Trading will incur market impact

Optimal Order Scheduling
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Market Impact
• Market impact means that

• if we buy an asset, we move the price up (we pay more)
• if we sell, we move the price down (we earn less)
• impact decays over time.

• Trading too fast in short periods creates more impact than trading 
slower over longer periods.

• If we trade over a period then we have to strike a balance between certainty 
of execution and implementation risk (price may move against us)

• Several good papers on the topic, most notably [1] and [2].

Optimal Order Scheduling

__
[1] Optimal Liquidation, Almgren, R. and Chriss, N. (2000) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=53501
[2] Dynamical Models of Market Impact and Algorithms for Order Execution, Gatheral and Schied
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2034178 10
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• Gatheral-Schied model for market impact [1] (usually not in the context of derivatives)

• Let ̅𝑆𝑆 be the asset dynamics if we do not trade.
Then the continuous time stock price dynamics given a trading policy 𝑎𝑎
are given as

𝑆𝑆𝑡𝑡 ≔ ̅𝑆𝑆𝑡𝑡 + �
0

𝑡𝑡
𝐾𝐾′ 𝑡𝑡−𝑠𝑠 ℎ 𝑎𝑎𝑠𝑠 𝑑𝑑𝑠𝑠 ≈ ̅𝑆𝑆𝑡𝑡𝑒𝑒

∫0
𝑡𝑡 𝐾𝐾′ 𝑡𝑡−𝑠𝑠 1

𝑆𝑆0
ℎ 𝑎𝑎𝑠𝑠 𝑑𝑑𝑠𝑠

• Here ℎ is the impact function and 𝐾𝐾𝐾 is a decay kernel.
• Note that ℎ is of order 𝑆𝑆0.
• Impact cannot be arbitrary to avoid “roundtrip” statistical arbitrage [1]

• If we want to buy we first sell fast, and then buy back slow.
• Be aware of appropriate market abuse regulation.

Optimal Order Scheduling

__
[1] Dynamical Models of Market Impact and Algorithms for Order Execution, Gatheral and Schied https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2034178
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• Gatheral-Schied model for market impact [1]:

𝑆𝑆𝑡𝑡 ≔ ̅𝑆𝑆𝑡𝑡 + �
0

𝑡𝑡
𝐾𝐾𝐾 𝑡𝑡 − 𝑠𝑠 ℎ(𝑎𝑎𝑠𝑠)𝑑𝑑𝑠𝑠

• A few examples:
• ℎ(𝑥𝑥) = 𝑐𝑐𝑥𝑥 and 𝐾𝐾𝐾(𝜏𝜏) = 1 for “permanent” impact.
• ℎ 𝑥𝑥 = 𝑆𝑆0 sign 𝑥𝑥 𝑐𝑐 𝑥𝑥 δ and 𝐾𝐾𝐾 𝜏𝜏 = 𝜏𝜏−𝛾𝛾 for 𝛾𝛾 + 𝛿𝛿 ≥ 1 c.f. [1].

Empirical values are 𝛿𝛿 ≈ 0.5 and 𝛾𝛾 ≈ 0.5 (“square root rule”), c.f. [1], [2]

• If 𝐾𝐾𝐾 𝜏𝜏 = 𝑒𝑒−𝜌𝜌𝜌𝜌 then ℎ must be linear, c.f. [1]
• Asymptotically exponential kernel in [3]: ℎ 𝑥𝑥 = 𝑆𝑆0 sign 𝑥𝑥 𝑐𝑐 𝑥𝑥 δ and 
𝐾𝐾𝐾 𝜏𝜏 ≔ 𝛿𝛿 𝜌𝜌 𝑒𝑒−𝜌𝜌𝜌𝜌

1−𝑒𝑒−𝜌𝜌𝜌𝜌 1−𝛿𝛿

Optimal Order Scheduling

__
[1] Dynamical Models of Market Impact and Algorithms for Order Execution, Gatheral and Schied https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2034178
[2] Presentation http://faculty.baruch.cuny.edu/jgatheral/Buzios2009.pdf
[3] Exponential Resilience and Decay of Market Impact, Schied, Gatheral, Slynko https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1650937
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• Gatheral-Schied model for market impact [1] – discrete version: 𝑎𝑎𝑟𝑟 now 
represents the number of shares to buy in 𝜏𝜏𝑟𝑟,𝜏𝜏𝑟𝑟+1 :

𝑆𝑆𝑟𝑟 ≔ ̅𝑆𝑆𝑟𝑟 + �
𝑒𝑒=0

𝑟𝑟−1

ℎ 𝑎𝑎𝑒𝑒 �
𝜌𝜌𝑒𝑒

𝜌𝜌𝑟𝑟
𝐾𝐾′ 𝜏𝜏𝑟𝑟 − 𝑠𝑠 𝑑𝑑𝑠𝑠 ≡ ̅𝑆𝑆𝑟𝑟 + �

𝑒𝑒=0

𝑟𝑟−1

ℎ 𝑎𝑎𝑟𝑟 𝐾𝐾 𝑒𝑒, 𝑟𝑟

=:𝐼𝐼𝑟𝑟

• Given a historic intraday time series of spot prices ̅𝑆𝑆 this is easy to 
compute.

