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ABSTRACT

Quantum machine learning has the potential for a transformative impact across industry sectors and
in particular in finance. In our work we look at the problem of hedging where deep reinforcement
learning offers a powerful framework for real markets. We develop quantum reinforcement learning
methods based on policy-search and distributional actor-critic algorithms that use quantum neural
network architectures with orthogonal and compound layers for the policy and value functions. We
prove that the quantum neural networks we use are trainable, and we perform extensive simulations
that show that quantum models can reduce the number of trainable parameters while achieving
comparable performance and that the distributional approach obtains better performance than other
standard approaches, both classical and quantum. We successfully implement the proposed models
on a trapped-ion quantum processor, utilizing circuits with up to 16 qubits, and observe performance
that agrees well with noiseless simulation. Our quantum techniques are general and can be applied to
other reinforcement learning problems beyond hedging.

1 Introduction

In financial markets, hedging is the important activity of trading with the aim of reducing risk. For example, buyers and
sellers of derivative contracts will often trade the asset underlying the derivative in order to mitigate the risk of adverse
price movements. Classical financial mathematics provides optimal hedging strategies for derivatives in idealized
friction-less markets, but for real markets these strategies must be adapted to take into account transaction costs, market
impact, limited liquidity, and other constraints.

Finding optimal hedging strategies in the presence of these important real-world effects is highly challenging. Deep
Hedging [1, 2] is a framework for the application of modern reinforcement learning techniques to solve this problem.
One starts by defining a reinforcement learning environment for the hedging problem and a trading goal of maximizing
a risk-adjusted measure of cumulative future returns. Then, one can apply standard deep reinforcement learning
algorithms, such as policy-search or actor-critic approaches, by designing neural network architectures to model the
trading strategy and by defining a training loss function to find the optimal parameters that maximize the trading goal.

Beyond Deep Hedging, the applicability of machine learning to finance has grown significantly in recent years as highly
efficient machine learning algorithms have evolved over time to support different data types and scale to larger data sets.
For instance, supervised learning can be used for asset pricing or portfolio optimization [3, 4], unsupervised learning
for portfolio risk analysis and stock selection [5, 6], and reinforcement learning for algorithmic trading [7, 8]. At the
same time, machine learning has been identified as one of the most important domains of applicability of quantum
computing given the potential ability of quantum computers to solve classically-intractable computational problems [9],
perform linear algebraic operations efficiently [10] and provide variational-type approaches [11]. Such techniques have
already been considered for financial use cases [12–17], and in fact finance is estimated to be one of the first industry
sectors to benefit from quantum computing [18, 19].

∗Corresponding authors: el.amine-cherrat@qcware.com, yue.sun@jpmorgan.com

ar
X

iv
:2

30
3.

16
58

5v
1 

 [
qu

an
t-

ph
] 

 2
9 

M
ar

 2
02

3



In this work, we develop quantum deep learning methods and show how they can be a powerful tool for Deep Hedging.
Quantum deep learning methods, and, in particular, quantum neural networks based on parametrized quantum circuits,
have been proposed as a way to enhance the power of classical deep learning [11]. Such quantum neural networks may
in general be difficult to train, often encountering problems of barren plateaus or vanishing gradients [20]. Here, we
design quantum neural layers based on Hamming-weight preserving unitaries constructed out of 2-dimensional rotation
gates (called RBS gates), and prove that they can be efficiently trainable, in the sense that the variance of the gradients
decays only polynomially with the number of qubits. These quantum layers, first defined in [21], naturally provide
models that have orthogonal features, improving interpretability [22], allowing for deeper architectures, and providing
theoretical and practical benefits in generalization [23]. Depending on the input data encoding, one can control the size
of the Hilbert space these neural networks are exploring while training. Specifically, when a unary encoding is used, the
size of the Hilbert space is linear and the quantum circuit is simulatable classically with a quadratic overhead. With
a general binary encoding, the Hilbert space is exponential in size and it is not clear how the quantum circuit can be
simulated classically. We call these two types of layers orthogonal layers and compound layers respectively.

First, using our orthogonal layers within classical neural network architectures, we design novel quantum neural
networks for time-series. To evaluate the behavior of our quantum neural networks, we use the same example as in [1],
where the market was simulated using Geometric Brownian Motion (GBM) with a single hedging instrument (equity).
We then benchmark four different neural network architectures (Feed-forward, Recurrent, LSTM, Transformer), with
both classical layers and our quantum layers, using the policy-search Deep Hedging algorithm [1, 2]. Our quantum
neural networks achieve comparable scores as their classical counterparts while obtaining qualitatively different
solutions, providing models with orthogonal features and considerably fewer parameters. It is conceivable that similar
parameter reduction may be obtained by purely classical techniques such as pruning.

Second, we design a novel quantum-native reinforcement learning method for Deep Hedging. We start by formulating
a quantum encoding of the environment and trading goals for Deep Hedging. We then introduce a distributional
actor-critic reinforcement learning algorithm in combination with quantum neural network architectures based on
compound layers for the policy and value function. Our approach is inspired by classical distributional reinforcement
learning wherein the critic does not only learn the expectation of cumulative returns, but also approximates their
distribution. Recent studies, such as AlphaTensor [24], have demonstrated that distributional reinforcement learning can
lead to better models compared to standard reinforcement learning methods, despite the increased difficulty in training
[25]. A distributional actor-critic method for Deep Hedging had not been studied in the classical case before. We
note that our quantum distributional reinforcement learning algorithms can be used more generally for reinforcement
learning problems and is not limited to Deep Hedging.

Quantum computers are naturally suited to distributional reinforcement learning. Each quantum circuit explicitly
encodes a mapping between exponential size distributions, and the measurement of a quantum circuit results in a sample
from such a distribution. These samples can be used to simply learn the expectation of the entire distribution or to
flexibly obtain extra information about the distribution, such as the expectations restricted to relevant subsets of the total
range. In the case of Deep Hedging, we parametrize the value function using quantum neural networks with compound
layers, which preserve the Hamming-weight subspaces of their input domain. This choice is particularly suited to
the Deep Hedging setting, where when we encode a stochastic path as a binary string of up or down jumps, then it is
intuitively natural that the number of net jumps, namely the Hamming weight of the encoding, is a major component
that determines its behavior. The restriction to compound layers further makes the neural network architecture shallower
and trainable.

Confirming this intuition, the quantum policies trained using our distributional actor-critic algorithm outperform those
trained with policy-search based or standard actor-critic models where only the expectation of the value function is
learned. These results are achieved again for a variant of the example from [1], where we used a discretized Geometric
Brownian Motion as a market model both without and with transaction costs.

Last, we evaluated our framework on the Quantinuum H1-1 and H1-2 trapped-ion quantum processors [26]. In particular,
we performed inference on the quantum hardware using two sets of Quantum Deep Hedging models which were
classically pre-trained. First, we used the policy-search based algorithm with the LSTM and Transformer architectures
instantiated with 16-qubit orthogonal layers. Second, we used the novel distributional actor-critic algorithm instantiated
with compound neural networks using up to 12 qubits. We observed close alignment between noiseless simulation and
hardware experiments, with our distributional actor-critic models again providing best performance.

The rest of the paper is organized as follows. Section 2 introduces preliminaries for quantum computing and reinforce-
ment learning. In Section 3, the problem of Deep Hedging is formulated and policy-search and actor-critic algorithms
are presented. Section 4 presents our orthogonal and compound neural networks and proves their trainability. Section 5
introduces a novel quantum framework for reinforcement learning and applies it to Deep Hedging. Section 6 reports
our simulation and hardware implementation results. Finally, Section 7 concludes with remarks and open questions.
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2 Preliminaries

2.1 Quantum Computing

Quantum computing [27] is a new paradigm for computing that uses the postulates of quantum mechanics to perform
computation. The basic unit of information in quantum computing is a qubit. The state of a qubit can be written as:

|x〉 = α0|0〉+ α1|1〉,
where α0, α1 ∈ C and |α0|2 + |α1|2 = 1, and corresponds to a unit vector in the Hilbert spaceH = spanC{|0〉, |1〉}. A
qubit can be generalized to n-qubit states, which are represented by unit vectors inH⊗n ' C2n . Specifically,

|x〉 =
∑

b∈{0,1}n
αb|b〉,

with αb = 〈x|b〉 ∈ C and
∑
b∈{0,1}n |αb|2 = 1, where {|b〉 | b ∈ {0, 1}n} is the computational basis ofH⊗n. Quantum

states evolve through the application of unitary operators, which are 2n × 2n unitary matrices. Applying a unitary
operator U to an n-qubit state |x〉 results in a new quantum state U |x〉.
Quantum states can be measured, and the measurement process reveals information about the state of the system. The
probability of a quantum state |x〉 yielding outcome b from a measurement in the computational basis is given by
|αb|2. More generally, the measurement process is described as an observable, which is a Hermitian operator that
acts on the quantum state. The observable is given by O =

∑
m omPm, where om are real numbers that specify the

measurement outcomes and Pm are projection operators onto the subspaces that correspond to each outcome. This can
be calculated as the inner product between the state and the corresponding projection operator, or pm(x) = 〈x|Pm|x〉.
The expectation of measuring the observable O in the state |x〉 is defined as the sum of the measurement outcomes
weighted by their corresponding probabilities, or

∑
m ompm(x). This expectation can also be written as the trace of the

observable O and the density matrix ρ(x) = |x〉〈x|, i.e., 〈x|O|x〉 = Tr [Oρ(x)], where Tr is the trace operator. The
trace operation returns the sum of the diagonal elements of the matrix, which corresponds to the expected value of the
measurement outcome in the state |x〉.

2.2 Reinforcement Learning

The aim of reinforcement learning [28] is to train an agent to discover the policy that maximizes the agent’s performance
in terms of cumulative future reward. And while interacting with the environment, the agent only receives a reward
signal. The agent can take an action from a set of possible actions based on a policy that maps each state to an action.

Environments in reinforcement learning are modeled as decision making problems defined by specifying the state set,
the action set, the underlying model describing the dynamics of the environment, and the reward mechanism. The
usual framework used to describe the environment’s elements in reinforcement learning are Markov Decision Processes
(MDPs). In this paper, we will consider finite-horizon MDPs that can be defined as follows:
Definition 1 (Finite-horizon MDP). A finite-horizon MDPM is defined by a tuple (S,A, p, r, T ), where S is is the
state space, A is the action space, p : S ×A −→ ∆(S) is the transition function with ∆(S) the set of distributions over
S, r : S ×A −→ R is the reward function and T ∈ N∗ is the time horizon.

Starting from a state st ∈ S, a single interaction with the environment can be represented by a sequence of actions
{aπt′}Tt′=t selected based on a deterministic policy π : S → A, and a sequence of random states {st′}Tt′=t that follow
the MDP transitions p. The cumulative return Rπt is the sum of rewards from time-step t to T and is given by:

Rπt (st, st+1, . . . , sT ) =

T∑
t′=t

r(st′ , a
π
t′).

In reinforcement learning, the objective is to find the policy π∗ that maximizes the expected return for all states st. The
expected value of the return, taking into consideration all possible future states {st′}Tt′=t resulting from the environment
transitions described by p, is referred to as the value function vπ . For any time-step t, and denoting by st′ ∈ ∆(S) the
random variable that takes values in S according to the environment dynamics for t′ > t and knowing st = st, the
cumulative return is defined as follows:

vπt (st) = E[Rπt (st, st+1, . . . , sT )|st].

Typically, the goal of reinforcement learning is to find a policy that maximizes the expected return, and different
algorithms have been developed to achieve such objectives [29]. The value function is used to evaluate policies in order
to find the one that maximizes the expected return.
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3 Deep Hedging Formulation

3.1 Deep Hedging Environment

Deep Hedging is a classical algorithm that treats hedging of a set of derivatives as a reinforcement learning problem.
This algorithm was first introduced in [1, 2] and has been further developed in subsequent works such as [30–33]. In the
original approach, the authors use a reinforcement learning environment associated with Deep Hedging that employs
finite-horizon MDPs where there is a different state and action space per time-step. The time horizon T represents the
maximum maturity of all instruments, and St and At are the sets of observed market states and available actions at
time-step t, respectively.

