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Abstract

Quantum computing has shown the potential to substantially speed up machine learning
applications, in particular for supervised and unsupervised learning. Reinforcement learning,
on the other hand, has become essential for solving many decision making problems and policy
iteration methods remain the foundation of such approaches. In this paper, we provide a general
framework for performing quantum reinforcement learning via policy iteration. We validate our
framework by designing and analyzing: quantum policy evaluation methods for infinite horizon
discounted problems by building quantum states that approximately encode the value function of
a policy π; and quantum policy improvement methods by post-processing measurement outcomes
on these quantum states. Last, we study the theoretical and experimental performance of our
quantum algorithms on two environments from OpenAI’s Gym.
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1 Introduction

Reinforcement learning has had a great impact in decision making problems, in particular com-
bined with artificial neural networks [1, 2]. Nevertheless, alternatives to neural networks are still
needed for a number of different reasons, first, because the amount of data is expected to continue
to grow along with its dimensionality, and, second, neural networks carry vulnerabilities that make
them prone to adversarial attacks [3]. A possible alternative to deep learning for further improving
machine learning can be found in quantum computing that has shown to be able to perform tasks
beyond the reach of classical computing [4]. The field of quantum machine learning explores how
to design and implement quantum algorithms that could enable machine learning that is faster,
more expressive, or more explainable. Using quantum computers, a number of quantum machine
learning algorithms have been published for supervised and unsupervised learning [5–11]. Here, we
are interested in reinforcement learning and in particular the policy iteration algorithm [12]:

Policy iteration is an algorithm that, given a Markov Decision Process,
generates a sequence of policies converging to the optimal policy in a finite number of steps.

The research on quantum reinforcement learning is so far rather limited. The first approach
was developed by Dong et al. [13] where a quantum environment using a superposition of states
and actions is proposed, while temporal difference learning is used for policy evaluation and Grover
techniques [14] for policy improvement. Cornelissen [15] proposed a quantum algorithm to evaluate
the value function using a phase reward oracle and used quantum gradient estimation [16] to improve
the policy. Ronagh [17] presents a quantum dynamic programming algorithm for solving the finite-
horizon processes case. Several works in quantum reinforcement explore the use of variational
circuits for value-based and policy-based algorithms [18–21]. More recent work from Wang et al. [22]
combines quantum mean estimation with the quantum maximum searching algorithm to estimate
the optimal policy and value function when a generative model for the environment is available.
This approach provides a polynomial speedup over the classical value iteration algorithm but does
not generalize to the case where such model is not available.

In this work, we define a general framework for quantum reinforcement learning based on quan-
tum policy iteration, by extending the classical approach in [23]. We provide algorithms for per-
forming quantum policy iteration and we extend them to the approximate case with linear value
functions. Our quantum policy iteration algorithms alternate between two steps as their classical
counterparts. The quantum policy evaluation step uses quantum linear system solvers to produce
quantum states that approximately encode the policy value function. The quantum policy improve-
ment step improves the actual policy based on measurements performed on these quantum states.
In Section 3, we provide an in-depth analysis of our quantum policy iteration algorithm where
we prove tight convergence bounds similar to the classical case, and provide efficient methods for
building quantum access to the environment and policy parameters. In Section 4, we generalize our
approach to the approximate case with linear value function approximation and provide a model-free
implementation.

The quantum policy iteration methods we develop use quantum linear system solvers for evaluat-
ing the policies and hence the running time of these procedures depend explicitly on parameters of
the matrices involved in these linear systems (for example the condition number, sparsity or rank)
and also on how efficient it is to access these matrices in a quantum way (in other words constructing
efficient block encodings).
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In fact, we believe reinforcement learning is an advantageous case for quantum linear algebra
precisely due to the character of the linear systems which are usually sparse and well-conditioned.
Much of the effort in the paper is to provide explicit constructions of the block encodings for all
cases, which enables to bound the parameters in the running time and have a clear idea of when to
expect a quantum advantage. For example, we will see in Section 3 that for certain environments
like the FrozenLake, mazes or other board games, the running time of our quantum method
can be thought of as O(SA + log(SA)/ǫ2), where S,A are the states and actions of the game,
and ǫ is the accuracy for retrieving the solution from the quantum linear system solver, which
one can compare with the O((SA)ω) running time of the classical linear system method. We
also provide a similar comparison between running times of classical and quantum approximate
policy iteration methods in Section 4. Last, in Section 5, we simulate our quantum algorithms for
the FrozenLake and InvertedPendulum environments to show that our quantum algorithms
converge well and can be considerably faster in practice, and we also describe how to build the
necessary block encodings.

Overall, our methodology provides a general framework for infinite-horizon problems in the model-
based and model-free case, and it encompasses many different ways of performing policy evaluation
and improvement, including deep learning techniques, thus, enabling theoretical analysis of quantum
reinforcement learning.

2 Preliminaries

2.1 Reinforcement learning

The aim of reinforcement learning1 is to train an agent to discover the policy that maximizes the
agent’s performance in terms of the discounted future reward, while interacting with the environ-
ment, receiving only a reward signal. The agent can take actions in a set of possible actions based
on a policy that maps each state with actions to take. This interaction is summarized in Figure
1.

More formally, we consider the infinite-horizon discounted decision problem with a state set S and
a finite action set A. At each time-step t, the agent receives a representation of the environment’s
state st ∈ S, selects an action at ∈ A and receives a reward rt ∈ [0, 1]. Denoting by p(s, a, s′)
the probability that s′ will occur and by r(s, a) the average reward perceived after taking action a
whilst in state s, the usual framework used to describe the environment’s elements in reinforcement
learning are Markov Decision Processes (MDP) which are fully defined by giving tuples of the form
M = (S,A, P,R, γ) where P = [p(s, a, s′)]s,a,s′ ∈ RS×A×S is the transition matrix, R = [r(s, a)]s,a ∈
RS×A is the reward vector and γ ∈ (0, 1) is the discount factor. For the rest of the paper, we will
denote by S the size of the state space S, by A the size of the action space A and by Γ the effective
time horizon:

Γ =
1

1− γ

1For a more detailed introduction to reinforcement learning, we recommend [12].
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Agent

Environment

atst rt|st+1

Figure 1: The agent–environment interaction [12].

The agent’s behavior is modeled by some policy π, where π(s, a) represents the probability of
selecting action a given the state s. Moreover, for every policy π, we define its value function
Qπ ∈ RS×A as:

Qπ(s, a) = E

[ ∞∑

t=0

γtr(st, at)
∣∣∣s0 = s, a0 = a, at ∼ π(st), st+1 ∼ p(st, at)

]

which denotes the cumulative reward received by the agent when starting from (s, a) and playing
according to π. The value function Qπ is the unique solution of the Bellman equation T πQπ = Qπ

where T π is the operator acting on RS×A such that:

T πQ(s, a) = r(s, a) + γ
∑

s′a′

p(s, a, s′)π(s′, a′)Q(s′, a′)

The goal in reinforcement learning is to find the optimal value function Q∗ = supπ Q
π over all

policies π that maximizes the value function for all state-action pairs. A classical result about MDPs
is the existence of a policy, referred to as the optimal policy π∗ that reaches these optimal values
such that Qπ∗

= Q∗ and verifies π∗(s) ∈ argmax{Q∗(s, a)|a ∈ A} for every s ∈ S.

2.2 Policy iteration

The idea of Policy Iteration (PI) is to build a sequence of deterministic policies {πt}t∈N that
converges to the optimal policy π∗ (Figure 2a). The algorithm is initialized with a random policy
π0 and iteratively alternates between two phases. The first phase, called policy evaluation, computes
the value function Qπ of the actual policy π while the second phase, called policy improvement, uses
this value function to output an improved policy π′, usually using a greedy approach with respect
to the current value function.

A generalization of policy iteration is Approximate Policy Iteration (API) algorithms which are
used when the environment model is unknown or the state and action spaces are large. Exact
representations of the value function Qπ and the policy π can be replaced by adjustable parameters
and many approximation algorithms [24, 25] follow the scheme in Figure 2b. Next, we present
a classical result in reinforcement learning that guarantees the convergence of approximate policy
iteration:
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(a) Policy Iteration

Approximate

Value Function Q̃π

Policy

Improvement
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Value Function
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Approximate Policy π̃

(b) Approximate Policy Iteration

Figure 2: General schemes of PI (2a) and API (2b) as reproduced in [23].

Theorem 2.1 (Error bound of API [23, 26]). Let {πt}t∈N be the sequence of policies generated by an
approximate policy iteration with a greedy update and let {Q̂πt}t∈N be the corresponding approximate
value functions. Then, this sequence satisfies the following suboptimality bound:

lim sup
t−→+∞

‖Q∗ −Qπt‖∞ ≤ 2γΓ2 lim sup
t−→+∞

‖Q̂πt −Qπt‖∞

2.3 Quantum computing

Quantum computing2 is a new paradigm for computing that uses the postulates of quantum
mechanics in order to encode and compute with information. While classical systems can be only
in one state at a time, namely a bit can be either in state 0 or 1, quantum systems can be in a
superposition of multiple states at the same time, namely a qubit, which is the carrier of quantum
information, can be in a superposition of the states |0〉 and |1〉, i.e. it can be written as |x〉 =
α |0〉 + β |1〉. The qubit |x〉 corresponds to a unit vector of the Hilbert space H = span{|0〉 , |1〉}
with α, β ∈ C and |α|2 + |β|2 = 1.