• Most importantly, we can pre-compute 𝐾𝐾(𝑒𝑒, 𝑟𝑟) outside our training 
loop

Optimal Order Scheduling

__
[1] Dynamical Models of Market Impact and Algorithms for Order Execution, Gatheral and Schied https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2034178
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• Total cost of trading VWAP over [𝜏𝜏𝑟𝑟 , 𝜏𝜏𝑟𝑟+1) is 𝑎𝑎𝑟𝑟𝑃𝑃𝑟𝑟 where 𝑃𝑃𝑟𝑟 is given as the average 
price

𝑃𝑃𝑟𝑟: =
1

𝜏𝜏𝑟𝑟+1 − 𝜏𝜏𝑟𝑟
�
𝜌𝜌𝑟𝑟

𝜌𝜌𝑟𝑟+1
𝑆𝑆𝑡𝑡 𝑑𝑑𝑡𝑡 = �𝑃𝑃𝑟𝑟 +

1
𝜏𝜏𝑟𝑟+1 − 𝜏𝜏𝑟𝑟

�
𝜌𝜌𝑟𝑟

𝜌𝜌𝑟𝑟+1
�
0

𝑡𝑡
𝐾𝐾′ 𝑡𝑡 − 𝑠𝑠 ℎ 𝑎𝑎𝑠𝑠 𝑑𝑑𝑠𝑠 𝑑𝑑𝑡𝑡

• �𝑃𝑃 denotes the historic average price from real data.
• The expression on the right can also be pre-computed in closed form for a given ℎ,𝐾𝐾𝐾. 

• To simplify calculations we might simply set

𝑃𝑃𝑟𝑟 ≈ �𝑃𝑃𝑟𝑟 +
𝐼𝐼𝑟𝑟+1 − 𝐼𝐼𝑟𝑟

2

Optimal Order Scheduling
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• Total gains of trading a policy 𝑎𝑎:

𝐺𝐺𝑎𝑎 ≔ 𝑍𝑍𝑇𝑇(𝑆𝑆𝑇𝑇) − 𝑍𝑍0 + �
𝑡𝑡=0

𝑇𝑇−1

𝑎𝑎𝑡𝑡 𝑆𝑆𝑇𝑇 − 𝑃𝑃𝑡𝑡 − 𝜍𝜍 𝑎𝑎𝑡𝑡 𝑃𝑃𝑡𝑡

where 𝜍𝜍 represents and additional half spread cost.
• We wrote 𝑍𝑍𝑇𝑇 𝑆𝑆𝑇𝑇 to stress that our derivative model value is 

computed / interpolated using the impacted spot price.
• Fits perfectly into our Deep Hedging framework – this time with 

market impact – by solving

max
𝑎𝑎0,…,𝑎𝑎𝑇𝑇−1

:𝑈𝑈( 𝐺𝐺𝑎𝑎 )

Deep Hedging with Impact
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• Practical Implementation of our program:

max
𝑎𝑎0,…,𝑎𝑎𝑇𝑇−1

:𝑈𝑈( 𝐺𝐺𝑎𝑎 ) 𝐺𝐺𝑎𝑎 ≔ 𝑍𝑍𝑇𝑇 𝑆𝑆𝑇𝑇 − 𝑍𝑍0 + �
𝑡𝑡=0

𝑇𝑇−1

𝑎𝑎𝑡𝑡 𝑆𝑆𝑇𝑇 − 𝑃𝑃𝑡𝑡 − 𝜍𝜍 𝑎𝑎𝑡𝑡 𝑃𝑃𝑡𝑡

• Use actual historic intraday market data and portfolio fair values. 
• Interpolate 𝑍𝑍𝑇𝑇(𝑆𝑆𝑇𝑇) using classic greeks or similar.
• Might want to add delta limits and other risk limits.
• Express everything relative to expected volume time.
• Features for the 𝑎𝑎 network include the typical electronic scheduling 

features such as volume prediction models, order book imbalance, market 
direction predictors, c.f. [1]