During the interaction with the environment, the agent observes a market state st ∈ St that contains all current and past
market information (prices, cost estimates, news, internal state of neural networks, . . . ), and takes an action

aπt = πt(st) ∈ At,
potentially subject to constraints (liquidity limits, risk limits, . . . ), according to a deterministic policy π := {πt}Tt=0.
Then, the environment transitions to the next state st+1, according to pt : St −→ ∆(St+1), that is assumed not to depend
on the action aπt since actions have no market impact in the Deep Hedging model [33]:

pt(st+1|st) := P[st+1|st].
Subsequently, the agent receives a total reward of

rπt (st) := rt(st, a
π
t ) = r+t − r−t ,

where r+t is the source of positive rewards such as the generated cashflows and r−t represents the source of negative
rewards and corresponds to the transaction costs. The interaction ends after a terminal state sT ∈ ST is reached. The
cumulative sum of the rewards perceived during this interaction can be rewritten as

Rπt (sT ) ≡ Rπt (st, st+1, . . . , sT ),

since, by definition, sT contains all previous states st′ for all t ≤ t′ < T .

3.2 Trading Goals in Deep Hedging

The standard objective in reinforcement learning problems is to find the optimal strategy π∗ that maximizes the value
function vπ over all policies π. As discussed in Section 2.2, the value function is usually defined as the expected
cumulative return, which, in this context, would be E[Rπt (sT )|st]. However, in order to take into account the inherent
risk in trading strategies, the goal of Deep Hedging is to find a deterministic optimal policy π∗ that maximizes the value
function defined, for some policy π, as

vπt (st) = E [Rπt (sT )|st] ,
where E is the expected utility defined by a risk-averse (i.e., concave) utility function.

Various forms of utility functions have been proposed that satisfy the concave requirement. For a more detailed
discussion on the desired properties of the utility function and examples of commonly used forms, see [1, 2]. In this
paper, we use the exponential utility function Eλ, which is an example of a monetary utility function that is increasing,
concave, and cash-invariant [33]. Specifically, it is defined for some risk aversion level λ > 0 as

Eλ[X] := − 1

λ
logE[exp(−λX)].

The parameter λ can be used to reflect the investor’s risk tolerance, with larger values indicating more risk aversion.
With this exponential utility function, the value function v∗ associated with the optimal policy π∗ is given by

∀t, ∀st ∈ St, v∗t (st) = sup
π
vπt (st) = − 1

λ
log
{

inf
π

E [exp (−λRπt ((sT )) |st]
}
.

Since the Deep Hedging objective is formulated in terms of risk-adjusted measures, the value function is no longer a
solution to the standard Bellman equation. However, conventional reinforcement learning algorithms can be adapted to
find policies that maximize the utility. Two algorithms have been developed to solve the Deep Hedging problem. The
first approach, called policy-search Deep Hedging [1, 2], uses a neural network to model the policy and updates the
set of parameters using gradient descent to minimize the policy loss function. The second approach, actor-critic Deep
Hedging [33], represents both the policy and the value function with neural networks and computes the utility using the
policy function to update the value network, which is then used to update the policy network.
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4 Quantum Neural Networks with Orthogonal and Compound Layers

A Quantum Neural Network (QNN) consists of a composition of parametrized unitary operations, whose parameters can
be trained to provide machine learning models for classification or regression tasks. While current quantum hardware is
still far from being powerful enough to compete with classical machine learning algorithms, many interesting quantum
machine learning algorithms have started to appear, such as for regression [34, 35], classification [36–38], generative
modeling [39, 40], and reinforcement learning [41].

In general, a QNN consists of data-loading layers and trainable layers, which are both parametrized unitary operations.
In some architectures, the data-loading is an explicit-encoding scheme that is used to directly embed the classical input
data into the amplitudes of a quantum state. While in others, these parts only implicitly encode the data and prepare a
state whose amplitudes are some complex non-linear function of the input data. The latter is known in literature as a
quantum feature map [42]. After the unitary operators are applied, the resulting quantum state is probed to produce
classical data that can be used for inference or training.

One popular approach, based on variational quantum circuits [11], is to apply an alternating sequence of quantum feature
maps and trainable parts and output the expectation of the resulting state with respect to some observable [43, 44]. A
second class of architectures encodes in the amplitudes the input data and performs trainable unitary operations that
reproduce the linear layers of certain classical neural networks but with reduced computational complexity [21, 45].
The output is obtained through quantum-state tomography and non-linear operations are then applied classically. After
applying the non-linearity, the data is reloaded onto a quantum state, and the process is repeated to compose layers.

Such quantum circuits can be trained using classical gradient descent methods until convergence. For variational
quantum circuits, where the output is an expectation value, the gradient can be computed using the parameter-shift
rule [34, 46]. One needs to be very careful in designing such quantum neural networks, since they may in general be
difficult to train, often encountering problems, such as, barren plateaus or vanishing gradients [20].

In Sections 4.1, 4.2 below we review two different types of quantum layers built from Hamming-weight preserving
unitaries and that can be used to provide a natural quantization of classical neural network architectures. In Section 4.3
we discuss neural networks architectures that make use of these layers. While similar techniques have appeared
previously in [38, 45], our discussion is more systematic and extends the techniques to a larger set of architectures.
Finally, in Section 4.4 we discuss the properties of quantum neural networks with compound layers and prove their
trainability.

4.1 Quantum Orthogonal Layers

The quantum orthogonal layer was proposed by Kerenidis et al. [21] to simulate traditional orthogonal layers with
reduced complexity at inference time. Specifically, a quantum orthogonal layer on n-qubits acts an element of SO(n)
when restricted to the span of the computational basis states with Hamming-weight one, i.e. the unary basis. This is
achieved by composing two-qubit Reconfigurable Beamsplitter (RBS) gates. An RBS gate acting on the i-th and j-th
qubits implements a Givens rotation:

RBSij(θ) =

1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 .

If the goal is to apply an orthogonal matrix to classical data in a vector x ∈ Rn, then x can be efficiently amplitude
encoded in quantum state in the unary basis with a log-depth circuit [47, 48]. The unary data loader (depicted in Figure
1) uses n qubits and maps the all-zeros basis state |0〉⊗n to the state |x〉 as follows:

UL(x) : |0〉⊗n → |x〉 =
1

‖x‖

n∑
i=1

xi|ei〉

where ‖ · ‖ represents the `2 norm and |ei〉 is the ith unary basis quantum state represented by |0〉⊗(i−1)|1〉|0〉⊗(n−i).
Let G(i, j, θ) denote the Givens rotation applied to the i-th and j-th unary basis vector, i.e. ei and ej , θ a vector of
angles, and T is a list of triplets (i, j,m). The orthogonal layer is defined by:

U(θ) =
∏

(i,j,m)∈T

RBSij(θm).
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Figure 1: A quantum circuit with logarithmic depth for data loading. Vertical lines represent RBS gates with parameters
that are dependent on the input x. The unitary represented by this data loader is denoted as UL(x).

(a) Pyramid architecture (b) Brick architecture (c) Butterfly architecture

Figure 2: Various Hamming-weight preserving circuits used in quantum orthogonal layers. These circuits are parame-
terized by a set of parameters θ, with each parameter representing the angle of a specific RBS gate. The parameterized
unitary represented by this layer is expressed as U(θ).

It acts as U(θ)|x〉 = W |x〉 where W =
∏

(i,j,m)∈T G(i, j, θm). Since the dimension of the Hamming-weight one
subspace is n for n qubits, there exist efficient quantum-state tomography procedures for reading out the resulting
quantum state encoding the matrix-vector product W |x〉 [21].

The fact that circuits of RBS can only span elements of SO(n) avoids the computational overhead that is associated with
the need to re-orthogonalize the weight matrix in the classical case. Note that the application of each such layer can also
be performed classically in time O(n2), compared to a linear-depth quantum circuit. Furthermore, orthogonal layers
are efficiently trainable, as the dimension of the space they explore is linear in the number of qubits used. Specifically,
these layers are trained by classically simulating the circuit and using quantum for inference.

There are different linear-depth circuits for U(θ), highlighted in Figure 2, each with its own unique properties. The
Pyramid architecture, as described in [21], consists of n(n− 1)/2 RBS gates arranged in a pyramid-like structure and
has a linear depth. This architecture allows for the representation of all possible orthogonal matrices of size n× n. The
Brick architecture is a variation of the Pyramid architecture and also consists of n(n− 1)/2 RBS gates. However, it has
a more compact layout of gates, while still exhibiting similar properties. Both the Pyramid and Brick architectures
can be implemented in hardware with nearest-neighbour connectivity between qubits. On the other hand, the Butterfly
architecture, which was proposed in [45], uses logarithmic depth circuits with a linear number of gates to implement a
quantum orthogonal layer. This architecture requires all-to-all connectivity in the hardware layout. To summarize, an
orthogonal layer with input size n uses a parametrized quantum circuit with n qubits and a number of parameters equal
to
(
n
2

)
for a Pyramid or Brick circuit and can be implemented on hardware with nearest-neighbour connectivity. For a

Butterfly circuit, the number of parameters is n
2 log(n) and requires all-to-all connectivity in the hardware.

Because classical data can be efficiently loaded onto a quantum state and retrieved from a quantum orthogonal layer, it
is possible to compose quantum orthogonal layers with nonlinear activation functions. More specifically, after applying
the sequence of RBS gates, the matrix-vector product W |x〉 is readout and an activation function is applied classically.
The resulting vector is then loaded onto a quantum state using the unary data loader for the next layer. In Section 4.3,
we will make use of this scheme to construct various quantizations of classical neural architectures for time series.
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Figure 3: A quantum compound layer U(θ) acts as a block diagonal unitary on each fixed Hamming-weight subspace.

4.2 Quantum Compound Layers

The quantum compound layer is a natural and powerful generalization of the orthogonal layer [38] and a version of it
has been previously used [45] to implement quantum analogues of vision transformers. The prefix “compound” refers
to the fact that the quantum circuits implement linear operators on the exterior power of a vector space.

For an n-dimensional vector space V with orthonormal basis {ei}ni=1, the k-th exterior power
∧k

V is the
(
n
k

)
-

dimensional vector space spanned by the k-fold alternating products of vectors in V :∧k
V := span C{ei1 ∧ ei2 ∧ . . . eik |i1 < i2 < · · · < ik ∈ [n]}.

The alternating property implies that for any permutation σ of the indices:
eσ(i1) ∧ eσ(i2) ∧ · · · ∧ eσ(ik) = sign(σ)× ei1 ∧ ei2 ∧ · · · ∧ eik .

The direct sum
⊕n

k=0

∧k
V equipped with the alternating product forms the exterior algebra of V , denoted

∧
V .

For any linear operator A on V , there exists an extension to a linear operator A(k) on
∧k

V , which acts as:

A(k)(ei1 ∧ ei2 ∧ · · · eik) = Aei1 ∧Aei2 ∧ · · · ∧Aeik
on k-vectors. The matrix for the extended operator, called the k-th (multiplicative) compound matrix, has as entries
A

(k)
IJ = det(AIJ), where I and J are k-sized subsets of the rows and columns of A, respectively. Furthermore, there

exists a unique linear operator A :=
⊕n

k=0A
(k) over

∧
V such that the restriction to the k-th exterior power is A(k).

In the quantum setting, the k-vectors ei1 ∧ · · · ∧ eik are mapped to computational basis states |S〉, where S ∈ {0, 1}n,
|S| = k, and ∀t ∈ [k], Sit = 1. Thus n-qubits can be used to encode a projectivization of the exterior algebra

∧
V . To

apply compound matrices to k-vectors in the qubit encoding, we utilize Fermionic Beam Splitter (FBS) gates, whose
action on qubits i and j depends on the parity of the qubits between i and j. On a computational basis state |S〉, the
FBS gate acts on qubits i and j as the unitary matrix below,

FBSij(θ) =


1 0 0 0
0 cos(θ) (−1)f(i,j,S) sin(θ) 0
0 (−1)f(i,j,S)+1 sin(θ) cos(θ) 0
0 0 0 1

 ,

where θ ∈ [0, 2π) and f(i, j, S) =
∑
i<k<j sk, and as identity on all other qubits. An FBS gate can be implemented as

the composition of controlled-X gates, controlled-Z gates, and RBS gates.