The qubit can be generalized to n-qubit states, which are unit vectors of Hn = ⊗nH ≃ C2n .
Denoting by [2n] the set {0, . . . , 2n−1} and by {|i〉}i∈[2n] the computational basis of Hn, an n-qubit
state can be written as |x〉 =

∑
i∈[2n] αi |i〉 with αi = 〈x|i〉 ∈ C and

∑
i∈[2n] |αi|2 = 1. Quantum

states evolve by applying unitary operators on them, namely applying a unitary operator U (a
2n × 2n unitary matrix) on an n-qubit state |x〉 results in the quantum state |Ux〉. In addition,
quantum states can be measured and the probability that the measurement of the state |x〉 gives
outcome i is |αi|2. Note that this is a probability distribution over [2n].

The quantum state corresponding to a vector b = [bi]i∈[n] ∈ Rn is defined as the ⌈log n⌉-qubit
state |b〉 ∈ Cn such that:

|b〉 = 1

‖b‖
∑

i∈[n]

bi |i〉

where |i〉 represents the vector ei the i-th vector of the standard basis of Rn. Next, we define the
notion of quantum access to a matrix as used in the block-encoding framework [28].

2For a detailed introduction to quantum computing, we recommend [27].
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Definition 2.2 (Matrix block-encoding [28]). Let r ∈ N and µ ∈ R+. We say that we have a
µ-block-encoding UA of a symmetric matrix A ∈ Rn×n with ‖A‖ ≤ µ, in total cost TA = T + r if
there exists a unitary UA acting on ⌈log n⌉+ r qubits that can be implemented using T elementary
gates such that:

UA =

(
A/µ .
. .

)

This framework, introduced in [28, 29], represents any sub-normalized matrix as the top-left block
of a unitary UA. This definition generalizes to any matrix A ∈ Rm×n by building the block-encoding
of its symmetrized version A ∈ R(m+n)×(m+n) such that:

A =

(
0 A

A† 0

)

The property of constructing a block-encoding of a matrix A = [aij ]i,j ∈ Rm×n can be reduced
to being able to perform certain mappings regarding the rows of the matrix A(p) and the columns
of the matrix A(1−p) for some p ∈ [0, 1] where A(k) denotes the matrix with elements (aij)

k ∈ C. If
we define sq(A) = maxi∈[m] ‖ai‖qq to be the maximum ℓq-norm over the rows ai of A, then we have
the following result:

Lemma 2.1 (Constructing block-encodings [28, 29]). Let p ∈ [0, 1] and α, β ∈ R+. Let A ∈ Rm×n

be a matrix with s2p(A) ≤ α2 and s2(1−p)(A
⊤) ≤ β2. We can implement an αβ-block-encoding of A

by applying a constant number of times the unitaries Or and Oc such that:

Or : |i, 0〉 −→ 1

α

[ ∑

j∈[m]

apij |i, j〉
]
+ |G⊥

i 〉

Oc : |0, j〉 −→ 1

β

[ ∑

i∈[n]

a1−p
ij |i, j〉

]
+ |G⊥

j 〉

where |G⊥
k 〉 denotes some unnormalized garbage quantum state such that 〈G⊥

k |i, j〉 = 0 for all i, j.

Next, we introduce different algorithms and results for quantum linear algebra using block-
encodings. The first result (Theorem 2.3) describes techniques for performing matrix arithmetics
in this framework. The second algorithm is the quantum linear system solver whose running time
depends on the quantity µ and the condition number of the matrix A defined as:

κ =
maxb6=0{‖Ab‖/‖b‖}
minb6=0{‖Ab‖/‖b‖}

The general idea of solving linear algebra problems with quantum computing is based on the
singular value decomposition of matrices. This decomposition is a generalization of eigendecomposi-
tion of a positive semidefinite normal matrix and can be used to accelerate algebra and optimization
procedures. We state the cost guarantees for the state-of-the-art linear algebra procedures using
block-encodings [28] (Theorem 2.4). Another quantum algorithm we use is a way to recover effi-
ciently a classical approximation to any quantum state in the ℓ∞-norm [9] (Theorem 2.5).
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Theorem 2.3 (Matrix arithmetics with block-encodings [28, 29]). Suppose that we have a µi-
block-encoding Ui of the matrix Ai at a cost Ti for all i ∈ [m]. Then we can implement with
cost O(

∑
i∈[m]Ti) a (

∏
i∈[m] µi)-block-encoding of

∏
i∈[m]Ai and a (

∑
i∈[m] |λi|µi)-block-encoding of∑

i∈[m] λiAi.

Theorem 2.4 (Linear algebra with block-encodings [28]). Let A ∈ Rn×n be a matrix such that
‖A‖ = 1 and let ǫ > 0 be the precision parameter. Given a µ-block-encoding of A with cost TA

and a procedure preparing a state |b〉 with cost Tb, then there exists quantum algorithms such
that with probability at least (1 − 1/poly(n)) return a state |x〉 such that ‖ |x〉 − |Ab〉 ‖ ≤ ǫ for
A ∈ {A,A−1,A⊤} with cost3 O(κ(µTA +Tb) polylog(κ/ǫ)).

Theorem 2.5 (Vector tomography [9]). Let x ∈ Rn be a normalized vector. Given a procedure
preparing |x〉 with cost Tx, there is a tomography algorithm that with probability at least (1 −
1/poly(n)) produces a unit vector x̃ ∈ Rn such that ‖x− x̃‖∞ ≤ ǫ with cost O(Tx log(n)/ǫ

2).

Moreover, we also introduce this claim from [10] that bounds the distance between two quantum
states in terms of the distance between the corresponding unnormalized vectors:

Claim 2.6. Let θ be the angle between two vectors x and y and assume that θ < π/2. Then
‖x− y‖ ≤ ǫ implies ‖ |x〉 − |y〉 ‖ ≤

√
2ǫ/‖x‖.

3 Quantum policy iteration

3.1 General framework for quantum policy iteration

We start by providing a general framework for quantum reinforcement learning by appropriately
extending the policy iteration scheme to the quantum case. In this section we look at the case
where we work directly with exact representations of the value function Qπ, while in Section 4, we
generalize the algorithm to the approximate case. Similarly to the classical case, we want to build
quantum methods that generate a sequence of policies improving at each iteration and converging to
an approximation of the optimal policy π∗. We refer to our framework as Quantum Policy Iteration
(QPI) and we summarize the general procedure in Figure 3.

We define the quantum policy evaluation step as a quantum procedure (one can think of this as
a unitary operation or a quantum circuit) that takes as input a classical policy π and performs a
mapping to create a quantum state that approximates or more generally contains some information
about the classical value function Qπ. Again here one can define different quantum outputs that
contain information about the value function and we will provide examples in the remaining of the
paper. Similarly, we define the quantum policy improvement step, as a quantum procedure (one
may want to think of this as a generalized measurement operation), that takes as input the output
quantum states from the quantum policy evaluation procedure, and extracts classical information
by performing measurements on them, in order to compute a new policy π′ based on some policy
update rule.

3If ‖A‖ 6= 1, then we rescale the factor µ to µ/‖A‖.
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Figure 3: Quantum Policy Iteration

3.2 Quantum policy evaluation

We will instantiate here our quantum policy iteration framework by providing one specific ex-
ample of a quantum policy iteration method. We start by defining for any policy π the quantum
state:

|Qπ〉 = 1

‖Qπ‖
∑

sa

Qπ(s, a) |s, a〉

which encodes the classical value function Qπ in the amplitudes of a normalized quantum state, and
we call this state the quantum value function state. As we can see, this state contains information
about the value function Qπ, though one needs to be careful since a copy of this state cannot recreate
the complete function Qπ. It can still provide useful information, in particular we can use this state
to sample a pair (s, a) with probability proportional to (Qπ(s, a))2. Moreover, there exist efficient
quantum procedures for producing approximations to this state that we describe below.

We assume we have quantum access to the MDP parameters P and R so that we can construct,
for any policy π, a block-encoding of the policy transition matrix defined as:

P π :=
[
p(s, a, s′)π(s′, a′)

]
sa,s′a′

In Subsection 3.4, we discuss how one can get quantum access to the parameters of any MDP
M and policy π assuming that the transition matrix P and the reward function R can be efficiently
computed, which is the case for many classes of environments. Denoting Aπ = I − γP π and
b = R, it follows from the Bellman equation that the value function Qπ is the solution of the linear
system AπQπ = b. Using the quantum linear system solver from Theorem 2.4, we can build an
ǫ-approximation (in ℓ2-norm) state |Q̂π〉 to the quantum value function state |Qπ〉:
Theorem 3.1 (Quantum policy evaluation). Let M = (S,A, P,R, γ) be a finite Markov decision
process, π a policy and ǫ > 0 the precision parameter. Suppose there exists a µPπ -block-encoding of
the policy transition matrix P π that can be implemented with cost TPπ . Also suppose we can prepare
the reward vector |R〉 with cost TR. Then there exists a quantum algorithm that with probability at
least (1− 1/poly(SA)) returns a quantum state |Q̂π〉 such that ‖ |Q̂π〉 − |Qπ〉 ‖ ≤ ǫ with cost:

O((µPπTPπ +TR)Γ polylog(Γ/ǫ))

8



Proof. Using Theorem 2.3, we can implement with cost TA = O(TPπ) a (1+γµPπ )-block-encoding
of Aπ = I − γP π as a linear combination of the trivial 1-block-encoding of I and the µPπ-block-
encoding of P π. Then, we apply the quantum linear system solver from Theorem 2.4 with the
procedure that generates the state |b〉 = |R〉 to return a quantum state |Q̂π〉 ǫ-close to |Qπ〉 =
|(Aπ)−1b〉 with cost:

O
(
κ(Aπ)

(
‖Aπ‖−1(1 + γµPπ)TPπ +TR

)
polylog(κ(Aπ)/ǫ)

)

Since P π is a row-stochastic matrix, we have ‖P π‖ = 1 which implies that the singular values σA of
Aπ range in [1−γ, 1+γ]. We finish the proof by plugging the following upper bounds in the total cost:
1 + γµPπ = O(µPπ), κ(Aπ) = maxσA

minσA
≤ 1+γ

1−γ
= O(Γ) and ‖Aπ‖−1κ(Aπ) = 1

minσA
≤ 1

1−γ
= Γ.