Deep Hedging with Impact

__
[1] Algorithmic Trading and Quantitative Strategies, Hardy and Nehren https://www.routledge.com/Algorithmic-Trading-and-Quantitative-Strategies/Velu-
Hardy-Nehren/p/book/9781498737166

16
Electronic copy available at: https://ssrn.com/abstract=4151043

https://www.routledge.com/Algorithmic-Trading-and-Quantitative-Strategies/Velu-Hardy-Nehren/p/book/9781498737166


• Properties assuming hedging instrument is just stock:

max
𝑎𝑎0,…,𝑎𝑎𝑇𝑇−1

:𝑈𝑈( 𝐺𝐺𝑎𝑎 ) 𝐺𝐺𝑎𝑎 ≔ 𝑍𝑍𝑇𝑇(𝑆𝑆𝑇𝑇) − 𝑍𝑍0 + ∑𝑡𝑡=0𝑇𝑇−1 𝑎𝑎𝑡𝑡 𝑆𝑆𝑇𝑇 − 𝑃𝑃𝑡𝑡 − 𝜍𝜍 𝑎𝑎𝑡𝑡 𝑃𝑃𝑡𝑡

• Will attempt an optimal delta-hedge for the portfolio vs market impact.
• High risk aversion will lead to full delta-hedge, while low risk aversion will 

lead to maximizing returns  ensure absence of statistical arbitrage.
• If 𝑍𝑍 is a stock position, and if risk aversion is high  classic optimal 

liquidation problem.

Deep Hedging with Impact
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• Experiments with only impact show
• Recover classic analytic results on delta-hedging options with proportional 

and fixed cost

• Ensure you adhere to applicable regulation.
• If Gatheral’s statistical arbitrage condition [1] is violated, then the model will 

attempt to make money buy first trading fast in the opposite direction
• If the model is able to push the stock price, it might be driven to do that in 

order to change the value of the derivative
Example:

• Stock is 100$
• Hedging a barrier which will pay us 1bn$ if the stock reaches 100.025$
• Model is incentivized to buy the stock fast in order to generate sizeable impact which 

increases the probability to trigger the barrier.

Deep Hedging with Impact
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• Good
• First model for hedging derivatives under impact
• Nice example of Deep Hedging with state-dependent market dynamics
• Impact modelling shows theoretical bounds shown by Gatheral-Schied
• Shown to converge in known scenarios

• But
• As written, problems needs to be solved whenever portfolio changes (like 

Deep Hedging)  potentially too slow for practical use.
• However, model can be pre-trained on a wide number of past portfolios e.g. 

using historic positions.
• Requires parsimonious representation of portfolio risk, e.g. via interpolation.

Deep Hedging with Impact
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Universal AI for Deep Hedging
Joint work with Phillip Murray (JPM, Imperial) and Ben Wood (JPM)

3.2 Deep Bellman Hedging
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• Deep Hedging needs to be solved for every initial portfolio 𝑍𝑍 and 
initial market state.

• A kind of American Monte Carlo scheme
• Most AI models aim to train once (possibly taking much longer)
 once the model is trained it can be used for any initial portfolio and market 
state

• Commonly referred to as “dynamic programming” or “Bellman” approach [1]

Deep Bellman Hedging

21
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[1] Deep Bellman Hedging, Buehler et al https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4151026
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We now rewrite this notation as follows:
• Define 𝛿𝛿𝑟𝑟 ≔ ∑𝑢𝑢=𝑡𝑡𝑟𝑟 𝑎𝑎𝑟𝑟 as the position in 𝐻𝐻 in 𝑟𝑟 and set 

• 𝐷𝐷𝑍𝑍𝑟𝑟:𝑇𝑇 ≔ 𝑍𝑍𝑇𝑇 − 𝑍𝑍𝑟𝑟 + 𝛿𝛿𝑟𝑟 𝐻𝐻𝑇𝑇 − 𝐻𝐻𝑟𝑟 represents the future value of our 
portfolio plus any existing position in our hedges as they are also “in our 
portfolio”

• 𝐷𝐷𝑍𝑍𝑡𝑡:𝑇𝑇 = 𝐷𝐷𝑍𝑍𝑡𝑡:𝑟𝑟 + 𝐷𝐷𝑍𝑍𝑟𝑟:𝑇𝑇 with clear past and future separation.
• If 𝑟𝑟 is past all cashflows of 𝑍𝑍 then 𝐷𝐷𝑍𝑍𝑟𝑟:𝑇𝑇 = 0.

• 𝑎𝑎 ⋆ 𝐻𝐻𝑟𝑟:𝑇𝑇 ≔ ∑𝑢𝑢=𝑟𝑟𝑇𝑇 𝑎𝑎𝑟𝑟(𝐻𝐻𝑇𝑇 − 𝐻𝐻𝑟𝑟) represents future hedges.
• 𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑇𝑇 = 𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑟𝑟 + 𝑎𝑎 ⋆ 𝐻𝐻𝑟𝑟:𝑇𝑇 with past and future separation.