Like in the previous subsection, let G(i, j, θ) denote the Givens rotation applied to the i-th and j-th basis vector, i.e. ei
and ej , θ a vector of angles, and T is a list of triplets (i, j,m). The quantum compound layer is defined by:

U(θ) =
∏

(i,j,m)∈T

FBSij(θm)

7



(a) Feed-forward architecture. (b) Recurrent architecture. (c) Attention mechanism.

Figure 4: Diverse quantum neural network architectures for time-series data, featuring orthogonal layers in each block
as outlined in Section 4.3. Here, xt and yt denote the time-series input and output, respectively, while ỹt represents the
output after being adjusted by the attention mechanism.

It can be shown [49] that this layer acts as U(θ)|S〉 = A(k)|S〉 for |S| = k, where A(k) is the k-th multiplicative
compound of A =

∏
(i,j,m)∈T G(i, j, θm). Thus the operation U acts asA over the quantum state space, in other words

it is a block diagonal unitary that acts separately on each fixed Hamming-weight subspace (see Figure 3).

The compound layer is similar to the circuits we described in the orthogonal layer case, where there, given we only
consider the unary basis, the FBS gates can be replaced by the simpler RBS gates. Note as well, that RBS and FBS
gates acting on nearest-neighbor qubits, as in the Pyramid and Brick circuits, are also equivalent. The main difference
in the compound layer comes from the fact the data loading part is not restricted to the unary basis, and thus one needs
to consider the entire exponential size block-diagonal unitary, and not only its linear size restriction to the unary basis.

Thus, one can see that by controlling the Hamming-weight of the basis states used in the data loading part one can
smoothly control the size of the explored space, from linear size, when using a unary basis for data loading, to an
exponential size, when we use all possible Hamming-weights, as is the case for example when we load each coordinate
of a classical data point by performing a one-qubit rotation with an appropriate data-dependent angle.

Lastly, since any element of SO(n) can be expressed as a product of O(n2) Givens rotations, the direct sum of
compound matrices can be implemented efficiently as a composition of FBS gates. Thus quantum computation can be
used to efficiently parametrize and apply compound matrices over the exterior algebra.

4.3 Quantum Neural Network Architectures with Orthogonal Layers

Our aim is to develop quantum neural networks capable of processing sequential data. To achieve this, we will utilize
classical neural network architectures that have proven to be effective in dealing with time-series data. However, we
will extend these classical architectures by replacing the linear layers with our orthogonal layers. This approach offers
an alternative to the use of quantum variational circuits, which are commonly used in quantum machine learning. As
discussed in Section 4.1 orthogonal layers use only the unary basis whose size is equal to the number of qubits, and
hence one can easily perform tomography to obtain a classical description of the output and apply a nonlinearity. By
combining the strengths of classical neural networks with the unique properties of quantum orthogonal layers, we hope
to achieve improved results in processing sequential data.

We designed quantum neural networks to process input time-series data (x0,x1, . . . ,xT ) and produce the final output
sequence (y0,y1, . . . ,yT ). We split these architectures into two categories: feed-forward and recurrent architectures.

For the purpose of details, we assume that the input and output have the same dimension n and that this dimension is
maintained across layers. Additionally, these architectures are made up of blocks that can be repeated to create deeper
architectures. Here, we will assume that the number of blocks is one.

• Feed-forward Architectures: A classical Feed-forward neural network consists of multiple layers of trans-
formations, where information flows from input to output without looping back. In each layer, a linear
transformation, bias shift, and a non-linear function are applied. The output is calculated as:

xt = f (Wxt + β)

where f is the activation function, and W and β are the weights and biases. The number of parameters in
each layer of a classical network is O(n2). Our proposed quantum equivalent (Figure 4a) calculates each
transformation as:

yt = f (γ ◦ U(θ)|xt〉+ β)

8



where ◦ represents the element-wise product, U(θ)|xt〉 is the output of a quantum orthogonal layer retrieved
using tomography, γ is a scaling factor used to rescale each feature, β is a shift that acts as the bias, and f is
a non-linear function such as sigmoid, tanh, or ReLU. All parameters θ, γ, and β are trainable and shared
across the networks used at different time steps. The total number of trainable parameters is O(n2) when
using the Brick and Pyramid architectures, and O(n log(n)) for the Butterfly architecture. Additionally, the
parameters of the quantum orthogonal layers can either be shared across layers or not, depending on the
requirements of the time-series model being used.

• Recurrent Architectures: Recurrent neural networks are designed to handle sequential data. One example of
a recurrent architecture is the standard Recurrent Neural Network (RNN). In this example, we will show how
to provide a quantum version of RNNs (Figure 4b), but the same approach can be applied to other recurrent
models such as the LSTM. RNNs consist of a repeating module with a hidden state, ht, that allows information
to be passed from one step of the sequence to the next. At each time-step, the network takes as input xt and
the hidden state from the previous time-step, ht−1. The hidden state is updated as:

ht = f (Wxxt +Whht−1 + β)

where f is an activation function, Wx and Wh are weight matrices, and β is a bias vector. The quantum
analogue of this update is represented as:

ht = f (γx ◦ U(θx)|xt〉+ γh ◦ U(θh)|ht−1〉+ β)

where we now have two orthogonal layers with parameters θx and θh, one for the input state xt and another
for the previous hidden state ht−1. We also have two scaling factors, γx and γh. The hidden state ht is then
used to generate the output at each time-step, yt, through another layer, which can be implemented using
another orthogonal layer to map it to the output. Moreover, the parameters are shared across layers and we
can show that the number of trainable parameters per layer in the quantum Recurrent Neural Networks grows
similarly to that in the quantum Feed-forward Neural Networks, with the total number of parameters being
O(n2) for the Brick and Pyramid architectures and O(n log(n)) for the Butterfly architecture.

We also define an attention mechanism that can be applied to the output sequence (y0,y1, . . . ,yT ) to create a
transformer architecture.

• Attention Mechanism: The attention mechanism, as used in the Transformer architecture [50], can be applied
to both Feed-forward and Recurrent Neural Networks. Here, we describe a basic quantum attention mechanism
(Figure 4c), but it can be generalized. Given an output sequence (y1,y2, . . . ,yT ), the goal of the attention
mechanism is to compute the output (ỹ1, ỹ2, . . . , ỹT ) as ỹt =

∑
t′≤t wt,t′yt′ where the weights wt,t′ are

computed by considering all previous time steps:

wt,t′ ∝ exp(yt′Wyyt/τ)

whereWy is a trainable attention matrix that combines the query and key matrices into one matrix, as described
in [45], and τ is a temperature parameter. In the quantum case, we use:

wt,t′ ∝ exp(〈yt′ |U(θy)|yt〉/τ)

where γy is a scaling factor used to rescale each feature, U(θy) are the parameters of the quantum orthogonal
layer that computes the attention weights w. The dot product between |yt′〉 and U(θy)|yt〉 can be computed
quantumly using an additional data-loader to unload yt′ after applying U(θy) to yt. This procedure is similar
to the one described in [48].

4.4 Properties of Quantum Compound Neural Networks

We define a quantum compound neural network to be the standard variational QNN, i.e.

C(θ,x) = Tr[OU(θ)ρ(x)U†(θ)],

where O is an observable that preserves Hamming-weight, e.g. diagonal in the computational basis), U is a quantum
compound layer, and

ρ(x) = UL(x)[|0〉〈0|]⊗nU†L(x)

is a quantum feature map (Figure 5). As mentioned in Section 4.2, it is sufficient to use only RBS gates in the Brick
architecture to implement a quantum compound layer. Thus, without loss of generality we define U(θ) to consist only
of RBS gates in the Brick architecture.

9



Data loader Compound layer Observable

Figure 5: A quantum compound neural network. UL(x) refers to a general data loader unitary. U(θ) denotes a
Hamming-weight preserving unitary as for example the ones shown in Figure 2.

Under these assumptions, the output of the QNN decomposes as:

C(θ,x) =
n∑
k=0

Tr[Pkρ(x)]Tr[O(k)A
(k)
θ ρ(k)(x)(A

(k)
θ )−1],

where Pk is the projector onto the Hamming-weight-k subspace, O(k) = PkOPk, ρ(k) = PkρPk, and A(k)
θ is the k-th

compound matrix associated with the Givens circuit U(θ) in the manner discussed earlier. One potential application of
such a subspace-preserving QNN could be the following. Suppose there is some canonical grouping of the input data
x ∈ X according to a partitioning function f : X −→ [n+ 1]. Then one could potentially construct a quantum-feature
map or state preparation procedure such that Pf(x)ρ(x)Pf(x) = ρ(x), i.e. the quantum states encoding inputs lying in
different groups are embedded into different Hamming-weight subspaces. Then it follows that

C(θ,x) = Tr[O(f(x))A
(f(x))
θ ρ(f(x))(x)(A

(f(x))
θ )T],

and the quantum compound neural network can potentially learn different functions over the different groups. This
form of learning is a special case of group-invariant machine learning, which has also recently been explored in the
quantum case [51]. Note that the parameters θ are shared across the different functions which is beneficial for training.
Furthermore, we show below that under Gaussian initialization, the variance of the gradient on each subspace does not
vanish exponentially with the number of qubits. Thus quantum compound neural networks can be trained efficiently.

Classical neural networks over exterior algebras have been applied to manifold learning tasks, specifically for data that
lies on Grassmannians [52]. The (n, k)-Grassmannian of V is a manifold containing all k-dimensional subspaces of
V and can be embedded in the space

∧k
V , where k-wedge products of orthogonal vectors define subspaces. When

considering A ∈ SO(n), the operator A(k) maps between elements of the Grassmannian. While
(
n
k

)
can be large,

the application of A(k) to a Grassmannian can done by multiplying n× k and n× n matrices. However, optimizing
the linear layers of the neural network while ensuring the data remains an orthogonal matrix can be computationally
challenging.

Since the embedding of the (n, k)-Grassmannian into
∧k

V is not surjective, and in the quantum case we can apply
compound matrices to the larger space

∧k
V , the technique used classically for Grassmannian neural networks to reduce

the dimension of the matrix-vector products cannot be applied to simulate the quantum case. In other words, such
compound layers are inherently quantum and perform an operation that in the general case seems to take exponential
time to perform classically. Nevertheless, we will show below that such compound layers remain trainable in certain
settings.

In Section 5, we present a specific example of the Deep Hedging problem where grouping the inputs by Hamming-weight
is natural in the quantum setting and improves the accuracy of the model.

Highly expressive QNNs are known to suffer from barren plateaus in their training landscape at initialization. This
occurs when the variance of the gradient decays exponentially with the number of qubits, which makes sampling to
estimate the gradient asymptotically intractable. Specifically, consider a typical QNN of the form:

C(θ) = Tr[OU(θ)ρU†(θ)]

10



where O is an observable and U is a 2-design for the Haar measure µ on SU(2n). Using known formulas for integration
over the Haar measure on compact groups, it was shown [20] that Varµ[∂θiC(θ)] = O(1/22n).

More recent lines of work have shown that the symmetries of the parameterized quantum circuit also need to be
considered and play an important role in understanding, for example, convergence [53, 54] and trainability [55] of
QNNs. For trainability, it was shown that if the input state ρ lies in the invariant subspaceHk, then the variance of the
gradient is in the worst case O(1/d2k), where dk = dimHk. Note there will also be a dependence on the initial state
used. While this result was shown for SU, the asymptotics of Haar moments are similar for other classical compact Lie
groups [56], such as SO. In the case of the compound layer, the subspaces Hk are spanned by computational basis
states with Hamming-weight k. Thus if ρ ∈ Hk, where k is such that

(
n
k

)
= O(poly(n)), then the variance of the

gradient does not exponentially decay with growing system size for all initial states. This is at least the case when k is
independent of n.

It was further conjectured in [55] that the variance actually scales with the dimension of the (dynamical) Lie algebra
restricted to the invariant subspace, which can be polynomial in n even when dimHk is exponential. In the case of
the compound layer, the dimension of the Lie algebra of the compound matrix group for SO(n) is actually equal to
the dimension of SO(n). Thus even though there are invariant subspaces whose dimension is exponential in n, the
dimension of the Lie algebra grows at most quadratically in n. If proven true, this conjecture would imply that the
variance does not decay exponentially on any subspace, e.g. for k = n/2.