We can now go ahead and define our specific quantum policy evaluation method as the one
that given a policy π, uses a quantum linear system solver to create a quantum state which is an
approximation of the state |Qπ〉.

3.3 Quantum policy improvement

We will now describe a quantum policy improvement method that works together with the
specific quantum policy evaluation method we described above, where approximations |Q̂π〉 to |Qπ〉
are produced. Let us assume that these states can be produced in time TQπ .

The quantum policy improvement method consists of first performing a number of M measure-
ments of the state |Q̂π〉 for a total cost of O(M × TQπ). Denote by M(s, a) the number of times
outcome (s, a) is observed. Then, we define the following strategy for the policy update:

π′(s) = argmax
a

M(s, a) ≈ argmax
a

Qπ(s, a)

which takes time O(SA).

Let us analyze this policy improvement method. A measurement of the state |Q̂π〉 outputs some
state-action pair (s, a) with probability |〈Q̂π|s, a〉|2 and we have:

lim
M−→+∞

M(s, a)

M
= |〈Q̂π|s, a〉|2

We make now some remarks on the appropriate value of M . Note first that the approximation
state |Q̂π〉 is ǫ-close in ℓ2-norm to the quantum value function state |Qπ〉 and the cost of creating
these states depends only logarithmically on the parameter ǫ. Thus, we can take this parameter
very small, and so if the number of measurements M guarantees that we can closely reconstruct the
state |Q̂π〉, then this guarantee will carry over to the state |Qπ〉. Thus, if we want to guarantee an ǫ-
approximation of the quantum value function state |Qπ〉 in ℓ2-norm, one would need M = Õ(SA/ǫ2),
and for ℓ∞-norm, which is what is used in reinforcement learning, M = Õ(1/ǫ2). In this case, we are
able to reconstruct an ǫ-approximation in ℓ∞-norm of the normalized quantum value function.

In practice, setting M to be Õ(1/ǫ2) may be more than what is needed, since our goal is not
to recreate Qπ but to find π′(s) = argmaxaQ

π(s, a). This number M can be adjusted in practice

9



Algorithm 1 Quantum Policy Iteration

input MDP M, number of measurements M , number of iterations T , precision ǫ.
initialize policy π0.
for t = 0 to T − 1 do

initialize measurement histogram Mt(s, a) = 0 for every pair (s, a).
for m = 0 to M − 1 do

use the quantum linear solver with precision ǫ to obtain |Q̂πt〉 ≈ |(I − γP πt)−1R〉.
measure |Q̂πt〉 to get pair (s, a) with probability |〈Q̂πt |s, a〉|2.
update measurement histogram Mt(s, a) = Mt(s, a) + 1.

end for

improve policy as πt+1(s) = argmaxaMt(s, a) for every s.
end for

output policy πT

until the given method provides good results and in fact, in our experiments it was tuned to be
significantly smaller than the theoretical value Õ(1/ǫ2).

It would be interesting to understand theoretically the number of samples needed for a successful
implementation of a quantum policy improvement scheme, though we believe that in the end this
would be use case-specific. Last, note that for the policy update rule we do not estimate directly
the value function Qπ but its normalized version qπ, i.e. we do directly the measurement outcomes
M(s, a), since the norm does not change the argmax calculation.

To sum up, we have defined a quantum policy improvement method as the one that given access
to a quantum procedure that outputs a quantum value function state |Qπ〉, performs a number M
of measurements in order to create a measurement histogram from which the policy is updated via
an argmax computation.

The quantum policy iteration method we presented appears in Algorithm 1. In the next subsec-
tions we prove convergence, how to construct the necessary block-encodings for the Markov decision
process, and analyze its running time.

3.4 Constructing block-encodings

We are now going to show how to construct the block-encoding of P π and the unitary that
prepares the quantum state associated to R that we need in order to perform quantum policy
iteration. In the classical case, one needs to have access to the transition matrix P , the policy π and
the reward vector R in order to compute the policy-transition matrix P π and the corresponding
value function Qπ = (I − γP π)−1R = (Aπ)−1b. In this subsection, we will discuss the access
we need in the quantum case. More precisely, we will assume quantum access to the parameters
(S,A, P,R, γ) of the MDP M and to the policy π which will be used to build the block-encoding
of Aπ and the state |b〉 as in Theorem 3.1.

Next, we specify formally what we mean by quantum access to the MDP M:

10



Definition 3.2 (Quantum access to M). Let M = (S,A, P,R, γ) be a finite MDP and let cP ∈ R+

such that cP ≥ s1(P
⊤) = maxs′

∑
sa p(s, a, s

′). We say that we have quantum access to M with
costs (TP ,TR) if we can implement:

1. An oracle for the rows of the transition matrix with cost TP such that

Or
P : |s, a〉 |0s〉 −→

∑

s′

√
p(s, a, s′) |s, a〉 |s′〉

2. An oracle for the columns of the transition matrix with cost TP such that:

Oc
P : |0s, 0a〉 |s′〉 −→

1√
cP

[∑

sa

√
p(s, a, s′) |s, a〉 |s′〉

]
+ |G⊥

s′〉 |s′〉

where {|G⊥
s′〉}s′∈S are unnormalized garbage quantum states such that 〈G⊥

s′ |s, a〉 = 0 for all
transitions (s, a, s′) ∈ S ×A× S.

3. An oracle for the reward vector with cost TR such that:

OR : |0s, 0a〉 −→ |R〉 = 1

‖R‖
∑

sa

r(s, a) |s, a〉

Let us look at the above oracles in more detail. The oracle OR gives quantum access to the
reward vector |R〉 whilst the oracles Or

P and Oc
P correspond to the unitaries used to construct

block-encodings from Lemma 2.1 applied on the transition matrix P where we have set the factor p
to be 1/2 in our case. This choice is based on the observation that the rows of P form probability
distributions over S and can be seen as valid quantum states. The unitary Or

P encodes the rows of
P and maps every state-action pair |s, a〉 to the quantum state

∑
s′

√
p(s, a, s′) |s′〉 with amplitudes

forming a probability distribution, over next states |s′〉, that match the dynamics of the MDP M.
On the other hand, Oc

P encodes the columns of P and maps every next-state |s′〉 to the neighboring
state-action pairs |s, a〉 such that p(s, a, s′) 6= 0. The quantity cP depends on the dynamics of M
and is an upper-bound on the portion of the state-action space S × A covered by every s′.

The definitions of the above oracles are made so that Lemma 2.1 with parameters α = 1 and
β =

√
cP implies that we can implement a

√
cP -block-encoding of P using the oracles Or

P and Oc
P

and with cost TP .

We have shown that efficient quantum access to M as defined in Definition 3.2 suffices to im-
plement efficiently a block-encoding for the transition matrix P . In the next definition, we intro-
duce quantum access to the policy π where we map each state to a distribution over the set of
actions.

Definition 3.3 (Quantum access to π). Let π be a finite policy. We say that we have quantum
access to π with cost Tπ if we can implement the following oracle with cost Tπ:

Oπ : |s, 0a〉 −→ |s, π(s)〉 =
∑

a

√
π(s, a) |s, a〉

11



Recall that we need a block-encoding for the matrix P π to perform quantum policy evaluation
as in Theorem 3.1. We will build its block-encoding by combining the block-encoding of P with the
oracle Oπ as stated in the following lemma:

Lemma 3.1 (Block-encoding of P π). Given quantum access to an MDP M with cost (TP ,TR) and
to a policy π with cost Tπ, we can implement a µPπ -block-encoding of P π with cost O(TP + Tπ),
where the factor µPπ =

√
cP does not depend on the policy π.