Here the future contains only new hedges. Old hedges are captured in 𝑍𝑍.

• 𝐶𝐶𝑟𝑟:𝑇𝑇 𝑎𝑎 ≔ ∑𝑢𝑢=𝑟𝑟𝑇𝑇 𝑐𝑐𝑟𝑟(𝑎𝑎𝑟𝑟) are cost

22
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• This gives
𝑈𝑈𝑡𝑡∗ = max

𝑎𝑎=𝑎𝑎𝑡𝑡,…,𝑎𝑎𝑇𝑇−1
:𝑈𝑈𝑡𝑡 𝐷𝐷𝑍𝑍𝑡𝑡:𝑇𝑇+𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑇𝑇 − 𝐶𝐶𝑡𝑡:𝑇𝑇 𝑎𝑎

• Replace for the moment 𝑈𝑈 with the expectation operator 𝐸𝐸.

𝐸𝐸𝑡𝑡∗ = max
𝑎𝑎=𝑎𝑎𝑡𝑡,…,𝑎𝑎𝑇𝑇−1

:𝐸𝐸𝑡𝑡 𝐷𝐷𝑍𝑍𝑡𝑡:𝑇𝑇+𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑇𝑇 − 𝐶𝐶𝑡𝑡:𝑇𝑇 𝑎𝑎

• For any intermediate 𝑟𝑟 we get

max
𝑎𝑎

:𝐸𝐸𝑡𝑡 𝐸𝐸𝑟𝑟 𝐷𝐷𝑍𝑍𝑟𝑟:𝑇𝑇+𝑎𝑎 ⋆ 𝐻𝐻𝑟𝑟:𝑇𝑇 − 𝐶𝐶𝑟𝑟:𝑇𝑇 𝑎𝑎 + 𝐷𝐷𝑍𝑍𝑡𝑡:𝑟𝑟 +𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑟𝑟 − 𝐶𝐶𝑡𝑡:𝑟𝑟 𝑎𝑎

• Clear split between past and future.
• If 𝑟𝑟 is past the last cashflows of 𝑍𝑍 then, 𝐷𝐷𝑍𝑍𝑟𝑟:𝑇𝑇 = 0.
• That means our approach really learns the difference between classic model price and risk-

adjusted expected cashflows. 23
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• Monotonicity means that

𝐸𝐸𝑡𝑡∗ = max
𝑎𝑎𝑡𝑡,…,𝑎𝑎𝑟𝑟

:𝐸𝐸𝑡𝑡 max
𝑎𝑎𝑟𝑟,…,𝑎𝑎𝑇𝑇

𝐸𝐸𝑟𝑟 𝐷𝐷𝑍𝑍𝑟𝑟:𝑇𝑇+𝑎𝑎 ⋆ 𝐻𝐻𝑟𝑟:𝑇𝑇 − 𝐶𝐶𝑟𝑟:𝑇𝑇 𝑎𝑎 + 𝐷𝐷𝑍𝑍𝑡𝑡:𝑟𝑟 +𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑟𝑟 − 𝐶𝐶𝑡𝑡:𝑟𝑟 𝑎𝑎

• Which yields for 𝑟𝑟 > 𝑡𝑡

𝐸𝐸𝑡𝑡∗ = max
𝑎𝑎𝑡𝑡,…,𝑎𝑎𝑟𝑟

:𝐸𝐸𝑡𝑡 𝐸𝐸𝑟𝑟∗ + 𝐷𝐷𝑍𝑍𝑡𝑡:𝑟𝑟 +𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑟𝑟 − 𝐶𝐶𝑡𝑡:𝑟𝑟 𝑎𝑎

• Boundary condition 𝐸𝐸𝑇𝑇∗ ≔ 0.
• The same calculation is true if 𝐸𝐸𝑡𝑡 𝑋𝑋 = 𝑈𝑈𝑡𝑡 𝑋𝑋 ≔ −1

𝜆𝜆
log𝐸𝐸𝑡𝑡[exp(−𝜆𝜆𝑥𝑥)] since the entropy is 

time-consistent. It and the expectation are the only law-invariant time consistent monetary 
utilities [1]
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• We use small variable names for instances, and capital letters for 
random variables. Then

𝑉𝑉∗ 𝛿𝛿𝑡𝑡 , 𝑠𝑠𝑡𝑡 = max
𝑎𝑎

: 𝑈𝑈𝑡𝑡 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉∗ 𝛿𝛿𝑡𝑡 + 𝑎𝑎𝑡𝑡 , 𝑆𝑆𝑡𝑡+1 + 𝑅𝑅 𝑎𝑎, 𝑠𝑠𝑡𝑡