It is possible to go beyond unproven conjectures by making some well justified assumptions about the initialization
and measurement phases of the quantum compound neural network, namely that (1) The parameters are randomly
initialized from centered Gaussian distributions with variance inversely proportional to the number of gates in the circuit
(2) The final measurement is made in the computational basis. Specifically, we make a vector valued measurement
by measuring Zi = I⊗i−1 ⊗ Z ⊗ I⊗n−i for each qubit i ∈ [1, n]. Since the operators Zi all commute, the order of
measurement is arbitrary and the measurement is well-defined. Such a measurement allows for loss functions that
are arbitrary functions of the measured bit-string. It suffices therefore to demonstrate that the gradient of the output
after measuring each Zi does not decay exponentially with the number of qubits. The overall gradient may still decay
depending on the loss function used, but this would be a property of the loss itself and not of the quantum neural
network. (3) The initial state is chosen to be either the uniform superposition, or the uniform superposition over all
computational basis states of Hamming-weight k, where 1 < k < n.

We now give a rigorous proof that the overall gradient does not vanish in this setting. We note that this is the setting in
our numerical experiments (Section 6). We use the following theorem from [57], which we paraphrase below in the
necessary form.
Theorem 1 (Paraphrased from [57, Theorem 4.2]). Consider any n-qubit variational form with output function given
by C(θ) = Tr(OΠ1

j=LUj(θj)ρinΠL
j=1Uj(θj)

†), where O is some n-qubit observable, and each Uj is expressible as
the product of a constant number of parametrized 2-qubit gates (potentially with shared parameters). Then for any
parameter θj it holds that,

Eθ
(
∂C

∂θj

)2

≥ 1

2

(
∂C

∂θj

)2
∣∣∣∣∣
θ=0

when each θj is initialized from a normal distribution N (0, γ2) with γ2 = O(1/L).

We have the following theorem,
Theorem 2. Consider a variational quantum algorithm using a quantum compound layer and a final observable
Zm (where Xm, Ym, Zm correspond to the application of the corresponding Pauli gate on qubit m), and let the
corresponding output (as a function of the parameters θ be C(θ). We have:

Eθ
[
‖∇C‖2

]
= Ω

(
1

poly(n)

)
,

when the parameters are initialized from a normal distribution N (0, γ2) with γ2 = O(1/n2), and the input state is
chosen to be ρ0 = |ψ〉〈ψ| where |ψ〉 is an n-qubit state representing either the uniform superposition over computational
basis states, or the equal superposition of computational basis states with Hamming-weight k, for any 1 ≤ k < n.

Proof. We observe that the number of parameterized gates in a quantum compound neural network is O(n2). Using
Theorem 1, it suffices for our result to show, for some parameter θl, that:

1

2

(
∂C

∂θl

)2 ∣∣∣
θ=0

= Ω

(
1

poly(n)

)
.
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All the parameterized gates in the quantum compound neural network are RBS gates. Let the gate corresponding to θl
act on the qubits i, j. The corresponding unitary is

RBSij(θl) =

1 0 0 0
0 cos(θl) sin(θl) 0
0 − sin(θl) cos(θl) 0
0 0 0 1

 .

It can be verified by computation that RBSij(θl) = exp(−iθlHRBS
ij ) where, HRBS

ij =
Yi⊗Xj−Xi⊗Yj

2 . Finally define
U−(θ1: l−1), U+(θl+1: L) denote the sections of the parameterized circuit before and after the lth parameterized gate.
By explicit differentiation, we have(

∂C

∂θl

) ∣∣∣∣∣
θ=0

= −i〈ψ|U†−[HRBS
ij , U†+ZmU+]U−|ψ〉

∣∣∣∣∣
θ=0

= −i〈ψ|[HRBS
ij , Zm]|ψ〉

If m 6= i, j, it is clear that [HRBS
ij , Zm] = 0. We therefore consider the case when m ∈ {i, j}. In the rest of the proof,

we assume without loss of generality that i = 0, j = 1,m = 0. We have,

[HRBS
01 , Z0] = i(Y0 ⊗ Y1 +X0 ⊗X1) = i

0 0 0 0
0 0 2 0
0 2 0 0
0 0 0 0

 .

Consider any two computational basis states |a〉, |b〉. Clearly −i〈ψ|[HRBS
ij , Zm]|ψ〉 = 2 if a = 01x, b = 10x or vice-

versa for some n−2 bit string x, and 0 otherwise. We now determine 1
2 (∂C/∂θl)

2|θ=0 for different possible initial states
|ψ0〉. Suppose the initial state is the uniform superposition over all computational basis states |ψ0〉 = 1

2n/2

∑
b∈{0,1}n |b〉.

In this case,

∂lCk = 〈ψ0|
(
σ
(i)
X ⊗ σ

(j)
X + σ

(i)
Y ⊗ σ

(j)
Y

)
|ψ0〉 =

1

4
.

Now let the initial state be the ψk which is the uniform superposition over all strings of Hamming-weight k. For
2 ≤ k ≤ n, we have

∂lCk = 〈ψk|
(
σ
(i)
X ⊗ σ

(j)
X + σ

(i)
Y ⊗ σ

(j)
Y

)
|ψk〉 = 2

(
2
(
n−2
k−1
)(

n
k

) )2

= Ω(
1

n6
)

By an analogous argument for the Hamming-weight 1 subspace we find that ∂lCk = Ω( 1
n2 ). As we have shown before,

the gradients do vanish for the Hamming-weight 0 subspace.

5 Quantum Deep Hedging

In this section, we present a quantum framework for Deep Hedging, referred to as Quantum Deep Hedging, where we
aim to leverage the power of quantum computing to enhance the deep reinforcement learning methods introduced in [1]
for solving the hedging problem. We will incorporate the use of quantum neural networks, as defined in the previous
sections, and provide quantum reinforcement learning solutions to this problem.

Quantum reinforcement learning involves utilizing quantum computing to improve reinforcement learning algorithms.
A comprehensive survey by Meyer et al. [41] outlines various approaches for incorporating quantum subroutines in
these algorithms:

• In classical environments: A common approach involves using quantum neural networks, such as variational
quantum circuits, to represent the value function [58–61] or the policy [62, 63] in classical environments.
These quantum neural networks can replace their classical counterparts in various reinforcement learning
training methods, including value-based, policy-based, and actor-critic. Experiments have shown that they
sometimes produce better policies or value estimates when applied to small environments, but can face
trainability problems with larger environments due to the barren plateaus that occur in variational quantum
circuits (as discussed in Section 4).

• In quantum environments: Another approach considers the case of quantum access to the environment and
aims to use this access to achieve a significant speed-up by developing a full quantum approach [64, 65]. This
access can be achieved by oracularizing the environment’s components, such as the transition probabilities and
reward function. Other methods, developed in [66, 67] and based on the gradient estimation algorithm from
[68], use quantum environments to directly compute the policy gradient as an output of a quantum procedure.
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When trying to apply the standard quantum reinforcement learning techniques described above to Deep Hedging, one
faces some problems that need to be resolved. One issue is that most quantum neural network models for policies
have only been applied to discrete action spaces, while Deep Hedging has a continuous action space with constraints.
Additionally, current algorithms for training quantum policies or value functions rely on solving the discounted Bellman
equation, which is not suitable for hedging as the goal is defined by a utility function and the value function no longer
follows the Bellman equation. Furthermore, building a quantum-accessible environment and approximating the policy
gradient with quantum methods also poses a challenge, as these methods require finite action spaces and use amplitude
estimation to approximate the value function and its gradient with respect to the policy.

Therefore, we aim to design a quantum reinforcement learning framework for Quantum Deep Hedging by addressing
the challenges of standard quantum reinforcement learning techniques. In the subsequent subsections, we will outline
the two methods we developed to overcome these challenges:

• Using orthogonal layers: We explore the application of quantum reinforcement learning methods to classical
Deep Hedging environments using quantum orthogonal neural network architectures. This is in contrast
to prior work that used variational circuits to represent parametrized quantum policies and value functions.
To compare these quantum neural network architectures, we implemented policy-search Deep Hedging to
train quantum policies and solve the classical environment. By using orthogonal layers, we aim to design a
straightforward and effective method for enhancing Deep Hedging with quantum computing.

• Using compound layers: We propose a quantum native approach to the Deep Hedging problem, where we
formulate Quantum Deep Hedging as a fully quantum reinforcement learning problem and solve it using
actor-critic methods. Following the steps in [1, 2], we construct a quantum environment for Deep Hedging by
providing quantum representations of the environment quantities and the trading goal. We then design specific
quantum neural networks using compound layers and quantum reinforcement learning algorithms to solve the
problem. Our approach is inspired by distributional reinforcement learning and leverages the properties of the
quantum environment to provide a model-based quantum-enhanced solution to Deep Hedging.

5.1 Quantum Deep Hedging in Classical Environments

5.1.1 Classical Environment for Deep Hedging

We base our classical environment on the work in [1, 2]. To model the market state st, we assume that it can be
represented by a sequence of market observations {Mt}Tt=0 and provide a formal definition of the MDP for the
environment described in Section 3.1. At each time-step t, the available market information Mt is described by n
numerical quantities represented by a vector:

Mt ∈ Rn.

This vector includes market information such as stock prices and other relevant financial data. In this setting, the market
state st can be identified with the sequence of past and actual market observations {Mt′}tt′=0 up to time-step t:

st = (M0,M1, . . . ,Mt) ∈ Rn×(t+1).

Furthermore, there are m available hedging instruments, such as stocks, options, or futures, that can be traded with high
liquidity in the market. The classical Deep Hedging environment can be formally defined as a finite-horizon MDP as
follows:
Definition 2 (Classical MDP for Deep Hedging). The classical MDP for Deep Hedging is a finite-horizon Markov
Decision Process, defined by a tuple (S,A, p, r, T ). Here, S is the market state space, which can be decomposed into
subsets St ⊂ Rn×(t+1) at each time-step t, A is the trading action space, which can also be decomposed into subsets
At ⊂ [0, 1]m, p is the transition model that can be represented by pt : St → ∆(St+1), r is the reward function, which
can be represented by rt : St ×At → R, and T ∈ N∗ is the time maturity of all hedging instruments.

This formulation allows us to model the problem of Deep Hedging formally, where the objective is to choose a sequence
of trading actions {aπt }Tt=0 that optimizes the risk-adjusted expected returns over the given time horizon T , given a
sequence of market observations {Mt}Tt=0. At every time-step, the policy π maps the current market state st to an
action aπt , performing a sequence-to-sequence mapping from {Mt}Tt=0 to {aπt }Tt=0.

Building upon this classical MDP framework for Deep Hedging, we now introduce quantum reinforcement learning
methods specifically designed for classical environments, leveraging orthogonal layers to enhance their performance
and efficiency.
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Algorithm 1 Policy-Search Deep Hedging with Orthogonal Neural Networks

input Policy QNN π.
hyperparameters Number of episodes per training step N .
Initialize policy QNN with parameters φ.
while True do

for episode i = 1 to N do
for time-step t = 0 to T do

Compute action ait := π
φt
t (sit).

Take action ait and receive total reward rit := rt(s
i
t, a

i
t).

end for
Compute total cumulative return R̃i0 :=

∑T
t=0 r

i
t.

end for
Update policy parameters φ with gradient descent to minimize:

L̃(φ) :=
1

λ
log

1

N

N∑
i=1

exp
(
− λR̃i0

)
end while
output Policy parameters φ.

5.1.2 Quantum Reinforcement Learning methods for Classical Environments

Our first approach to Quantum Deep Hedging utilizes quantum orthogonal neural network architectures to parametrize
the policy π. While in this part of our work we focus on parametrizing the policy, this approach could be extended to
the value function as well.