Proof. We will use Oπ to construct a 1-block-encoding of the matrix Π ∈ RSA×S defined as:

Π :=
[
1[s = s′]π(s, a)

]
sa,s′

and then use Lemma 2.1 to get a block-encoding of P π which can be rewritten as P π = PΠ⊤. First,
we build the oracle acting on the three registers |0s〉 |0a〉 |s′〉 that gives access to the columns of Π.
Let UC be the unitary that uses CNOT gates to copy the third register to the first register. If we
apply UC followed by Oπ on the first register, we get:

∑

a

√
π(s′, a) |s′, a〉 |s′〉 =

∑

sa

√
1[s = s′]π(s, a) |s, a〉 |s′〉

Next, we build the oracles acting on four registers |s〉 |a〉 |0s〉 |0a〉 that gives quantum access to the
rows of Π. Let UC be the unitary that copies the first state register to the third register. If we
apply UC followed by Oπ on the last two registers, we get:

∑

a′

√
π(s, a′) |s, a〉 |s〉 |a′〉

Using again UC to copy the second register to the fourth register we get

√
π(s, a) |s, a〉 |s〉 |0〉 + |G⊥

sa〉

where |G⊥
sa〉 is a garbage quantum state such that 〈G⊥

sa|s, a, s, 0〉 = 0. The procedures above for
accessing the rows and columns of Π give us a 1-block-encoding of Π. Finally, we apply the product
of the block-encodings of Π and P to get a µPπ-block-encoding of PΠ⊤ = P π.

3.5 Running time analysis

From Theorem 3.1, we see that the cost of the quantum policy evaluation step is:

O((µPπ(TP +Tπ) + TR)Γ polylog(Γ/ǫ))

Let us make some comments now of how this cost can behave in practice. We will see in following
sections that for many MDP of interest quantum access can be implemented using quantum circuits
of Õ(SA) qubits and with only polylog(SA) depth, and thus the running time for the quantum policy
evaluation, where here time refers to the depth of the quantum circuit will be of the form:

O(µPπΓpolylog(SAΓ/ǫ))

12



The overall running time of the quantum policy iteration will then be Õ(SA+ µPπMΓ), where
M is the number of measurements during the quantum policy improvement step. If we are using
the ℓ∞-tomography algorithm from Theorem 2.5 then M is taken to be Õ(1/ǫ2) and the running
time becomes Õ(SA+ µPπΓ/ǫ2), while in the experiments the value was actually smaller.

In comparison, the running time of classical policy iteration is O((SA)ω) when using a classical
linear system solver4. Whether our quantum algorithm provides an advantage for a specific envi-
ronment depends on the environment parameters, i.e. the values of Γ and µPπ , what is the actual
cost of constructing the block encodings of the transition matrix P and the policy π, as well as how
many samples M are needed for a good policy improvement method.

Let us also remark on the value µPπ . This value can be shown in the worst case to be
√
SA

but we expect it to be much smaller when we have efficient access to the transition matrix P as
detailed in Subsection 3.4 where we have shown that µPπ =

√
cP . The idea of the bound cP is

that in some of the most studied environments in reinforcement learning, any next state s′ arises
as a result of taking an action a from a small number of neighboring states s. In other terms,
the transition matrix is very sparse and usually has O(A) non-zero elements in each column. We
use our approach to build a

√
cP -block-encoding of P π for a total running of Õ(

√
cP × Γ/ǫ2). We

expect this bound
√
cP to be very small and have poly-logarithmic dependence on the size of the

state space S. For example, in the case of d-dimensional mazes, the factor cP can be chosen such
that cP = 2d = O(logS). For two-player board games, such as chess or go, again the number of
different states that could result to a particular state of the board through a single action are small
and we can again think of it as cP = O(A), much smaller than the number of states that grows
exponentially with the size of the board game. A concrete example is given in Subsection 5.1 where
we show, for FrozenLake, that cP = O(1) is constant and does not depend on the environment
size.

3.6 Convergence guarantees

We are going now to prove the theoretical convergence of our algorithm with precision ǫ and
M = Õ(1/ǫ2) measurements using a similar approach to [23]. Our bound is similar to the result
given in Theorem 2.1 but using the norm ‖.‖ρ ≤ ‖.‖∞ which is the ℓ2-norm weighted by the uniform
distribution ρ over S × A. The ‖.‖ρ norm is equal to the expected norm of a coordinate, instead
of the maximum one as in the ℓ∞ norm. Weighted quadratic norms are also used in classical
reinforcement learning as in [30] to prove the convergence of approximation algorithms. Next, we
state the error bound on the policies generated by our algorithm when performing M = Õ(1/ǫ2)
measurements followed by a greedy update on the reconstructed normalized value function q̂πt as
described in Algorithm 1.

Theorem 3.4 (Error bound of QPI). Let {πt}t∈N be the sequence of policies generated by the quan-
tum policy iteration algorithm with a greedy update and let {q̂πt}t∈N be the corresponding approximate
normalized value functions. Then, this sequence satisfies the following suboptimality bound:

lim sup
t→+∞

‖ |Q∗〉 − |Qπt〉 ‖ρ ≤ 2
√
2γΓ2 lim sup

t−→+∞
‖q̂πt − qπt‖∞

4ω is the matrix multiplication exponent, with best known theoretical value 2.37 and in practice close to 3.
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Proof. First, we use Theorem 2.1 on our quantum policy iteration algorithm which can be seen as a
classical approximate policy iteration algorithm with a greedy update applied on Q̃πt = ‖Qπt‖.q̂πt

where q̂πt(s, a) :=
√
M(s, a)/M . Moreover, note that the update in Algorithm 1 is equivalent to

πt+1(s) = argmax q̂πt(s, a). In this case, the approximation errors ‖Q̃πt − Qπt‖∞ are bounded by
‖Q∗‖.‖q̂πt − qπt‖∞ since ‖Qπt‖ ≤ ‖Q∗‖ for every policy πt. Using Theorem 2.1, we have:

lim sup
t−→+∞

‖Q∗ −Qπt‖∞ ≤ 2γΓ2 lim sup
t−→+∞

‖Q̃πt −Qπt‖∞ ≤ 2γΓ2‖Q∗‖ lim sup
t−→+∞

‖q̂π − qπ‖∞

Since we define our rewards to be greater than 0, the angle between the vectors Qπt and Q∗ will be
no greater than π/2. Using Claim 2.6, we have:

‖ |Q∗〉 − |Qπt〉 ‖ ≤
√
2

‖Q∗‖‖Q
∗ −Qπt‖

By taking the limit superior in the inequality above and observing that ‖.‖ρ = ‖.‖/
√
SA, we conclude

the proof by:

lim sup
t→+∞

‖ |Q∗〉 − |Qπt〉 ‖ρ ≤
√
2

‖Q∗‖ lim sup
t→+∞

‖Q∗ −Qπt‖ρ

≤
√
2

‖Q∗‖ lim sup
t→+∞

‖Q∗ −Qπt‖∞

≤ 2
√
2γΓ2 lim sup

t−→+∞
‖q̂πt − qπt‖∞

Using weighted quadratic norms instead of the ℓ∞-norm appears in many approximate algorithms
in reinforcement learning when the subroutines minimize the ℓ2-norm [30]. In our case, the bound
shows that our quantum approach is a stable algorithm. When the inequality ‖q̂πt − qπt‖∞ ≤ ǫ
holds for every iteration, the bound in Theorem 3.4 becomes:

lim sup
t→+∞

‖ |Q∗〉 − |Qπt〉 ‖ρ ≤ 2
√
2γΓ2ǫ

which shows that quantum policy iteration oscillates between sub-optimal policies with value func-
tions ǫ-close to the optimal policy.

4 Quantum approximate policy iteration

4.1 General framework for quantum approximate policy iteration

We continue the description of our general framework for quantum reinforcement learning by
looking at the common case where we may not be able to compute directly the value function Qπ,
for example when the dynamics of the environment are unknown or the state-action space is too
large. Instead, one approximates it with linear or non-linear value functions. Linear value functions
correspond to the use of a linear combinations of features whilst the non-linear case corresponds to
the use of non-linear approximation schemes such as neural networks for example.
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Figure 4: Quantum Approximate Policy Iteration

In our case, we are going to provide quantum algorithms for approximate policy iteration with
linear value function approximation. We will start with the model-based case when having access to
the parameters of the MDP M and provide a model-free implementation in Subsection 4.6 for the
case when the dynamics of M are unknown. We refer to our framework as quantum approximate
policy iteration (QAPI) and we summarize the general procedure in Figure 4.

4.2 Quantum approximate policy evaluation

In many cases, linear architectures are used for value function approximation where the Qπ values
are approximated by a linear combination Q̃π of K basis functions of the form φk : S ×A −→ R and
the policy parameters wπ ∈ RK :

Qπ(s, a) ≈ Q̃π(s, a) =
∑

k

φk(s, a)w
π
k

Note that the linearly independent features Φ := [φk(s, a)]sa,k ∈ RSA×K are usually hand-crafted
and common between all policies. On the other hand, one should compute wπ ∈ RK to get the
estimated value function Q̃π = Φwπ. To do so, we will base our approach on the least-squares policy
iteration algorithm by Lagoudakis and Parr [23] for finding the parameters wπ. In the model-based
case when we have access to P and R, we can compute P π and we retrieve wπ as the solution of
the linear system Aπwπ = b with Aπ = Φ⊤(Φ− γP πΦ) and b = Φ⊤R.

We now define for any policy π the corresponding quantum state:

|wπ〉 = 1

‖wπ‖
∑

k

wπ
k |k〉

which encodes the classical weight vector wπ in the amplitudes of a normalized quantum state.