𝑅𝑅 𝑎𝑎, 𝑠𝑠𝑡𝑡 ≔ 𝐷𝐷𝑍𝑍𝑡𝑡:𝑡𝑡+1 +𝛿𝛿𝑡𝑡𝐷𝐷𝐻𝐻𝑡𝑡:𝑡𝑡+1 + 𝑎𝑎 ⋆ 𝐻𝐻𝑡𝑡:𝑡𝑡+1 − 𝐶𝐶𝑡𝑡:𝑡𝑡+1 𝑎𝑎
𝑅𝑅 𝑎𝑎, 𝑠𝑠𝑡𝑡 = 𝑑𝑑𝑍𝑍𝑡𝑡 + (𝑎𝑎 + 𝛿𝛿𝑡𝑡) ⋅ 𝑑𝑑𝐻𝐻𝑡𝑡 − 𝑐𝑐𝑡𝑡 𝑎𝑎

• Links past with future value function.
• Boundary condition 𝑉𝑉∗ 𝛿𝛿, 𝑠𝑠𝑇𝑇+1 = 0.
• 𝛽𝛽 𝑠𝑠𝑡𝑡 ≤ 1 is a discount factor (more on this later)
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• Our representation

𝑉𝑉∗ 𝛿𝛿𝑡𝑡 , 𝑠𝑠𝑡𝑡 = max
𝑎𝑎

: 𝑈𝑈𝑡𝑡 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉∗ 𝛿𝛿𝑡𝑡 + 𝑎𝑎𝑡𝑡 , 𝑆𝑆𝑡𝑡+1 + 𝑅𝑅 𝑎𝑎, 𝑠𝑠𝑡𝑡

with boundary condition 𝑉𝑉∗ 𝛿𝛿, 𝑠𝑠𝑇𝑇+1 = 0 still implicitly depends on a 
fixed portfolio 𝑍𝑍.

• We managed to make it dynamic in our hedging instruments but only 
by assuming they are the same across all states.

26
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We now make a mental leap:
• Let 𝑀𝑀 be a set of possible portfolios, e.g. all 𝐿𝐿1 payoffs on our path space.
• If 𝑎𝑎 ∈ 𝑅𝑅𝑛𝑛 and ̅𝑧𝑧, �ℎ1, … , �ℎ𝑛𝑛 ∈ 𝑀𝑀 then ̅𝑧𝑧 + 𝑎𝑎 ⋅ �ℎ ∈ 𝑀𝑀.

• For �̅�𝑝 ∈ 𝑀𝑀 we define the return of its model values as 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝 i.e. if �̅�𝑝 represents our 
portfolio 𝑍𝑍 then 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝 = 𝑑𝑑𝑍𝑍𝑡𝑡

• If �̅�𝑝 is expired, then 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝 = 0.
• Define then then functional equation:

𝑉𝑉∗ �̅�𝑝𝑡𝑡 , 𝑠𝑠𝑡𝑡 = max
𝑎𝑎

: 𝑈𝑈𝑡𝑡 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉∗ �̅�𝑝𝑡𝑡 + 𝑎𝑎𝑡𝑡 ⋅ �ℎ, 𝑆𝑆𝑡𝑡+1 + 𝑅𝑅 𝑎𝑎, �̅�𝑝𝑡𝑡 , 𝑠𝑠𝑡𝑡

𝑅𝑅 𝑎𝑎, �̅�𝑝𝑡𝑡, 𝑠𝑠𝑡𝑡
∶= 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝𝑡𝑡 + 𝑎𝑎 ⋅ 𝑑𝑑𝑀𝑀𝑡𝑡 �ℎ − 𝑐𝑐𝑡𝑡 𝑎𝑎
= 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝𝑡𝑡 + 𝑎𝑎 ⋅ �ℎ − 𝑐𝑐𝑡𝑡 𝑎𝑎
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• We also allow for different hedging instruments per time step.
In summary we obtain

𝑉𝑉∗ �̅�𝑝𝑡𝑡, 𝑠𝑠𝑡𝑡
= max

𝑎𝑎
: 𝑈𝑈𝑡𝑡 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉∗ �̅�𝑝𝑡𝑡+1 + 𝑎𝑎𝑡𝑡 ⋅ �ℎ𝑡𝑡 , 𝑆𝑆𝑡𝑡+1 + 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝𝑡𝑡 + 𝑎𝑎 ⋅ �ℎ𝑡𝑡 − 𝑐𝑐𝑡𝑡 𝑎𝑎

• Past value
• Future value
• Immediate returns of new portfolio, 
• Transaction cost
• Boundary condition 𝑉𝑉∗ �̅�𝑝, 𝑠𝑠𝑇𝑇+1 ≔ 𝑀𝑀𝑇𝑇+1(�̅�𝑝).