The policy QNN π(.;φ) is a sequence-to-sequence model, which can be parametrized with φ := {φt}Tt=0, one per time-
step, that can be shared or not depending on the setting, such that πφtt represents the neural network used at time-step t
with parameters φt. The input time-series data (M0,M1, . . . ,MT ) is preprocessed classically and transformed into a
sequence of embeddings (x0,x1, . . . ,xT ) in a high-dimensional feature space of dimension d. We use the quantum
neural networks described in Section 4.3, which extract features from each xt ∈ Rd and may pass on information
across time to produce the final output sequence (y0,y1, . . . ,yT ). The number of hidden layers used in each neural
network architecture is a hyper-parameter governed by factors like the complexity of the learning problem and the
availability of resources. The output yt ∈ Rd can be further processed classically to obtain the desired result, which is
the action πφtt (st) ∈ Rm in this case.

We can train these parametrized quantum policies using the policy-search Deep Hedging algorithm, introduced in [1, 2],
by updating the set of parameters φ using gradient descent to minimize the policy loss function L(φ) defined as:

L(φ) :=
1

λ
logEs0

[
exp

(
− λ

T∑
t=0

rt
(
st, π

φt
t (st)

))∣∣∣∣s0].
The training procedure, outlined in Algorithm 1, proceeds as follows. At every iteration, it generates N trajectories
{sit}Tt=0 before using the policy QNN to compute the sequence of actions. Using this sequence of actions, we can
compute the cumulative return for each episode and then estimate the utility over these episodes to provide an estimate
L̃(φ) of the policy loss function defined earlier, and then update the parameters φ.

The same principles of using quantum neural networks that use orthogonal layers within classical architectures can
be extended to other deep reinforcement learning algorithms for Deep Hedging, such as actor-critic and value-based
methods, as well as future approaches in Deep Hedging.

5.2 Quantum Deep Hedging in Quantum Environments

Here, we extend the classical Deep Hedging problem into the quantum case, starting by defining the quantum
environment and the trading goal for Quantum Deep Hedging. Then, in order to develop quantum algorithms to solve
this newly defined trading goal in the quantum environment, we connect to distributional reinforcement learning by
showing that the value function in our environment can be expressed using a categorical distribution.
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We will propose a model-based distributional approach to approximate this value function by constructing appropriate
quantum unitaries and observables that approximate the value function and its distribution. Furthermore, we introduce
two quantum algorithms: Quantum Deep Hedging with expected actor-critic and Quantum Deep Hedging with
distributional actor-critic, which are summarized in Algorithms 2 and 3, respectively. These algorithms use quantum
neural network architectures with compound layers to approximate the policy and value functions.

5.2.1 Quantum Environment for Deep Hedging

We present here a method for converting the classical Deep Hedging problem into a quantum-native setup, which we
refer to as the quantum environment for Deep Hedging. In order for this approach to be efficient, we make the state
space finite, allowing the market states to be encoded into quantum states of the form |st〉. Moreover, at each time-step,
the environment utilizes an oracle Upt to map the transition probabilities pt to the amplitudes of a quantum state, which
is a superposition of next states |st+1〉.
Previous work in quantum reinforcement learning, such as [64–67], has employed quantum environments with finite
action spaces to create model-based approaches. A key distinction in our approach is that our transition oracles do not
necessitate encoding of the action at, as the Deep Hedging model assumes that actions have no impact on the transition
probabilities, i.e., trading actions do not affect the market [33]. This is a valuable feature of our approach, as it removes
the need for a quantum encoding of actions. Additionally, our approach does not require quantum access to the reward
function through oracles. While previous work encodes the reward function into parts of a quantum state, for example
in the amplitudes [64], in quantum registers [65, 66], or in the phases of the quantum states [67], it is unclear how to
achieve this efficiently for the reward function associated with Deep Hedging and which is defined on a continuous
action space. Consequently, we present an alternative formulation of quantum environments that incorporates the unique
structure of the Deep Hedging MDP, as detailed in Definition 2.

To formally specify our quantum environment, we assume that the market information Mt at each time-step t can
be represented as a n-bit binary string, which we encode in an n-qubit computational basis state |Mt〉. Note that
〈M ′t |Mt〉 = 0 if M ′t 6= Mt. The quantum encoding |st〉 of the market state st can then be expressed as follows:

|st〉 = |M0〉 ⊗ |M1〉 ⊗ · · · ⊗ |Mt〉 ∈ H⊗n×(t+1).

With the formalism described above, the oracle Upt encoding transitions probabilities as described by a classical
transition function pt can be written as follows:

Upt : |st〉 ⊗ |0〉⊗n −→ |(st+1|st)〉 :=
∑
st+1

√
pt(st+1|st)|st+1〉.

We will now redefine the trading goal in the context of the quantum environment for Deep Hedging. While our focus is
on the exponential utility Eλ as defined in Section 3.2, our approach can be applied to any risk measure that can be
expressed as the expectation of a deterministic function over future returns. To evaluate the value function for a given
policy π, we need to compute the expectation of the exponentiated rewards over future returns. Specifically, for a state
st, the random variable exp(−λRπt (sT ))|st, representing the exponentiated return, is a discrete distribution with values
{Rπt (sT ) | sT ∈ ST } and probabilities pt(sT |st). We can express its expectation as the measurement of a quantum
observable Oπt in the quantum state |(sT |st)〉, where

Oπt :=
∑
sT

exp(−λRπt (sT ))|sT 〉〈sT |,

and |(sT |st)〉 is defined similarly to |(st+1|st)〉 as

|(sT |st)〉 :=
∑
sT

√
pt(sT |st)|sT 〉 ∈ H⊗n×(T+1).

This quantum state encodes the probabilities pt(sT |st) := P[sT |st] in a superposition of all possible trajectories
(st+1, . . . , sT ) of length T − t and can be prepared by sequentially applying oracles Upt , U

p
t+1, . . . , U

p
T−1 to |st〉 and

n× (T − t) ancilla qubits. Denoting ρt(sT |st) := |(sT |st)〉〈(sT |st)|, we have:

Tr[Oπt ρt(sT |st)] =
∑
sT

pt(sT |st)× exp(−λRπt (sT )) = E[exp(−λRπt (sT )|st].

Using this observable, we can redefine the trading goal in the quantum environment for Deep Hedging as finding an
optimal policy π∗ such that

∀t, ∀st ∈ St, v∗t (st) = − 1

λ
log
{

inf
π

Tr [Oπt ρt(sT |st)]
}
.
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Target distribution Learned distribution Subset distributions

(a) Learning over ST . (b) Learning over multiple subsets of ST .

Figure 6: An example illustrating the process of learning expectations for each subset. The figures depict data generated
from a trimodal distribution. In (6a), a single distribution is learned to match the expectation over the entire set of
states. In (6b), the set is divided into three distinct subsets, with each peak representing the weighted and learned
distribution within its corresponding subset. This improved approach provides a closer fit to the original data and
effectively incorporates information about tails, offering a more accurate representation of the underlying distribution.

Our next goal is to develop quantum algorithms to solve this newly defined trading goal in the quantum environment. In
other words, our objective is to find the optimal policy π∗ that minimizes the logarithm of the expectation of the quantum
observable Oπt , which represents the exponentiated rewards over future returns. To design our quantum algorithm, we
now connect to distributional reinforcement learning by showing that the value function in our environment can be
expressed using a categorical distribution.

5.2.2 Connection with Distributional Reinforcement Learning

The connection between our proposed Quantum Deep Hedging approach and distributional reinforcement learning lies
in the definition of value functions. In distributional reinforcement learning, the focus is on learning the probability
distribution of the returns, as opposed to just the expected return value. This is done using neural networks [69, 70] that
approximate the return distribution using categorical distributions. Similarly, in our Quantum Deep Hedging approach,
the quantum observable Oπt can be interpreted as a categorical distribution over all possible future returns, and our
algorithms are designed to approximate this distribution and find the optimal policy π∗ that minimizes the logarithm of
the expectation of this distribution. Therefore, distributional reinforcement learning provides a useful framework for
our approach.

In distributional reinforcement learning, value functions are defined using distributions, and categorical distributions
are a common choice in many approximation schemes. A categorical distribution Pz, with a finite support z =
{z1, z2, . . . , zK}, is defined as a mixture of Dirac measures on each element of z and has the form Pz :=

∑
i piδzi ,

where pi ≥ 0,
∑
i pi = 1, and δzi is the Dirac measure on zi [25]. In other words, a categorical distribution is a

probability distribution over a finite set of discrete outcomes. To formalize the notion of approximating distributions,
we will use the Cramér distance (or `2 metric) defined as follows:
Definition 3 (Cramér distance). Given two distributions P,Q over subsets of R, with cumulative distribution functions
(over R) given by FP , FQ respectively, the Cramér distance between the two distributions is defined as

C2(P,Q) =

(∫
R
|FP(x)− FQ(x)|2 dx

)1/2

.

An important result from the distributional reinforcement learning literature [25, Proposition 1] shows the following
properties of the Cramér distance: A categorical distribution Pz over some support z can be projected onto a categorical
distribution over a different support z′ by a mapping ΠC (called the Cramér projection) that preserves the expectation
(E[Pz] = E[ΠC(Pz)]) while minimizing the Cramér distance between Pz and ΠC(Pz), as long as the new support z′
has a larger range, i.e [min z,max z] ⊂ [min z′,max z′].
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To establish a connection between our framework and distributional reinforcement learning, we can utilize the fact
that sampling from a categorical distribution can be achieved by measuring a quantum observable. Specifically, the
observable Oz, defined as:

Oz :=
∑

b∈{0,1}m
zb|b〉〈b|,

can be applied on the quantum state |z〉 :=
∑
b

√
pb|b〉 to sample from the categorical distribution Pz with support

z. Here, the number of qubits m required to index all the outcomes is such that K ≤ 2m. Thus, measuring Oz in |z〉
serves as a quantum representation of the distribution Pz over the support z.

In the Quantum Deep Hedging framework, the categorical distribution that models the returns distribution of a policy π
at a time-step t can be represented by measuring Oπt , the quantum observable defined in Section 5.2.1, in the quantum
state |(sT |st)〉 that encodes the probabilities of the future trajectories given the current state st.

Constructing the quantum state |(sT |st)〉 requires quantum access to the environment, and it can be generated using
the transition oracles {Upt′}Tt′=t and measured with the observable Oπt . However, the observable Oπt is not efficient to
implement as its natural description requires classical computation of its eigenvalues and is dependent on the policy π,
which changes during the training procedure. To address this, we propose a construction to approximately represent the
distribution using a much simpler observable that is diagonal in the computational basis and has a spectrum independent
of the specific reward structure. This construction is detailed in the following proposition that demonstrates, using the
Cramér projection, how an observable with a fixed support can approximate the value distribution while preserving its
expectation.
Proposition 1. Consider a support z of size 2m such that, for any policy π, the following holds:

∀ sT ∈ ST , min
b∈{0,1}m

zb ≤ exp(−λRπt (sT )) ≤ max
b∈{0,1}m

zb

where m ≥ 1. Then, there exists an observable Oz
t with eigenvalues in z that operates on n× (t+ 1) +m qubits and

such that, for any deterministic policy π, there is a unitary Uπt satisfying:

∀st ∈ St, Tr[Oz
t ρt(z|st)] = Tr[Oπt ρt(sT |st)]

where |(z|st)〉 := Uπt (|st〉 ⊗ |0〉⊗m) and ρt(z|st) := |(z|st)〉〈(z|st)|.
Additionally, let Pπt and Pz

t denote the distributions of the value function (outcome of measuring Oπt in |(sT |st)〉) and
the corresponding categorical projection onto the fixed support z (outcome of measuring Oz

t in |(z|st)〉), respectively.
If the cumulative distribution function of Pπt is L-Lipschitz, then the Cramér distance between Pπt and Pz

t is such that:

C2(Pπt ,Pz
t ) ≤ LZ3/2/3 · 2m,

where Z = (maxb∈{0,1}m zb −minb∈{0,1}m zb).

Proof. Given a policy π and a state st ∈ St, the distribution of the exponentiated returns is a categorical distribution,
denoted as Pπt , from which we can obtain a categorical distribution over a support z using the Cramér projection.
Specifically, we can project Pπt onto the support z to obtain Pz

t := ΠC(Pπt ), which returns a zb ∈ z with probability
p(zb|st). We can then define a unitary that maps |st〉|0〉⊗m to |st〉|(z|st)〉, where |(z|st)〉 :=

∑
b

√
p(zb|st)|b〉 is a

quantum state encoding the probabilities of Pz
t . The claim for a particular state st is satisfied when we measure this

unitary with the observable
Oz
t := I⊗n×(t+1) ⊗

∑
b∈{0,1}n

zb|b〉〈b|,

where I is the identity operator acting on one qubit. Since the different quantum encodings |st〉 are orthogonal, a
unitary Uπt that performs the Cramér projection for all st ∈ St can be constructed. By known properties of the Cramér
projection, the first requirement of matching expectations is satisfied.