Using the same arguments provided in Section 4, a copy of this quantum state cannot recreate
wπ. However, it can still be used to provide useful information for quantum policy improvement as
we will show in the next subsection. Using quantum linear algebra techniques, there exist efficient
quantum procedures for producing approximations to |wπ〉 that we describe below.
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First, we assume we have quantum access to the model parameters P and R as in the quantum
policy iteration algorithm. We also assume that we have quantum access to the features matrix Φ
and we discuss how to do so in Subsection 4.4. Denoting Aπ = Φ⊤(Φ− γP πΦ) and b = Φ⊤R, the
weight vector wπ is the solution to the linear system Aπwπ = b. Using the quantum linear system
solver from Theorem 2.4, we can build an ǫ-approximation (in ℓ2-norm) state |ŵπ〉 to the quantum
weight vector |wπ〉:
Theorem 4.1 (Model-based policy evaluation). Let M = (S,A, P,R, γ) a finite Markov decision
process, Φ a features matrix with ‖Φ‖ = 1, π a policy and ǫ > 0 the precision parameter. Suppose
there exists a µPπ -block-encoding of the policy transition matrix P π with cost TPπ and a µΦ-block-
encoding of the features matrix Φ with cost TΦ. Also suppose that we can prepare the reward vector
|R〉 with cost TR. Then there exists a quantum algorithm that returns a quantum state |ŵπ〉 such
that ‖ |ŵπ〉 − |wπ〉 ‖ ≤ ǫ with cost:

O
(
κ2Φ

((
µ2
ΦµPπ + µΦκΦ

)
TΦ + µ2

ΦµPπTPπ + κΦTR

)
Γpolylog(κΦΓ/ǫ)

)

Proof. As we said, denoting Aπ = Φ⊤(Φ−γP πΦ) and b = Φ⊤R, the weight vector wπ is the solution
to the linear system Aπwπ = b. First, we implement the procedure that prepares |b〉 = |Φ⊤R〉.
Using the µΦ-block-encoding of Φ, and picking ǫ′ = (1+ γ)ǫ/(2

√
2κ2ΦΓ), we can efficiently generate

a state |b̂〉 such that ‖ |b̂〉 − |b〉 ‖ ≤ ǫ′ with cost:

Tb = O(κΦ(µΦTΦ +TR) polylog(κΦΓ/ǫ))

Next, we build the block encoding of Aπ = Φ⊤(I − γP π)Φ using the block-encodings of P π, Φ
and Φ⊤. Using the same approach as in Theorem 3.1, we can build a (1 + γµPπ)-block-encoding
of I − γP π with cost O(TPπ). Using Theorem 2.3 to compute the block-encoding of the product
Φ⊤(I − γP π)Φ, we get a µA-block-encoding of Aπ with cost TA = O(TΦ + TPπ) such that µA =
µ2
Φ(1 + γµPπ) = O(µ2

ΦµPπ).

Then, we apply the quantum linear solver with precision ǫ/2 to generate a state |ŵπ〉 such that
‖ |ŵπ〉 − |(Aπ)−1b̂〉 ‖ ≤ ǫ/2 with cost:

O
(
κ(Aπ)

(
‖Aπ‖−1µATA +Tb

)
polylog(κ(Aπ)/ǫ)

)

Since P π is a row-stochastic matrix, we know that ‖P π‖ = 1 and that the singular values of I−γP π

range in [1 − γ, 1 + γ]. Similarly, we have ‖Φ‖ = 1 and the singular-values of Φ range in [1/κΦ, 1].
We conclude that Aπ has its singular values in [(1− γ)/κ2Φ, 1 + γ]. It follows that κ(Aπ) = O(κ2ΦΓ)
and ‖Aπ‖−1κ(Aπ) = O(κ2ΦΓ). We plug these bounds into the total cost to get the total cost of our
algorithm:

O
(
κ2Φ

(
µ2
ΦµPπ(TΦ +TPπ) + κΦ(µΦTΦ +TR)

)
Γpolylog(κΦΓ/ǫ)

)

We conclude the proof by showing that |ŵπ〉 is ǫ-close to |wπ〉 = |(Aπ)−1b〉. We use Claim 2.6 to
show that, for a small value of ǫ, ‖ |(Aπ)−1b̂〉 − |(Aπ)−1b〉 ‖ ≤

√
2κ(Aπ)ǫ′. Then, we have:

‖ |ŵπ〉 − |wπ〉 ‖ ≤ ‖ |ŵπ〉 − |(Aπ)−1b̂〉 ‖+ ‖ |(Aπ)−1b̂〉 − |(Aπ)−1b〉 ‖
≤ ǫ/2 + ǫ′κ2ΦΓ = ǫ
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Algorithm 2 Quantum Approximate Policy Iteration

input MDP M, features Φ, number of measurements M , number of iterations T , precision ǫ.
initialize policy π0.
for t = 1 to T do

for s ∈ S do

initialize measurement histogram. Mt(a) = 0 for every action a.
for m = 0 to M − 1 do

use quantum linear solver with precision ǫ to obtain |ŵπt〉 ≈ |(Φ⊺Φ− γΦ⊺P πtΦ)−1Φ⊺R〉.
use quantum linear algebra with precision ǫ to obtain |Q̂πt(s, ·)〉 ≈ |Φ(s)ŵπt〉.
measure |Q̂πt(s, ·)〉 to get action a with probability |〈a|Q̂πt(s, .)〉|2.
update measurement histogram Mt(a) = Mt(a) + 1

end for

improve policy as πt+1(s) = argmaxMt(a).
end for

end for

output policy πT

4.3 Quantum approximate policy improvement

We will now describe several quantum policy improvements methods that work together with
the approximate quantum policy evaluation method we described above, where for each policy π we
estimate a weight vector |ŵπ〉. Let us assume that these states can be produced in time Twπ . Again,
we can assume a very small ǫ in the approximation guarantee of the states |ŵπ〉 and the states |wπ〉
(since it appears only inside a logarithm in the running time) and thus the approximation to the
state |ŵπ〉 we will achieve through measurements will provide the same guarantees for the state
|wπ〉 as well.

Our goal is to be able to compute a greedy policy with respect to the approximate value function
Q̂π = Φŵπ. Since our quantum procedure produces the normalized state |ŵπ〉, we are going to
perform measurements in order to compute the actions corresponding to the improved policy π′

defined as π′(s) = argmaxaΦ(s)ŵ
π where Φ(s) ∈ RA×K is the matrix with rows Φ(s, a)⊤ containing

the features associated to the state s such that Φ(s)ŵπ is an approximation to Qπ(s, .). Next, we
will describe three different improvement strategies.

The first approach is similar to the one detailed in Subsection 3.3 but requires an additional step.
Since we have quantum access to Φ, we use the quantum matrix multiplication procedure from
Theorem 2.4 with the µΦ-block-encoding of Φ and the output |ŵπ〉 of the approximate quantum
policy evaluation procedure to compute the quantum state |Φŵπ〉 which is an approximate to the
quantum value function |Qπ〉 with cost Õ(κΦ(µΦTΦ + Twπ)). We then perform measurements on
this quantum state and update the policy according to the rule:

π′(s) = argmax
a

M(s, a) ≈ argmax
a

〈Φwπ|s, a〉

where M is the histogram of the measured state-action pairs |s, a〉 sampled from |Φŵπ〉. The total
cost of this policy update rule is Õ(MκΦ(µΦTΦ+Twπ)) where the number of measurements can be
adjusted in practice according to the arguments provided in Subsection 3.3.
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The second approach reconstructs classically an approximation to the output |ŵπ〉 in order to
improve the actual policy. First, we will perform a number of M measurements on |ŵπ〉 such that
we will sample for each measurement some feature index |k〉 with probability |〈ŵπ|k〉|2. Since the
components of |ŵπ〉 are not necessarily positive, we also need to perform sign estimation of the
components of |wπ〉 by performing an additional number of M measurements that query |ŵπ〉 [9].
Denoting by M(k) the number of times the feature index |k〉 was sampled and by σ(k) the estimated
sign of 〈ŵπ|k〉, the normalized vector with coordinates σ(k)

√
M(k)/M is an approximation to the

quantum state |wπ〉. Hence, we can use the following policy improvement rule:

π′(s) = argmax
a

∑

k

σ(k)
√

M(k)φk(s, a) ≈ argmax
a

〈Φ(s, a)|wπ〉

The total cost of this policy improvement strategy is Õ(SK + MTwπ) since we need to perform
M measurements in order to reconstruct classically |ŵπ〉 before performing O(K) operations to
compute π′(s) for each s ∈ S or D.

The third approach consists of building approximations to the quantum states |Φ(s)ŵπ〉 for every
state s using quantum matrix-vector multiplication and performing measurements on these quantum
states. First, for every state s, we construct a µΦ(s)-block-encoding of Φ(s) that we apply to |ŵπ〉
in order to compute |Φ(s)ŵπ〉 which is as an approximation to |Qπ(s, .)〉 defined as:

|Qπ(s, .)〉 = 1

‖Qπ(s, .)‖
∑

a

Qπ(s, a) |a〉

Second, we measure the quantum states |Φ(s)ŵπ〉 to get an action a with probability |〈a|Q̂π(s, .)〉|2 ≈
Qπ(s, a)2/‖Qπ(s, ·)‖2. Similarly to the approach in Subsection 3.3, we construct for every s a
histogram of measurements denoted by M such that M(a) is the number of times we measured
action when applying the block-encoding of Φ(s) to |wπ〉. Then, we update the policy according to
the rule:

π′(s) = argmax
a

M(a) ≈ argmax
a

〈a|Φ(s)wπ〉

Let κΦ|S and µΦ|S be upper bounds on the quantities κΦ(s) and µΦ(s) of Φ(s) over all states s, the
total cost for updating the policy is then O(MSκΦ|S(µΦ|STΦ|S +Twπ)) since the cost for producing
a single quantum state |Φ(s)ŵπ〉 is O(κΦ(s)(µΦ(s)TΦ(s) +Twπ)).