28

Dynamic Programming in RL

Electronic copy available at: https://ssrn.com/abstract=4151043



• In dynamic programming, we start with a fixed point equation such as:

𝑉𝑉∗ �̅�𝑝𝑡𝑡 , 𝑠𝑠𝑡𝑡 = 𝑇𝑇𝑉𝑉∗ �̅�𝑝𝑡𝑡 , 𝑠𝑠𝑡𝑡
with “Bellman operator” 𝑇𝑇 given as

𝑇𝑇𝑉𝑉(�̅�𝑝𝑡𝑡 , 𝑠𝑠𝑡𝑡) ≔ max
𝑎𝑎

: 𝑈𝑈𝑡𝑡 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉 �̅�𝑝𝑡𝑡+1𝑎𝑎 , 𝑆𝑆𝑡𝑡+1 + 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝𝑡𝑡+1𝑎𝑎 − 𝑐𝑐𝑡𝑡 𝑎𝑎
�̅�𝑝𝑡𝑡+1𝑎𝑎 ≔ �̅�𝑝𝑡𝑡 + 𝑎𝑎 ⋅ �ℎ𝑡𝑡

• We no longer require that 𝑈𝑈 is time consistent as we now solve for a local 
problem.

• We now solve for 𝑉𝑉∗ … think of it being a neural network
• Problems with boundary conditions i.e. 𝑉𝑉∗ �̅�𝑝, 𝑠𝑠𝑇𝑇+1 ≔ 𝑀𝑀𝑇𝑇+1 �̅�𝑝 …works.
• Do we need a boundary condition?
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__
[1] Deep Bellman Hedging, Buehler et al, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4151026

• Classic approach to solve a fixed point equation 𝑉𝑉∗ �̅�𝑝𝑡𝑡, 𝑠𝑠𝑡𝑡 = 𝑇𝑇𝑉𝑉∗ �̅�𝑝𝑡𝑡, 𝑠𝑠𝑡𝑡 for 
an operator

𝑇𝑇𝑉𝑉(�̅�𝑝𝑡𝑡 , 𝑠𝑠𝑡𝑡) ≔ max
𝑎𝑎

: 𝑈𝑈𝑡𝑡 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉 �̅�𝑝𝑡𝑡+1𝑎𝑎 , 𝑆𝑆𝑡𝑡+1 + 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝𝑡𝑡+1𝑎𝑎 − 𝑐𝑐𝑡𝑡 𝑎𝑎
�̅�𝑝𝑡𝑡+1𝑎𝑎 ≔ �̅�𝑝𝑡𝑡 + 𝑎𝑎 ⋅ �ℎ𝑡𝑡

• No boundary condition.
• Start with arbitrary initial 𝑉𝑉0 ≔ 0. Let 𝑉𝑉𝑛𝑛+1 ≔ 𝑇𝑇𝑉𝑉𝑛𝑛.
• If 𝛽𝛽 < 1 and 𝑇𝑇0 < ∞ then this converges to a finite optimal solution for any monetary 

utility 𝑈𝑈. More natural if cashflows are not discounted. Proof in [1].
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• Practical issue even in the boundary case:

𝑇𝑇𝑉𝑉(�̅�𝑝𝑡𝑡 , 𝑠𝑠𝑡𝑡) ≔ max
𝑎𝑎

: 𝑈𝑈𝑡𝑡 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉 �̅�𝑝𝑡𝑡+1𝑎𝑎 , 𝑆𝑆𝑡𝑡+1 + 𝑑𝑑𝑀𝑀𝑡𝑡 �̅�𝑝𝑡𝑡+1𝑎𝑎 − 𝑐𝑐𝑡𝑡 𝑎𝑎
�̅�𝑝𝑡𝑡+1𝑎𝑎 ≔ �̅�𝑝𝑡𝑡 + 𝑎𝑎 ⋅ �ℎ𝑡𝑡

• How do we represent elements of the set 𝑀𝑀 of “all payoffs” ?
• Idea in [1]: use signature representation … pretty heavy. Might still work.
• Represent vanilla options as a grid – AI Flow Trader @ JP Morgan.