We now consider the Cramér distance between the true and projected distributions. As the Cramér projection minimizes
Cramér distance we obtain an upper bound by analyzing the distance from any projection onto the same support.
Consider the projection assigns to each zb the weight of the true distribution between zb and zb−1 (where the subtraction
is performed by viewing b as the binary representation of an integer). Let the true and projected cdfs be FPπt and FPz

t

respectively. The square of the Cramér distance between these distributions is the sum of 2m integrals of the form:∫ zb+Z/2
m

zb

(FPπt (x)− FPz
t
(zb))

2dx ≤ L2Z3/3 · 23m.

Accumulating the 2m terms and taking the square root, we have the necessary bound on the Cramér distance.
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Proposition 1 illustrates the use of quantum circuits to approximate the distributional value function by fixing a support
z, and measuring the observable Oz

t in the quantum states |(z|st)〉 produced by the unitary Uπt . We can hope to learn
Uπt by using existing classical distributional reinforcement learning algorithms for our quantum setting. However, this
approach may be challenging for two reasons. First, most of the existing approaches in distributional reinforcement
learning assume that the value function conforms to the discounted Bellman equation, which is not our case since we
need to take into account the risk-adjusted measure. Second, the size of the quantum support increases exponentially
with the number of qubits, making training impractical.

To overcome these challenges, we propose a new approach that utilizes the environment’s model and exploits the
structure and properties of our Hamming-weight preserving unitaries. This approach allows us to learn polynomial-sized
distributions rather than exponential ones.

5.2.3 Distributional Value Function Approximation

We propose a model-based approach to learn distributional value functions in quantum environments. We introduce
a new distributional reinforcement learning algorithm that differs from existing methods, in particular from [69] that
fixes the support z and learns the probabilities for each element in the support and from [70] that fixes the probabilities
(or quantiles) and learns the support. Our approach in fact splits the set of future trajectories into subsets and learns
the expectation of the distribution within each subset. Because our approach is model-based, we can use the model to
compute the probabilities of these subsets and calculate the overall expectation as well.

This approach can use any type of unitaries that preserve subspaces of some nature, while here we give a specific
example using the Hamming-weight preserving quantum compound neural networks developed in Section 4.4. As we
have seen, these compound neural networks preserve the Hamming-weight subspaces and thus allow us to split the set
of future trajectories according to the Hamming-weight of their quantum representation.

In more detail, we partition the set of all complete trajectories ST into n(T − t) + 1 disjoint subsets St,kT , where
k = 0, . . . , n(T−t), such that each subset contains terminal states with a Hamming-weight of k in their trajectories from
t+ 1 to T . This allows us to decompose the superposition |(sT |st)〉 of all trajectories by grouping the future trajectories
by Hamming-weight. Specifically, we express |(sT |st)〉 as a sum of terms corresponding to each subset, with each term
given by |(sT |st, k)〉, where k is the Hamming-weight of the trajectories in the subset. We learn one expectation per
subset, and by computing the probability of each subset, we can recover the overall expectation over all subsets. The
probability that the future trajectory will have Hamming-weight k is denoted by pt(st, k) := P[|sT | − |st| = k], and
|(sT |st, k)〉 is the superposition of such trajectories defined as:

|(sT |st, k)〉 :=
1√

pt(st, k)

∑
sT∈St,kT

√
pt(sT |st)|sT 〉.

In what follows, we will show that there exist Hamming-weight preserving unitaries that can approximate the expected
value for each subset of future trajectories grouped by Hamming-weight, extending the result of Proposition 1.

Proposition 2. Consider a support z of size 2n(T−t)+2 such that, for any policy π and for any Hamming-weight
k = 0, . . . , n(T − t), the following holds:

∀ sT ∈ St,kT , min
|b|=k+1

zb ≤ exp(−λRπt (sT )) ≤ max
|b|=k+1

zb

Then, there exists an observable Oz
t with eigenvalues in z that operates on n× (T + 1) + 2 qubits and such that, for

any deterministic policy π, there is a Hamming-weight preserving unitary Uπt satisfying:

∀k, ∀st ∈ St, Tr[Oz
t ρt(z|st, k + 1)] = Tr[Oπt ρt(sT |st, k)]

where |(z|st, k + 1)〉 := Uπt (|(sT |st, k)〉 ⊗ |01〉) and ρt(z|st, k + 1) := |(z|st, k + 1)〉〈(z|st, k + 1)|.

Proof. Given a policy π and a state st ∈ St, the distribution of the exponentiated returns restricted to future paths
with Hamming-weight k is also a categorical distribution, denoted as (Pπt )(k), from which we can obtain a categorical
distribution (Pz

t )(k) over a support z(k) := {zb | |b| = k + 1} using the Cramér projection. We can construct a
Hamming-weight preserving unitary that maps |(sT |st, k)〉 ⊗ |01〉 to |st〉 ⊗ |(z(k)|st)〉, where: |(z(k)|st)〉 encodes
the probabilities of (Pz

t )(k). Measuring this state with the observable Oz
t as defined in the proof of Proposition 1

satisfies the claim for a specific state st and Hamming-weight k. Since the quantum states |(z(k)|st)〉 have different
Hamming-weights, it is possible to construct a unitary operation that performs this mapping for all Hamming-weights.
Similarly, as in Prop 1, we can construct a unitary that performs this mapping for all states st ∈ St.
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Regarding the above proof, there are two points to note. First, in order to calculate expectations on different subsets of
future trajectories grouped by Hamming-weight, we added two ancilla qubits to satisfy the requirement of the Cramér
projection for a support of size at least 2. This requirement is not satisfied for trajectories of Hamming-weight 0 or
n(T − t) without the addition of these ancilla qubits. As a result, the Hamming-weight of the measured quantum states
has been shifted by +1. Second, if the subsets of trajectories with Hamming-weights 0 and n(T − t) are empty, then
only n(T − t) qubits are needed instead of n(T − t) + 2.

If we have Hamming-weight preserving unitaries, as described in Proposition 2, that produce the correct expectation on
every subset, then we can obtain the overall expectation of the distributional value function. By loading the superposition
over all future states |(sT |st)〉 using the transition oracles {Upt′}

T−1
t′=t and applying the unitary Uπt from Proposition

2, we can calculate directly the overall expectation without having to reconstruct the expectations per subspace and
compute the overall expectation classically. Hamming-weight preserving unitaries act only inside the subspace to map
each |(sT |st, k)〉 ⊗ |01〉 to |(z|st, k + 1)〉. Therefore, the overall expectation matches the expectation of the value
function when we apply Uπt to |(sT |st)〉 ⊗ |01〉, resulting in the state |(z|st)〉 with density ρπt (z|st)). In other words,
we have:

Tr[Oz
t ρ
π
t (z|st))] =

n(T−t)∑
k=0

Tr[Pk+1ρ
π
t (z|st)]× Tr[Oπt ρt(z|st, k + 1)]

=

n(T−t)∑
k=0

Tr[Pkρt(sT |st)]× Tr[Oπt ρt(sT |st, k)]

= Tr[Oπt ρt(sT |st)]

We have shown that for any policy π, a Hamming-weight preserving unitary exists at each time-step t, which can predict
the expectation of the exponentiated returns on every subset of future paths accurately, as well as the overall expectation
over all future paths by projecting the output states onto an observable Oz

t independent of π. We will now use quantum
compound neural networks to parametrize these unitaries and provide reinforcement learning algorithms to learn the
expectation on every subset before using the overall expectation to improve the policy π.

5.2.4 Compound Neural Networks for Deep Hedging

In this section, we will discuss a general approach to constructing quantum neural networks using Hamming-weight
preserving unitaries that can be used in Quantum Deep Hedging for quantum environments. We will explain how
these networks can be used for both the policy and value function before providing algorithms for training them in
Section 5.2.5. At each time-step, we design a quantum neural network that acts on n(T + 1) + 2 qubits. It takes the
quantum encoding |st〉 as input on the first n(t+ 1) qubits, applies the transition oracles on n(T + 1) qubits, and uses
a compound neural network with two additional ancilla qubits (initialized to |01〉) to predict a value within some range
(omin, omax). First, we will design the observable and then present the architecture of the quantum circuit for the value
function, which can also be applied to the policy by adjusting the bounds accordingly.

To construct the observable, we need to define a support that covers the valid range of values (omin, omax) for every
subset of Hamming-weights of size at least 2. For the value function, this range corresponds to the possible values of
the exponentiated returns, which is crucial for the validity of the Cramér projection. For the policy, the support should
only cover the range of valid actions. To design the support, we draw inspiration from [69] and define the support for
each subset of Hamming-weight k + 1 as having size Nk =

(
n(T−t)+2

k+1

)
with uniformly spaced atoms. We can express

this support as:

Oz
t = I⊗n(t+1) ⊗

n(T−t)∑
k=0

∑
|b|=k+1

(
omin + (omax − omin)

ib
Nk − 1

)
|b〉〈b|

where ib ranges from 0 to Nk − 1 and indexes all the quantum states with Hamming-weight k + 1.

To construct the unitary, we begin with |st〉 ⊗ |0〉⊗n(T−t) ⊗ |01〉 and apply the model to create a superposition
over all future trajectories |(sT |st)〉 ⊗ |01〉. We can rewrite this superposition as the tensor decomposition |st〉 ⊗
|M t+1, . . . ,MT 〉 ⊗ |01〉, since non-zero probability paths necesarily start from st. Next, we conditionally apply a
compound layer to the last n(T − t)+2 qubits, controlled by the first n(t+1) qubits. Instead of learning |St| = O(2nt)
parameters for each st, we control each of the first n(t + 1) qubits individually and learn a maximum number of
2n(t+ 1) parameters, two sets per control qubit.
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Since the control qubits are always in a computational basis state, they can be removed and the appropriate unitary can
be chosen classically for each past state. Thus, our compound neural network Ut(ωt) with parameters ωt is written as
the product of n(t+ 1) compound layers, each with parameters ωi,0t or ωi,1t depending on whether the i-th qubit is in
state |0〉 or |1〉.
After applying the unitary Ut(ωt) as described earlier, we obtain the quantum state with density

ρωtt (z|st) = |(z|st)〉〈(z|st)|,
where |(z|st)〉 = Ut(ωt)|(sT |st)〉 ⊗ |01〉. Measuring the observable Oz

t in this state results in a value within the
range (omin, omax). Furthermore, when using this circuit for the value function, we can apply Ut(ωt) to a specific
Hamming-weight in order to predict a value only for that subset of trajectories.

In summary, we have described how to construct a quantum neural network for a given time-step t using the environ-
ment’s model. These quantum neural networks will be different for different environments and we provide a concrete
example in Section 6.2 (see Figure 7). In the next section, we will use these networks to model the value function, adjust
the same compound neural network such that it can be used for the policy and train the parameters of both networks
using an actor-critic algorithm.

5.2.5 Quantum Reinforcement Learning Methods for Quantum Environments

We present an actor-critic approach to Quantum Deep Hedging, which is specifically designed for quantum environments.
To represent the policy and the value function, we use compound neural networks, which were introduced in the previous
section. For each time-step t, we use a compound neural network with n(t+ 1) layers, where each layer is controlled
by one of the first n(t+ 1) qubits and acts on the remaining n(T − t) + 2 qubits. We use the Brick architecture with
logarithmic depth for each layer, resulting in an overall depth of O(nt log n(T − t)).

The value QNN v is parameterized by ω := {ωt}Tt=0, where ωt contains all the parameters used at time-step t. Each
layer’s parameters, ωit, can be further split depending on the possible values of the i-th control qubit. We construct the
observable Oz

t as defined in Section 5.2.4 on a support z that covers the bounds on the exponentiated return function.
We assume knowledge of z, which can be computed classically. In this case, the value QNN maps the state st to:

vωtt (st) := − 1

λ
log Tr[Oz

t ρ
ωt
t (z|st)].