We have defined different quantum approximate policy improvement methods that can be used
together with the quantum policy evaluation described in previous sections. The quantum approxi-
mate policy iteration method with the third improvement strategy, which provides a good method
for near term implementations, is used in Algorithm 2. In the next subsections, we are going to
discuss how to construct the block-encodings of the features matrix Φ, analyze the running time of
our approach and provide a model-free implementation.

4.4 Constructing block-encodings

We are going to show how to build quantum access to the parameters required by Theorem 4.1.
We need to construct the block-encodings of the transition matrix P π and the features matrix Φ
and build quantum access to the reward vector |R〉.
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We assume quantum access to M as in Definition 3.2 for the parameters of the MDP and we
have already discussed in Subsection 3.4 how to get a block-encoding for P π and the procedure
that prepares |R〉. In the following, we apply a similar approach to get a block-encoding for Φ. We
extend Definition 3.2 to the approximate case it by assuming access to an additional oracle that
encodes the features:

Definition 4.2 (Model-based quantum access). Let Φ ∈ RSA×K be a features matrix such that
‖Φ(s, a)‖ = 1 for every state-action pair (s, a). We say that we have quantum access in the model-
based case with cost (TP ,TR,TΦ) if, additionally to the oracles in Definitions 3.2 and 3.3 with cost
(TP ,TR), we can implement with cost TΦ the following oracle and its controlled version for the
features matrix Φ:

OΦ : |s, a〉 |0k〉 −→ |s, a〉 |Φ(s, a)〉 =
∑

sa

φk(s, a) |s, a〉 |k〉

Then, we use the oracle OΦ to build the block-encoding of Φ as shown in the following lemma:

Lemma 4.1 (Block-encoding of Φ). Given quantum access to Φ with cost TΦ, we can implement a√
K-block-encoding of Φ with cost O(TΦ).

Proof. Since the rows of Φ are normalized, we get from OΦ a
√
K-block-encoding of Φ using Lemma

2.1 with p = 1.

4.5 Running time analysis

We have formally defined the oracles that we need for the implementation of quantum approxi-
mate policy iteration and we are going to analyze its running time. From Theorem 4.1, we see that
the cost of quantum approximate policy evaluation in the model-based case is:

O
(
κ2Φ

((
µ2
ΦµPπ + µΦκΦ

)
TΦ + µ2

ΦµPπ(TP +Tπ) + κΦTR

)
Γpolylog(κΦΓ/ǫ)

)

As we said, we could make the assumption that oracles for the transition matrix P and the policy
π can be built in poly-logarithmic depth, and the same for the feature matrix Φ that is hand-picked
by us. We also have that the normalizing factor µΦ =

√
K. We then have the following simplification

of the running time of the model-based approximate quantum policy evaluation:

Twπ = O
(
κ2Φ

(
KµPπ +

√
KκΦ

)
Γpolylog(κΦSAΓK/ǫ)

)

The overall running time of our algorithm where we apply the greedy update rule as in Algorithm
2 will be Õ(κΦ|SMSTwπ). Classically, the running time of approximate policy iteration is O(SAK2)
for the approximate policy evaluation step and O(SAK) for the policy improvement step. Whether
our algorithm provides an advantage over the classical one depends on the number of measurements
M required for policy improvement and the properties of the features function Φ, namely the
dimension K and the condition numbers κΦ and κΦ|S , which given that we pick the matrix Φ
ourselves, we can easily control. Moreover, we do not expect the number of measurements to grow
with the size of the state space S since we measure quantum states |Qπ(s, .)〉 of size A which was
not the case with |Qπ〉 of size SA.
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4.6 Model-free implementation

We have defined a quantum algorithm for performing model-based approximate policy iteration
where we have access to a model for the MDP M. Next, we are going to show that we can also
implement a model-free approach that does not require such access. When P and R are unknown,
we assume having access to a source D containing transition samples of the form (s̃, ã, s̃′, r̃) and we

compute an estimate w̃π of wπ as a solution to Aπw̃π = b with Aπ = Φ̃⊤(Φ̃−γP̃ πΦ) and b = Φ̃⊤R̃

such that Φ̃ ∈ RD×K , P̃ πΦ ∈ RD×K and R̃ ∈ RD are estimated using the samples from the source
D. Denoting by D the number of samples in D, Φ̃ ∈ RD×K is the matrix with rows φ(s̃i, ãi)

⊤ where

i denotes the i-th sample of D, P̃ πΦ ∈ RD×K is the matrix with rows φ(s̃′i, π(s̃
′
i))

⊤ and R̃ ∈ RD is

the vector with elements R̃i = r̃i. In the quantum case, we will assume having quantum access to
these three quantities and use the quantum linear algebra techniques to build an ǫ-approximation
(in ℓ2-norm) state |ŵπ〉 to |w̃π〉:
Theorem 4.3 (Model-free evaluation). Let M = (S,A, P,R, γ) be a finite or non-finite Markov
decision process with unknown model P and R, Φ a features function such that ‖Φ(s, a)‖ = 1 for
every state-action pair (s, a), π a deterministic policy and ǫ > 0 the precision parameter. Suppose

there exists a µ
Φ̃
-block-encoding of the estimated Φ̃ and P̃ πΦ with cost T

Φ̃
. Both matrices having

singular values ranging in [1/κ
Φ̃
, 1]. Also suppose that we can prepare the estimated reward vector

|R̃〉 with cost T
R̃
. Then there exists a quantum algorithm that returns a quantum state |ŵπ〉 such

that ‖ |ŵπ〉 − |w̃π〉 ‖ ≤ ǫ with cost:

O
(
κ2
Φ̃

(
µ2
Φ̃
T
Φ̃
+ κ

Φ̃
µ
Φ̃
T
Φ̃
+ κ

Φ̃
TR

)
Γpolylog

(
κ
Φ̃
Γ/ǫ

))

Proof. Using a similar approach to Theorem 4.1, we can implement a µΦ̃-block-encoding of Φ̃⊤ and

generate an ǫ′ = (1 + γ)ǫ/(2
√
2κ2

Φ̃
Γ) approximation state |b̂〉 to the state |b〉 = |Φ̃⊤R̃〉 with cost:

Tb = O
(
κ
Φ̃

(
µ
Φ̃
T
Φ̃
+T

R̃

)
polylog

(
κ
Φ̃
Γ/ǫ

))

Next, we build the block encoding of Aπ = Φ̃⊤(Φ̃− γP̃ πΦ) using the block-encodings of Φ̃, Φ̃⊤ and

P̃ πΦ. First, note that we can construct µ2
Φ̃
-block-encodings of Φ̃⊤Φ̃ and (Φ̃⊤P̃ πΦ) with cost O(TΦ̃).

Using Theorem 2.3, we can implement a µ2
Φ̃
(1 + γ)-block-encoding of (Φ̃⊤Φ̃− γΦ̃⊤P̃ πΦ) with cost

TA = O(T
Φ̃
). Then, we apply the quantum linear solver with precision ǫ/2 to generate a state |ŵπ〉

such that ‖ |ŵπ〉 − |(Aπ)−1b̂〉 ‖ ≤ ǫ/2 with cost:

O
(
κ(Aπ)

(
‖Aπ‖−1µ2

Φ̃
(1 + γ)TΦ̃ +Tb

)
polylog(κ(Aπ)/ǫ)

)

The model-free quantum policy evaluation approach above can work together with any of the
improvement strategies described in Subsection 4.3. The only difference is that we need to update
the policy for all states s′ ∈ D, i.e. we iterate over all next-states s′ and update the estimated P̃ πΦ.
The cost analysis is sill valid by replacing the space state size S by the source size D. Next, we
describe how to construct the necessary block-encodings in the model-free case.
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We are provided with a source D of transition samples of the form (s̃, ã, s̃′, r̃) and their correspond-
ing features. Similarly to the model-based case, we will assume that the features are normalized for
each state-action pair (s̃, ã). The following definition gives the list of oracles that we need to imple-
ment in order to perform quantum approximate policy evaluation needed for Theorem 4.3:

Definition 4.4 (Model-free quantum access). Let M = (S,A, P,R, γ) be a finite or non-finite
Markov decision process with unknown model P and R, D a finite source of transition samples
from M of the form (s̃, ã, s̃′, r̃), Φ a feature function such that ‖Φ(s̃, ã)‖ = 1 for all (s̃, ã) and
π a deterministic policy. We say that we have quantum access in the model-free case with costs
(T

P̃
,T

R̃
,T

Φ̃
,Tπ̃) if we can implement:

1. Two oracles for the transition samples with cost T
P̃

such that:

Os,a

P̃
: |i〉 |0s, 0a〉 −→ |i〉 |s̃i, ãi〉

Os′

P̃
: |i〉 |0s〉 −→ |i〉 |s̃′i〉

2. An oracle for the reward samples with cost T
R̃

such that:

O
R̃
: |0i〉 −→ |R̃〉 = 1

‖R̃‖
∑

i

r̃i |i〉

3. An oracle for the features function Φ with cost TΦ such that:

OΦ : |s̃, ã〉 |0k〉 −→ |s̃, ã〉 |Φ(s̃, ã)〉 =
∑

k

φk(s̃, ã) |s̃, ã〉 |k〉

4. An oracle for the deterministic policy π with cost Tπ̃ such that:

Oπ̃ : |s̃, 0a〉 −→ |s̃, π(s̃)〉

Our quantum policy evaluation algorithm requires a procedure for the estimated vector |R̃〉,
which is given by the oracle O

R̃
, and the block-encodings of Φ̃ and P̃ πΦ given by the following

lemma:

Lemma 4.2 (Block-encodings of Φ̃ and P̃ πΦ). Given quantum access in the model-free case to

D, Φ and π as in Definition 4.4, we can implement a
√
K-block-encoding of Φ̃ and P̃ πΦ with cost

T
Φ̃
= O(T

P̃
+TΦ +Tπ̃).