https://www.risk.net/awards/7928696/equity-derivatives-house-of-the-year-jp-morgan
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• We are given historic data s0, … 𝑠𝑠𝑚𝑚 for times 𝜏𝜏0, … , 𝜏𝜏𝑚𝑚.
• At each historic date 𝜏𝜏𝑡𝑡 we had booked 𝑘𝑘𝑡𝑡 instruments. We also add our 

hedging instruments.
• For each instrument we have computed FV, greeks, scenarios and other 

additive risk metrics. Call those feature vectors 𝑥𝑥𝑡𝑡
𝑡𝑡,𝑖𝑖 ∈ 𝑅𝑅𝐹𝐹 for 𝜏𝜏𝑡𝑡 and 𝑥𝑥𝑡𝑡+1

𝑡𝑡,𝑖𝑖 when 
computed at the next time step for the same instruments. If an instrument is 
expired its feature vector is zero. The joint matrix is 𝑝𝑝𝑟𝑟𝑡𝑡 for 𝑟𝑟 = 𝑡𝑡, 𝑡𝑡 + 1.

• We also assume that we have historically collected cashflows 𝑚𝑚𝑡𝑡 =
(𝑚𝑚𝑡𝑡

1, … ,𝑚𝑚𝑡𝑡
𝑘𝑘𝑡𝑡) between 𝜏𝜏𝑡𝑡 and 𝜏𝜏𝑡𝑡+1 for these instruments.

• We denote by 𝑀𝑀𝑟𝑟
𝑡𝑡 the model value in 𝑟𝑟 of the instruments booked in 𝑡𝑡, here 

taking into account only future cashflows (the standard in FV calculations).
That means

𝑑𝑑𝑀𝑀 𝑥𝑥𝑡𝑡 ≔ 𝑀𝑀𝑡𝑡+1
𝑡𝑡 − 𝑀𝑀𝑡𝑡

𝑡𝑡 + 𝑚𝑚𝑡𝑡

• The feature vectors for our hedging instruments are denoted by ℎ𝑟𝑟𝑡𝑡 .
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• Solve for 𝑉𝑉∗ which satisfies for all pairs 𝑤𝑤, 𝑡𝑡 , see also [1]

𝑉𝑉∗ 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 , 𝑠𝑠𝑡𝑡 = max
𝑎𝑎

: 𝑈𝑈𝑡𝑡
𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉∗ 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡+1𝑡𝑡 + 𝑎𝑎 ⋅ ℎ𝑡𝑡𝑡𝑡 , 𝑆𝑆𝑡𝑡+1

+𝑑𝑑𝑀𝑀 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑎𝑎 ⋅ 𝑑𝑑𝑀𝑀 ℎ𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑡𝑡 𝑎𝑎

• Starting portfolio
• New terminal portfolio
• Returns of starting portfolio 
• Returns of new hedge
• Transaction cost

33

Practical Implementation

__
[1] Deep Bellman Hedging, Buehler et al, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4151026

Electronic copy available at: https://ssrn.com/abstract=4151043

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4151026


• Numerical solution via Actor-Critic: let

𝑇𝑇𝑉𝑉 𝑤𝑤, 𝑠𝑠𝑡𝑡 ≔ max
𝑎𝑎

: 𝑈𝑈𝑡𝑡
𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡+1𝑡𝑡 + 𝑎𝑎 ⋅ ℎ𝑡𝑡𝑡𝑡 , 𝑆𝑆𝑡𝑡+1

+𝑑𝑑𝑀𝑀 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑎𝑎 ⋅ ℎ𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑡𝑡 𝑎𝑎

• Chose random weights 𝑊𝑊. Let 𝑉𝑉0 ≔ 0.
• Actor: given 𝑉𝑉𝑛𝑛−1 maximize above for a function (neural network) 𝑎𝑎𝑛𝑛 of the 

feature vector 𝑓𝑓(𝑤𝑤) ≔ (𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 , 𝑠𝑠𝑡𝑡).
• For 𝑈𝑈 = 𝐸𝐸 this looks as follows:

max
𝑎𝑎

:𝛽𝛽 𝑠𝑠𝑡𝑡 �
𝑤𝑤,𝑡𝑡

1
𝑊𝑊 𝑚𝑚

𝑉𝑉𝑛𝑛−1 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡+1𝑡𝑡 + 𝑎𝑎𝑛𝑛(𝑓𝑓 𝑤𝑤 ) ⋅ ℎ𝑡𝑡𝑡𝑡 , 𝑆𝑆𝑡𝑡+1
+𝑑𝑑𝑀𝑀 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑛𝑛(𝑓𝑓 𝑤𝑤 ) ⋅ ℎ𝑡𝑡𝑡𝑡 − 𝑐𝑐𝑡𝑡 𝑎𝑎𝑛𝑛(𝑓𝑓 𝑤𝑤 )
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• For OCE monetary utilities 𝑈𝑈 with utility function 𝑢𝑢 we also solve for a 
network 𝑦𝑦𝑛𝑛