Here, ρωtt (z|st) := |(z|st)〉〈(z|st)|, and |(z|st)〉 = Ut(ωt)|(sT |st)〉 ⊗ |01〉 is the output of the value QNN when
applied to st. Similarly, we define the policy network π with parameters φ := {φt}Tt=0. For each time-step, we define
an observable Oa

t on a different support a that covers the range of valid actions (typically [0, 1]) using our approach
described in Section 5.2.4 such that:

π
φt
t (st) := Tr[Oa

t ρ
φt
t (a|st)]

where ρφtt (a|st) := |(a|st)〉〈(a|st)|, and |(a|st)〉 = Ut(φt)|(sT |st)〉 ⊗ |01〉 is the output of the policy QNN when
applied to st. If there is more than one hedging instrument, we can construct one policy QNN per instrument. However,
this is not necessary for the value function since it evaluates the overall policy for all instruments.

To train the value network, we use two optimization objectives: the distributional and expected losses. The distributional
loss LD takes the Hamming-weight of the current state into account when evaluating the expected reward, while the
expected loss LE only considers the expected reward at time t. Specifically, LD(ω) is defined as:

LD(ω) := Est,k
[(

Tr[Oz
t ρ
ωt
t (z|st, k + 1))]− exp (−λRπt (sT ))

)2∣∣st, k]

and LE(ω) is defined as:

LE(ω) := Est
[(

Tr[Oz
t ρ
ωt
t (z|st))]− exp (−λRπt (sT ))

)2]
After updating the value parameters ω, we use them to build estimates of the value function and then update the policy
parameters φ. Using the value estimates, we update the policy to minimize the loss, adapted from [33], defined as:

L(φ) := Est
[ 1

λ
exp

(
− λ(rt(st, π

φt
t (st)) + v

ωt+1

t+1 (st+1))
)∣∣st]

:= Est
[ 1

λ
exp

(
− λrt(st, πφtt (st))× Tr[Oz

t+1ρ
ωt+1

t (z|st+1)]
∣∣st]
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Algorithm 2 Expected Actor-Critic Deep Hedging with Compound Neural Networks

input Policy QNN π, Value QNN v.
hyperparameters Number of episodes per training step N .
Initialize policy and value QNNs with parameters {φt}Tt=0, {ωt}Tt=0.
while True do

for episode i = 1 to N do
for time-step t = 0 to T do

Compute action ait := Tr[Oa
t ρ
φt
t (a|sit)].

Take action ait and receive total reward rit := r+t − r−t .
end for
for time-step t = T to 0 do

Compute total cumulative return: R̃it =
∑T
t′=t r

i
t′ .

end for
end for
Update value parameters ω with gradient descent to minimize:

L̃(ω) =
1

N

N∑
i=1

T∑
t=0

(
Tr[Oz

t ρ
ωt
t (z|sit))]− exp(−λR̃it)

)2
.

Update policy parameters φ with gradient descent to minimize:

L̃(φ) =
1

N

N∑
i=1

T∑
t=0

1

λ
exp(−λrit)× Tr[Oz

t+1ρ
ωt+1

t (z|sit+1))]
)
.

end while
output Policy parameters φ.

Algorithm 3 Distributional Actor-Critic Deep Hedging with Compound Neural Networks

input Policy QNN π, Value QNN v.
hyperparameters Number of episodes per training step N .
Initialize policy and value QNNs with parameters {φt}Tt=0, {ωt}Tt=0.
while True do

for episode i = 1 to N do
for time-step t = 0 to T do

Compute action ait := Tr[Oa
t ρ
φt
t (a|sit)].

Take action ait and receive total reward rit := r+t − r−t .
end for
for time-step t = T to 0 do

Compute total cumulative return: R̃it =
∑T
t′=t r

i
t′ .

Compute Hamming-weight kit := |siT | − |sit|.
end for

end for
Update value parameters ω with gradient descent to minimize:

L̃(ω) =
1

N

N∑
i=1

T∑
t=0

(
Tr[Oz

t ρ
ωt
t (z|sit, kit + 1))]− exp(−λR̃it)

)2
.

Update policy parameters φ with gradient descent to minimize:

L̃(φ) =
1

N

N∑
i=1

T∑
t=0

1

λ
exp(−λrit)× Tr[Oz

t+1ρ
ωt+1

t (z|sit+1)]
)
.

end while
output Policy parameters φ.
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The training procedure for our approach is outlined in Algorithms 2 and 3. At each iteration, we generate N trajectories
{sit}Tt=0 and use the policy QNN to compute the corresponding sequence of actions. Using this sequence of actions,
we can compute the cumulative return for each episode and for each time-step and we use them to update the value
network. When using the expected loss, we update the value parameters ω such that we predict this cumulative return
in expectation. In the distributional case, we need to compute the Hamming-weight of the future trajectory and update
the parameters such that we predict the expectation for only that subspace. Once the value estimates are updated, we
can use them to update the policy parameters φ.

5.2.6 Properties of Quantum Deep Hedging

Predicting the performance of any particular deep learning algorithm is difficult due to the complexity of the models
used, and the often unpredictable behavior of the non-convex optimization that must be performed for training. It
is however possible to examine some desirable global properties of the system that indicate (but do not guarantee)
good performance. The structure of the presented Quantum Deep Hedging framework leads to some of these global
properties, when specifically instantiated with Hamming-weight preserving unitaries (as in Section 5.2.3). Some of
these properties have been hinted at throughout the text, and we summarize them here:

• Expressivity: The central question for any learning algorithm is whether the parameterized models used are
expressive enough to capture target models of interest. The “universality" of models such as deep neural
networks has been a driving force in their adoption and utility. In our algorithms we do not use models that are
universal in that they can express any quantum operation, however we show that they are expressive enough to
capture the quantities of interest, which in our case is the true distribution of the value function. The primary
challenge is that the distribution of the value function is on an unknown and potentially changing support. We
show in Proposition 1 that our model that uses a fixed support and general parameterized unitaries on m-qubits
can approximate the true distribution with error decaying exponentially in m. In Proposition 2, we specialize
this result to the case where the value function distribution is constant on the Hamming-weight subspaces and
we correspondingly use a fixed support with Hamming-weight preserving parameterized unitaries.

• Generalization: The number of possible futures in a deep-hedging environment grows exponentially with the
time horizon T . In practice, our learning algorithm can only use a limited number of episodes (polynomial in
T ). We must therefore investigate the out-of-sample performance or generalization of our algorithm in this
setting. This can however be guaranteed in our setting where we use the Quantum Compound Neural Networks.
Our parameterized models consist of O(T ) such networks, each on O(T ) qubits. From the definition in
Section 4.4, each of the neural networks has O(T 2) parameters. As a consequence of results due to Caro and
Datta [71], the pseudo-dimension of our parameterized model is polynomial in T . Therefore poly(T ) episodes
suffice to ensure that empirical risk minimization over our sample converges with high probability to the true
optimal expressible model over the whole distribution of futures.

• Trainability: Finally we consider whether the task of optimizing the parameters for our model can be
performed efficiently. The associated optimization problem is non-convex and thus training convergence
cannot be guaranteed. We can show however that in our setting, the well-known “barren plateau" problem [20]
does not arise. Each Quantum Compound Neural Network that we use is on O(T ) qubits and has O(T )
depth. Furthermore the loss function we measure can be constructed as a function of measurements in the
computational basis (corresponding to a measuring the vector of observables Z on each qubit i). We initialize
the parameters of the model as normal random variables with variance O(1/T ). Theorem 2 ensures that the
gradients decay only polynomially with the time horizon T .

6 Results

In the previous sections we introduced quantum methods for Deep Hedging, which use quantum orthogonal and
compound neural networks within policy-search and actor-critic based reinforcement learning algorithms. In this
section we present results of hardware experiments evaluating our methods on classical and quantum-accesible market
environments.

We benchmarked our models for both classical and quantum environments using three different methods: simulating our
quantum models on classical hardware assuming perfect quantum operations, simulating them on classical emulators
that model the noise for quantum hardware, and applying our quantum models directly on the 20 qubit trapped-ion
quantum processors Quantinuum H1-1, H1-2 [26]. Note that because orthogonal layers are efficiently simulatable
classically, we can perform simulations for up to 64 qubits, while for the compound architectures that use the entire
exponential space , we only simulated layers with up to 12 qubits.

22



Model Utility Number of
Without costs With costs parameters

Feed-forward (Classical) −2.868 −5.064 881
Feed-forward (Pyramid) −2.873 −5.048 521
Feed-forward (Butterfly) −2.874 −5.043 257

Recurrent (Classical) −2.933 −5.075 881
Recurrent (Pyramid) −2.939 −5.102 521
Recurrent (Butterfly) −2.931 −4.854 257

LSTM (Classical) −2.853 −4.743 569
LSTM (Pyramid) −2.856 −4.755 457
LSTM (Butterfly) −2.879 −4.787 217

Transformer (Classical) −2.865 −4.713 1905
Transformer (Pyramid) −2.876 −4.806 1305
Transformer (Butterfly) −2.861 −4.822 865

Table 1: Comparison of expected utilities without and with transaction costs for models with classical and orthogonal
layers using exact simulation over 256 paths and 30 trading days, including the number of trainable parameters.

Model Utility Number of
Simulator Emulator circuits

Feed-forward (Butterfly) −5.041 −5.155 960
Recurrent (Butterfly) −5.006 −5.333 960
LSTM (Butterfly) −4.809 −4.866 3840
Transformer (Butterfly) −4.846 −5.176 2880

Table 2: Comparison of exact simulation and Quantinuum H1-1 emulator results for orthogonal layer models, evaluating
expected utilities with transaction costs over 32 paths and 30 trading days, and showing the number of circuits emulated.

Model Utility Terminal PnLs
Path 1 Path 2 Path 3 Path 4

LSTM (Classical) −2.173 −2.578 −1.225 −1.420 −2.671
LSTM (Butterfly – Simulation) −2.176 −2.586 −1.194 −1.439 −2.671
LSTM (Butterfly – Hardware) −2.194 −2.610 −1.284 −1.488 −2.658

Transformer (Classical) −2.167 −2.563 −1.219 −1.411 −2.673
Transformer (Butterfly – Simulation) −2.195 −2.639 −1.242 −1.388 −2.672
Transformer (Butterfly – Hardware) −2.539 −3.341 −1.355 −1.247 −2.713

Table 3: Comparison of exact simulation and Quantinuum H1-1 hardware results for orthogonal layer models, evaluating
expected utilities and terminal PnLs with transaction costs over 4 paths and 5 trading days, evaluating the performance
under hardware conditions.

In all experiments, the parameters of all the quantum compound neural networks were initialized using Gaussian
initialization, and the training for all quantum neural networks was performed in exact classical simulation. In the
following subsections, we give the details of the results.

6.1 Classical Market Environment

In the first part of our experiments, we consider Quantum Deep Hedging as described in Section 5.1 in classical market
environments. We considered the environment from [1, 2] where the authors used Black-Scholes model to simulate the
market state and evaluate hedging strategies. In this setup, the underlying asset is modeled using Geometric Brownian
Motion (GBM), which is commonly used in finance to model stock prices.
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A GBM is a continuous-time stochastic processBt described by a stochastic differential equation

dBt = µBt dt+ σBt dW t,

where µ ∈ R is the percentage drift and σ ∈ R+ is the percentage volatility. W t corresponds to Brownian motion and
thus dW t ∼ N (0, dt). For simulations, we assume one calendar year to be one unit of time increment and therefore set
dt = 1/252 assuming 252 trading days in a calendar year. The market state st is represented by the sequence of past
and actual market observations {Mt′}tt′=0, where Mt′ is the stock price at time-step t′. We used a European short call
option with a strike price of K = S0 as the instrument to be hedged. The time horizon was set to 30 trading days with
daily rebalancing, and the percentage drift (µ) for the GBM was set to 0 and the percentage volatility (σ) was set to 0.2.
Proportional transaction costs were utilized with a proportionality constant of 0.01. The training dataset comprised of
9.6× 104 samples, whereas the testing dataset consisted of 2.4× 104 samples. We compared Feed-forward, Recurrent,
LSTM, and Transformer models, constructed using the framework described in Section 5.1. Here, the input sequence
(M0,M1, . . . ,MT ) ∈ R(t+1) corresponds to the mid-market price of the underlying equity. The outputs aπt ∈ [0, 1]
correspond to the model’s delta for that time-step. The Feed-forward model is constructed using the Feed Forward
architecture. Both Recurrent and LSTM models are built using the Recurrent architectures, where in the Recurrent
model the hidden state passed onto the subsequent time-step is fixed to be the output of the previous time-step, i.e. the
model’s position on the hedging instrument at the previous time-step. The Transformer model we used in this work is
constructed by adding the attention mechanism on top of the Feed Forward architecture.