Proof. If we start from the state |i〉 |0k〉 |0s, 0a〉 and apply Os,a

P̃
on the first and third registers

followed by OΦ on the third and second register, we get the following mapping after uncomputing
the third register using the adjoint operation (Os,a

P̃
)†:

|i〉 |0k〉 −→
∑

k

φk(s̃i, ãi) |i〉 |k〉
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Similarly, if we start from the state |i〉 |0k〉 |0s, 0a〉 and apply Os′

P̃
followed by Oπ̃ and OΦ, we get

the following mapping after uncomputing the last register using (Os′

P̃
)†:

|i〉 |0k〉 −→
∑

k

φk(s̃
′
i, π(s̃

′
i)) |i〉 |k〉

Then, we use Lemma 2.1 to construct respectively the block-encodings for Φ̃ and P̃ πΦ by setting
the factor p to be 1.

Assuming that the circuits for model-free quantum access can be implemented in poly-logarithmic
depth as in Subsection 4.5, the running time of approximate quantum policy iteration simplifies
to:

O
(
κ3
Φ̃

√
KΓpolylog

(
κ
Φ̃
DAKΓ/ǫ

))

5 Applications

In the previous sections, we formulated our quantum policy iteration algorithms using the block-
encoding framework and we have explicitly described what quantum oracles we need in order to
construct these block-encodings. In this section, we will describe how to implement in practice
quantum access to those oracles for the FrozenLake and InvertedPendulum which are two
environments listed in OpenAI’s Gym [31] and widely used in reinforcement learning.

5.1 Application to FrozenLake

Description of the environment: FrozenLake is an environment that consists of a two-
dimensional grid of size X × Y where the agent moves around the grid in four directions to reach
the goal state without falling into holes. The episode terminates if the agent steps into a hole or
reaches the goal state where a reward of +1 is perceived. Its state space S = {(x, y)|x ∈ [X], y ∈ [Y ]}
is the set of all grid positions and its action space A = {(0, 1), (0,−1), (1, 0), (−1, 0)} contains the
four possible actions: up, down, left and right. For example, taking action a = (0,−1) when in state
s = (x, y) moves the agent to the next state s′ = s+ a = (x, y − 1).

Quantum access: We want to build quantum access to the MDP M = (S,A, P,R, γ) associated
to this environment by constructing the oracles as in Definition 3.2. In the classical case, we can
recover the environment dynamics (P,R) by specifying the goal state sG and the subset of walkable
positions F ⊂ S, i.e. positions that are neither holes nor the goal state. Similarly, we show in the
following claim that we can build quantum access to M if we have access to appropriate oracles
that encode the subset F and the state sG:

Claim 5.1. Let 1F be the indicator function for the subset of walkable positions in the grid. Given
quantum access to an oracle OF : |s〉 |0〉 −→ |s〉 |1F (s)〉 with cost TF and to an oracle OG : |0s〉 −→ |sG〉
with cost TG, we can build quantum access to M with costs (TP ,TR) = (O(TF ),O(TG)).
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Figure 5: An example of the FrozenLake environment with holes located in the diagonal.

Proof. We will build quantum access to M by constructing the oracles Or
P , Oc

P and OR from
Definition 3.2. Classically, the transition matrix P and the reward vector R can both be recovered
from F and sG since:

p(s, a, s′) =

{
1, if (s ∈ F and s′ = s+ a) or (s 6∈ F and s′ = s)

0, otherwise

r(s, a) =

{
1, if (s ∈ F and s+ a = sG)

0, otherwise

First, we will construct the oracle Or
P . If we assume without loss of generality that all positions

located in the borders of the grid are non-walkable, then the oracle Or
P that encodes the rows of P

corresponds to the mapping:

Or
P : |s, a〉 |0s〉 −→

{
|s, a〉 |s+ a〉 , if s ∈ F
|s, a〉 |s〉 , if s 6∈ F

Both mappings |s, a〉 |0s〉 −→ |s, a〉 |s+ a〉 and |s, a〉 |0s〉 −→ |s, a〉 |s〉 can be implemented in linear cost
on the number of qubits used to represent state-action pairs |s, a〉. If we combine both mappings
with OF applied on one ancilla qubit, we can construct the oracle Or

P with cost O(TF ).

Next, we will construct the oracle Oc
P that encodes the columns of P . Note that for this particular

environment, any next state s′ arises as a transition from at most four state-action pairs correspond-
ing to taking the action a = s′ − s from adjacent positions s. In other words, the value cP can be
chosen to be 4 and we have:

Oc
P : |0s, 0a〉 |s′〉 −→

1

2

∑

s∈F|s+a=s′

|s, a〉 |s′〉+ |G⊥
s′〉

The mapping |0s, 0a〉 |s′〉 −→ 1
2

∑
s,a|s+a=s′ |s, a〉 |s′〉, that builds the superposition of the four possible

ancestors of s′, can be implemented in linear cost. It can be combined with OF to construct Oc
P

with total cost O(TF ).

Finally, we also need to build the oracle OR that gives access to the reward vector R. For example,
assuming that all four adjacent positions to the goal state sG are walkable, we can rewrite OR as:

OR : |0s, 0a〉 −→ |R〉 = 1

2

∑

a

|sG − a, a〉 .
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Similar constructions are easy to design when there are some holes around the goal state sG. The
sum on the above oracles contain at most four elements and can be implemented with cost O(TG)
by first mapping |0s〉 to |sG〉 using OG and then mapping |sG, 0a〉 to |R〉.

We have shown how to implement the necessary oracles that give quantum access to M. It is
important to note that we have set cP = 4 which implies that the normalizing factor µP = 2 of the
block-encoding of the transition matrix P is fixed and does not depend on the grid size S = X × Y .
Given some policy π, the total cost of our quantum policy evaluation procedure from Theorem 3.1
is then O(Γ(TF + TG + Tπ)) where Tπ is the cost for the oracle encoding π as in Definition 3.3.
In the general case, we can implement OF , OG and Oπ with O(XY ) qubits and O(polylog(XY ))
depth. However, there exists specific cases where the implementation of the oracle OF requires only
O(polylog(XY )) qubits and depth. If for example all the non-walkable positions are located in the
diagonal of the grid as in Figure 5, we can implement OF using elementary mappings that require
only O(polylog(XY )) qubits.

Running time: The running time of quantum policy evaluation is O(Γ polylog(XY )) and the
total running time of quantum policy iteration is O(MΓpolylog(XY )) with M being the number
of measurements. Executing the same classical algorithm yields a running time of O((XY )ω) since
A = 4 and does not depend on XY . Whether or not we have a quantum advantage depends
on what is the required value of M . Setting M = O(log(XY )/ǫ2) may not suffice when XY is
very large because the value function concentrates around the goal state and the ℓ∞-tomography
only guarantees ǫ-approximation in average. In this case, we may use ℓ2-tomography with M =
Õ(XY/ǫ2) to guarantee that each grid position is sampled enough and the running time becomes
Õ(XY Γ/ǫ2) where the value of ǫ does not depend on the grid size, which still gives us a polynomial
speedup over the classical in the worst case.

Experimental results: We simulated the quantum policy iteration on a classical computer
by introducing the appropriate noise and randomness within the linear algebraic procedures of the
algorithm. More precisely, two types of noise were added to the normalized state-value function eval-
uated with a classical procedure. Given a precision parameter ǫ, the first noise corresponds to the
matrix inversion error (Theorem 2.4) in the quantum policy evaluation method, whereas the second
noise corresponds to the sampling error due to the finite number of quantum measurements (Theo-
rem 2.5) where the number of measurements is chosen to be M = 36 log(SA)/ǫ2 = 36 log(4XY )/ǫ2

as in [9]. We used 5 different random seeds to run our experiments on the 4× 4 and 8× 8 maps for
the FrozenLake environment [31] and we saw that the quantum policy iteration converges to the
optimal policy after at most five iterations for a precision parameter ǫ = 10−2.