max
𝑎𝑎,𝑦𝑦

: �
𝑤𝑤,𝑡𝑡

1
𝑊𝑊 𝑚𝑚

𝑢𝑢 ∗ + 𝑦𝑦(𝑓𝑓 𝑤𝑤 ) − 𝑦𝑦 𝑓𝑓 𝑤𝑤

∗ = 𝛽𝛽 𝑠𝑠𝑡𝑡 𝑉𝑉𝑛𝑛−1 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡+1𝑡𝑡 + 𝑎𝑎𝑛𝑛(𝑓𝑓 𝑤𝑤 ) ⋅ ℎ𝑡𝑡𝑡𝑡 , 𝑆𝑆𝑡𝑡+1
+𝑑𝑑𝑀𝑀 𝑤𝑤 ⋅ 𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑛𝑛(𝑓𝑓 𝑤𝑤 ) ⋅ ℎ𝑡𝑡𝑡𝑡

−𝑐𝑐𝑡𝑡 𝑎𝑎𝑛𝑛 𝑓𝑓 𝑤𝑤

• Note this also yields optimal samples 𝑇𝑇𝑉𝑉𝑛𝑛−1(𝑤𝑤, 𝑠𝑠𝑡𝑡).
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• Critic: given samples of 𝑇𝑇𝑉𝑉𝑛𝑛−1 solve for neural network 𝑉𝑉𝑛𝑛 to satisfy

𝑉𝑉𝑛𝑛 𝑤𝑤, 𝑠𝑠𝑡𝑡 ≡ 𝑇𝑇𝑉𝑉𝑛𝑛−1 𝑤𝑤, 𝑠𝑠𝑡𝑡

• We minimize quadratic distance to find a neural network 𝑉𝑉𝑛𝑛 which solves

min
𝑉𝑉

: �
𝑤𝑤,𝑡𝑡

1
𝑊𝑊 𝑚𝑚

𝑉𝑉 𝑤𝑤, 𝑠𝑠𝑡𝑡 − 𝑇𝑇𝑉𝑉𝑛𝑛−1 𝑤𝑤, 𝑠𝑠𝑡𝑡
2

• This interpolation program may also be solved by simpler, classic methods 
such as kernel interpolators.
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[1] is the first of its kind
• Full Bellman RL with portfolio and market as state
• Continuous state and action space
• Derivatives as hedging instruments
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Experimental framework which still requires lots of work
• Numerical issues:

• How long to train in each actor/critic step? AC literature uses one step… does not 
seem to work.

• Search for optimal action over network 𝑉𝑉𝑛𝑛−1 inefficient as not concave.
• Parametrization

• Using the proposed parametrization: actual number of data points not huge. Can we 
expand universe with “market simulation”?
In the current case, the task would be to create a portfolio simulator which generates 
pairs of both instrument and market data.

• Other parametrizations: ….?
• Robustness vs. model estimation error; intra/extrapolation.

• Refer to forthcoming paper on arxiv for technical details
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Existing work has focused on equities market
• Build a market simulator for fixed income markets
• Cover treasuries, futures, swap rates to start with

• Assess performance on hedging off-the-run swaps

• Expand to swaptions and assess performance hedging Bermudans.
(option exercise rights in our favour are easily incorporated)

Market Simulator for Fixed Income
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Incorporating Trader Views
• As it stands there is no easy mechanism for a trader to alter the 

behaviour of Deep Hedging.
• Classic method of shifting market data requires heavy re-training of 

market simulator, and subsequently of Deep Hedging
• Is there a more explicit way to express opinions of future market 

regimes … and if so, how do we measure the quality of these opinions 
as it pertains hedging performance.

Steering Wheels
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Knowing when to Stop (1)
• Deep Hedging is via its market simulator trained with a range of input 

data.
• When used in production, the new state might be outside the range 

of experience our historic data.
• Find robust, easily implemented methods to identify such cases and 

either warn the user, or fall back to a robust default strategy.
• General topic in machine learning

Interpolation and Extrapolation
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Predictive Model for Client Demand
• As it stands Deep Hedging was modelled assuming the given portfolio 

does not change.
• In real life, clients will request prices for trades. Deep Hedging 

provides marginal pricing but it does not help to anticipate probable 
client demand.

• Challenge is to find a parametrization of “client demand” which can 
be efficiently modelled and integrated into Deep Hedging.

Modelling Incoming Trade Flow
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Understanding why Deep Hedging makes certain decisions
• General topic in Machine Learning
• If the model provides an unexpected action. How do we know 

whether it is “correct” and understand “why” the model is 
recommending it.

Explainability
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Please ask questions
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