5.2 Application to InvertedPendulum

Description of the environment: InvertedPendulum is an environment that requires
maintaining a pendulum in a stable position by moving the cart it is attached to [32]. The space
state S ⊂ R2 is continuous and consists of tuples of the form s = (θ, θ̇) where θ ∈ [−π/2, π/2]
is the vertical angle and θ̇ ∈ R the velocity. The action space consists of three Newtonian forces
A = {−50N, 0N,+50N} that can be applied to the cart to balance the pendulum. A uniform noise
in [−10, 10] is added to any action. The game stops when the angle is greater than π/2 in absolute
value.
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The dynamics of the environment are governed by the following equation:

θ̈ =
g sin(θ)− αmlθ̇2 sin(2θ)/2 − α cos(θ)a

4l/3 − αml cos2(θ)

where g is the gravity constant, m is the mass of the pendulum, M is the mass of the cart, l is the
length of the pendulum and α = 1/(m+M).

Quantum access: Since the state space S is continuous, we will apply the model-free implemen-
tation of quantum policy iteration. We want to build quantum access to a source D of transition
samples classically collected from the InvertedPendulum environment and to some features func-
tion Φ by constructing the oracles as in Definition 4.4.

First, let us consider quantum access to D by constructing Os,a

P̃
, Os′

P̃
. Assuming that we have

a B-bit binary description for the states and actions, we can implement both oracles with cost
T
P̃
= O(D×B) where D is the number of samples in D. Moreover, we can also implement the oracle

O
R̃

with cost T
R̃
= O(polylog(D)) since all rewards have value +1 and the approximated reward

vector |R̃〉 = ∑
i |i〉 /

√
D can be implemented by applying a Hadamard transform to |0i〉.

Next, we will construct an oracle that implements the features function Φ. In particular, we will
use the Fourier features [33]. Given some policy π, we will approximate the value function Qπ using
a multivariate Fourier series expansion of Qπ(·, a) on [−1, 1]2:

Qπ(s, a) =
∑

c

αc cos(πc · s) + βc sin(πc · s) with c ∈ Ndim(S) = N2

To do so, we rescale the state parameters to range in [0, 1]2. We limit the expansion to some degree
k ∈ N by considering coefficients c ∈ [k]2 = {0, . . . , k − 1}2 which results in 2k2 features per action
and a total number of K = 2Akdim(S) = 6k2 features. The features function Φ : S × A −→ RK

maps every state-action pair (s, a) to Φ(s, a) = {φc,a
cos(s, a), φ

c,a
sin (s, a)|c ∈ [k]2,a ∈ A} where:

φc,a
cos(s, a) = 1[a = a] cos(πc · s) and φc,a

sin (s, a) = 1[a = a] sin(πc · s)

In the next claim, we show how to efficiently implement the oracle OΦ associated to the features
function Φ:

Claim 5.2. Let k ∈ N be the Fourier degree expansion and B the number of bits used to describe s.
We can implement the oracle OΦ with cost TΦ = O(B polylog(K)).

Proof. We need to build quantum access to the oracle OΦ : |s, a〉 |0k〉 −→ |s, a〉 |Φ(s, a)〉. It is
important to note that ‖Φ(s, a)‖ is constant for all state-action pairs and that the corresponding
quantum state |Φ(s, a)〉 can be written as:

|Φ(s, a)〉 = 1

k

∑

c∈[k]2

(cos(πc · s) |0〉+ sin(πc · s) |1〉) |c, a〉

Note that the features register |0k〉 can be decomposed into three registers |0〉 |0c, 0a〉 that index the
K = 6k2 features. Moreover, the state representation |s〉 can also be decomposed into |θ, θ̇〉 and we
assume that every observation is encoded as a B-bit binary description.
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Figure 6: InvertedPendulum environment.

Starting from |s, a〉 |0k〉 = |s, a〉 |0〉 |0c, 0a〉, we can map |0c〉 to
∑

c∈[k]2 |c〉 /k with cost O(polylog(K)).
Then we use B-ancilla qubits to compute and store the results of the mapping |s〉 |c〉 |0B〉 −→
|s〉 |c〉 |c · s〉 with cost O(B polylog(K)) using quantum circuits for addition and multiplication.
Next, we control on |c · s〉 to map the first qubit of the features register to (cos(πc · s) |0〉+ sin(πc ·
s) |1〉) with cost B. Finally, we finish by uncomputing |c · s〉 and copy the action register of |s, a〉
to |0a〉.

We have shown how to implement the necessary oracles that give quantum access to the parameters
of our model-free quantum approximate policy evaluation. Using Lemma 4.2, we can use these
oracles to construct

√
K-block-encodings of the matrices Φ̃ and P̃ πΦ with cost TΦ̃ = O(BD +

B polylog(K)) where we assumed that the implementation of π̃ has the same cost as the one of P̃ .
The total cost of our evaluation procedure from Theorem 4.3 simplifies to O(κ2

Φ̃
BDΓpolylog(Kκ

Φ̃
/ǫ)).

Running time: As demonstrated in the analysis above, the implementation of the oracles that
give access to the memory D require at most O(BD) qubits and can be performed with constant
depth. However, the implementation of the features function uses quantum circuits with a linear
dependency on B since we need to control on the B qubits used to store the values c · s. The
running time of quantum approximate policy evaluation simplifies then to O(κ2

Φ̃
B polylog(Kκ

Φ̃
/ǫ)).

Since we need to improve the policy for every transition state s in D, the total running time
of quantum approximate policy iteration is then Õ(κ

Φ̃|S
κ2
Φ̃
MDB polylog(Kκ

Φ̃
/ǫ)) where M is the

total number of measurements performed to update one state s. In comparison, executing classically
this algorithm takes Õ(BDK2 +BKw) for the approximate policy evaluation that computes ŵπ =
and Õ(BDK) for the approximate policy improvement step where we use the bit time complexity for
matrix multiplication and inversion. Our analysis show that both approaches have linear dependency
on B and D, however our quantum algorithm provides a polynomial speedup in the total number of
features K = 2Akdim(S) that grows exponentially with the dimension of the state space if we apply
this approach to other environments.

Experimental results: We simulated the model-free implementation of quantum approximate
policy iteration on a classical computer with a Fourier expansion of degree k = 4 for a total of K = 96
features per state-action pair. Similarly to the experiments in Subsection 5.1, we added a noise of
magnitude ǫ to all algebraic procedures and we performed M = 100 measurements for every sample
in the memory. We preprocessed the state to range in [0, 1]2 by normalizing the angle and clipping
the angle velocity θ̇ between [−1, 1] before rescaling to [0, 1]. All other simulation parameters are

identical to those in [23]. Moreover, we also clipped the singular values of Aπ = Φ̃⊤(Φ̃− γP̃ πΦ) so
that its corresponding condition number is constant and has value κ = 1/10−3. We repeated the
experiment over 5 different random seeds with a precision ǫ = 10−2 and saw that our algorithm
converges to the optimal policy within the first 8 iterations.
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6 Conclusion and discussions

In this work, we provided a general framework for performing quantum reinforcement learning
via exact and approximate policy iteration. We validated our framework by designing and analyzing
quantum policy evaluation methods for infinite horizon discounted problems by building quantum
states that approximately encode the value function of a policy π, and quantum policy improve-
ment methods by post-processing measurement outcomes on these quantum states. In all cases,
we provided details about constructing block encodings for all matrices needed in the quantum
linear algebra computations. Last, we studied the theoretical and experimental performance of our
quantum algorithms on the FrozenLake and InvertedPendulum environments.

Our framework can be adapted and generalized to encompass many different policy iteration
algorithms, including ones using deep learning techniques, and, of course, further theoretical work
is needed in order to fully understand the strengths and limits of this approach. We conclude by
providing several directions for possible future work.

First, the cost and running time of our quantum policy evaluation algorithms have linear depen-
dency on the quantities µ and κ of the different matrices appearing in the linear systems used to
compute or estimate the value function. The condition number κ is a property of the matrix and
cannot be optimized, but one can use a much smaller threshold κth, thus disregarding smaller eigen-
values, a method that works well when there is a good low rank approximation of the matrix. The
quantity µ depends on the procedure used to build quantum access as in the block-encoding frame-
work and different methods will provide different µ parameters. We have provided examples where
both these parameters are small, but it remains open to understand the families of environments
for which quantum linear algebra can be faster than classical methods.

Second, we provided several quantum policy improvements strategies that consist of performing
a series of measurements on the outputs of quantum policy evaluation to update the actual policy.
Again, the running time of one iteration of our algorithm is linearly dependent on the number
of measurements which also affects the overall performance of our policy. Moreover, there is also
inherent noise induced from measurements that is specific to the quantum procedures. We have
set this number, for most of our results, to be Õ(1/ǫ2) for the theoretical guarantees provided by
ℓ∞-tomography but this number may be far from optimal. Possible research directions include adap-
tively controlling this number or/and making it state-dependent to appropriately balance between
exploration-exploitation. If no exploration is needed, we can instead focus on finding the correct
argmax using the quantum maximum finding algorithm by Dürr and Høyer [34] similarly to the
approach in [22]. Understanding better how the number of measurements affects the convergence
and performance of the quantum reinforcement learning methods needs to be more thoroughly
explored.

Last, one may also study the different variants of classical policy iteration that exist and try to
provide similar theoretical guarantees of convergence for some appropriate norm for the quantum
case.
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