Exact Simulations. To evaluate the behavior of quantum orthogonal neural networks, all four architectures (Feed-
forward, Recurrent, LSTM, Transformer) were compared, both with classical linear and quantum orthogonal layers
(with Pyramid and Butterfly circuits). A feature size of 16 was used for the linear layers in classical architectures, and
16 qubits were used for the orthogonal layers in quantum architectures. For Feed-forward and Recurrent models each
hidden layer was repeated three times within the network. The LSTM model had one hidden cell constructed using four
classical linear/quantum orthogonal layers. The Transformer model had three hidden layers followed by two classical
linear/quantum orthogonal layers for the attention mechanism. Parameters for all models were shared across time-steps.
Noiseless classical simulations were performed for training and inference, with a batch of 256 paths. The results
are presented in Table 1. We compared the achieved utilities with and without transaction costs and the number of
training parameters. We observe that quantum orthogonal neural networks (Pyramid and Butterfly) achieve performance
competitive with classical neural networks while using fewer trainable parameters. This holds for environments both
with and without transaction costs. The Transformer and LSTM architectures demonstrated the highest model utilities
among the studied architectures, while the quantum orthogonal Butterfly layers used fewest training parameters.

Hardware Emulations. To investigate the behavior of our quantum neural networks on current hardware, we
employed Quantinuum H1-1 emulator [26] to perform inference on our models. We kept the same environment
configuration and used a batch of 32 paths to perform inference. However, we downsized the network to a single
layer as this allowed fewer circuit executions without significantly hampering model utilities. The Feed-forward and
Recurrent architectures use one circuit evaluation per time-step, while the LSTM architectures use 4 circuit evaluations
per time-step, and the Transformer architectures use 3 circuit evaluations per time-step. As the hardware architecture
allowed for all-to-all connectivity, we used quantum orthogonal layers with a Butterfly circuit which enables log-depth
circuits with linear number of two-qubit gates and thus are ideal for computations on near-term hardware. We used
1000 measurement shots per circuit evaluation to perform tomography over the unary basis and construct the output of
each layer. The results are summarized in Table 2. The utility of the models is presented for two cases: when evaluated
on a classical exact simulator and when evaluated on Quantinuum’s hardware emulator. The table also summarizes the
number of circuit evaluations needed to hedge 32 paths over 30 days with each model architecture. The results show
that the LSTM architecture with Butterfly layers were most robust to noise as the model utilities on the simulator and
emulator are relatively close. We also observed that the LSTM model achieved the highest utility on both cases.

Hardware Experiments. For our hardware experiments, we used the LSTM and Transformer models with 16-qubit
Butterfly quantum circuits to perform inference on the Quantinuum H1-1 trapped-ion quantum processor [26]. We
reduced the time horizon of the GBM to 5 days and considered models with transaction costs for a batch of 4 randomly
chosen paths. We used the same model size as the ones used on hardware emulators which resulted in 80 circuit
executions for the LSTM model and 60 circuit executions for the Transformer model. We present inference results for
a model with a classical linear layer, and a quantum model with a butterfly quantum orthogonal layer simulated and
executed on the quantum hardware. The results are presented in Table 3. In addition to model utilities, we also list the
terminal Profit and Loss (PnL) for each path for a more fine-grained comparison. The results reveal that the LSTM
architecture exhibits robustness to noise, consistent with the results obtained from the hardware emulator, as evidenced
by the terminal PnL values of each path closely aligning with those of the simulations run on the hardware. Conversely,
the Transformer’s hardware execution demonstrates poorer performance compared to the simulation results.
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Figure 7: The quantum compound neural network using O(T ) + 2 qubits for the Black-Scholes model. For loading the
data (in yellow), first t qubits are used to encode past jumps of the market state. The next O(T − t) qubits encode the
transition oracles which in the case of Black-Scholes corresponds to an equal superposition over all possible future
jumps. The last two qubits are ancilla and are used to encode the state |01〉. Next for the unitaries (in blue), we used a
architecture controlled on past market state. Based on the direction of jump, a different compound layer constructed
using Brick architecture (Figure 2) is applied on T − t+ 2 qubits. Finally, each of the last T − t+ 2 qubits is measured
(in green) independently. For t = 0, the input state is an equal superposition of all possible future jumps followed
by one unitary over T + 2 qubits without control. As described in Subsection 5.2.4 the control qubits are always in
a computational basis state. Thus, they can be removed for efficient hardware implementation, and the appropriate
parameters for unitary acting on T − t+ 2 qubits can be chosen classically for each past state.

6.2 Quantum Market Environment

In the second part of our experiments, we utilize quantum compound neural networks in various reinforcement learning
algorithms in a quantum environment. Specifically, we implement the expected and distributional actor-critic algorithms,
as described in Section 5.2, and compare them to the policy-search algorithm adapted for compound neural networks.
To accomplish this, we first describe how to construct a quantum environment for Quantum Deep Hedging by adapting
the classical environment used in Section 6.1. More specifically, we aim to build a quantum environment that mimics
market dynamics following the Black-Scholes model, as described by a GBM.

To encode the dynamics of the Brownian motion in a quantum environment, we can use the fact that Brownian motions
can be seen as the limit of a discrete random walk. Specifically, we can use a sequence of nT independent and
identically distributed Bernoulli random variables b1, b2, . . . , bnT with mean 1/2 to approximateW T , where T is the
maturity and n is a hyperparameter that determines the precision of the approximation. Using this property, we can
provide a discrete quantum environment for the Black-Scholes model, and approximate the priceBt at some time-step
t by b1, b2, . . . , bnt as follows:

Bt ≈ B0 × exp
(

(µ− σ2

2
)t+

σ√
n

nt∑
k=1

(2bk − 1)
)

To obtain a sample Bt ofBt, we sample nt Bernoulli variables b1, . . . , bnt, i.e., n Bernoulli variables per day. Thus, we
define the encoding of the market observation Mt for a time-step t > 0 as |Mt〉 := |bn(t−1)+1 . . . bnt〉, which contains
all the jumps between t and t+ 1 and that can be encoded using n qubits. We define the encoding of the market state st
at time-step t as the history of all previous jumps, i.e., |st〉 := |b1b2 . . . bnt〉, from which we retrieve the price. Loading
this quantum state can be done using a 1-depth circuit made with at most nt Pauli-X gates acting on nt qubits. Note
that the number of qubits required to encode st here is nt and not n(t + 1) as in the general case, since the price at
time-step 0 is fixed. For every time-step t, the transition model pt can be oracularized by applying n Hadamard gates
on an additional n qubits. The different transition oracles can be applied in parallel to build a superposition of all future
trajectories and obtain:

|(sT |st)〉 = |st〉 ⊗
∑

b∈{0,1}n(T−t)

1

2n(T−t)/2
|b〉
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Algorithm Utility
Without costs With costs

Policy-search −4.064 −4.639
Expected actor-critic −4.193 −4.668
Distributional actor-critic −3.875 −4.424

Table 4: Comparison of compound neural networks trained using different algorithms with exact simulation, evaluating
expected utilities over 16 paths and 10 trading days, both without and with transaction costs.

Algorithm Utility Number of
Simulator Emulator circuits

Policy-search −4.257 −4.277 160
Expected actor-critic −4.528 −4.531 160
Distributional actor-critic −4.185 −4.180 160

Table 5: Comparison of compound neural networks trained using different algorithms with simulation and Quantinuum
H1-1 emulator results, evaluating expected utilities with transaction costs over 16 paths and 10 trading days.

In our experimental setup, we chose n = 1 as the number of Bernoulli variables per day to approximate Brownian
motion. We retained the same GBM parameters as in the classical environment (µ = 0 and σ = 0.2), but set the
instrument maturity to 10 days. Due to the limitations of simulating circuits with up to 12 qubits for compound
architectures, we adjusted the time step increment to 30 trading days, instead of the usual 252. This means each
time-step t should be changed to t/30 for the approximate GBM simulations, allowing us to capture short-term stock
price fluctuations while maintaining the overall GBM behavior. The final payoff is a European short call option with a
strike price of k = 1. We also investigated cases with and without a transaction cost proportional to ε = 0.002.

We utilized the compound neural networks from Section 5.2.4 to represent the policy in the policy-search algorithm and
both the policy and value in the actor-critic algorithms. We employed the Huber loss and scaled the value function to
prevent exploding gradients. The algorithms were trained using classical simulations of the quantum circuits for 2000
steps with Adam optimizers, employing 3 random seeds and a batch of 16 generated episodes per training step. We
selected the best parameters from these runs for a random selection of 16 paths and reported the inference results.

Exact Simulations. Here, the performance of the algorithms was evaluated through exact simulation on classical
hardware using the Brick architecture with logarithmic depth per block for training the compound neural networks.
The results, presented in Table 4, showed that policies trained using a distributional actor-critic algorithm yielded
better utilities for this particular example. These results align with the findings by Lyle et al. [25], where minimizing a
distributional loss led to better policies.

Hardware Emulations. We investigated the performance of the algorithms in presence of hardware noise by running
inference on the Quantinuum H1-1 emulator [26] over 16 randomly chosen paths. To accommodate today’s hardware
limitations, the depth of circuits with large depth was reduced by using a fixed depth per block instead of logarithmic
depth per block. We compared the inference results of the hardware emulator with exact simulation. Results presented
in Table 5 show that quantum compound neural networks are noise-resilient, with similar utilities demonstrated between
classical simulation and hardware emulation. Furthermore, our results show that the distributional policies outperformed
the expected policies, and the expected policies outperformed the policies trained using the policy-search Deep Hedging
algorithm.

Hardware Experiments. In the third part of our experiments, we performed inference on Quantinuum’s H1-1 and
H1-2 trapped-ion quantum processors [26] using policies trained via distributional and expected algorithms. We used a
set of 8 randomly chosen paths and compared the terminal PnLs and utility in presence of transaction costs obtained via
quantum hardware with exact classical simulations. The results are presented in Table 6. We also present the results
from Black-Scholes delta hedge model for the setting . We note that the utility obtained from the hardware closely
aligns with the emulation results, and the PnL values for the selected paths are also similar. Our study reveals that both
the distributional and expected policies significantly outperformed the Black-Scholes delta hedge, with the distributional
policy exhibiting the best overall performance.
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Algorithm Utility Terminal PnLs
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6 Path 7 Path 8

Black Scholes −4.884 −4.602 −5.373 −4.614 −4.263 −5.173 −5.030 −5.017 −4.962

Expected actor-critic (Simulation) −3.547 +0.078 −6.204 −0.203 +0.967 −6.768 −3.071 −2.984 −6.689
Expected actor-critic (Hardware) −3.501 +0.213 −6.666 −0.556 +1.067 −6.895 −2.315 −2.569 −6.556

Distributional actor-critic (Simulation) −3.309 −1.807 −8.313 −3.803 +1.464 -2.736 −1.934 −2.669 −3.944
Distributional actor-critic (Hardware) −3.369 −1.802 −8.214 −3.648 +1.367 −2.993 −2.047 −2.803 −4.200

Table 6: Comparison of compound neural networks trained using different algorithms with exact simulation and
Quantinuum H1-1, H1-2 hardware results, evaluating expected utilities and terminal PnLs with transaction costs over 8
paths and 10 trading days, benchmarked against the standard Black-Scholes delta-hedging model.

7 Discussion

In this work we developed quantum reinforcement learning methods for Deep Hedging. These methods are based on
novel quantum neural network architectures that utilize orthogonal and compound layers, and on a novel distributional
actor-critic algorithm that takes advantage of the fact that quantum states and operations naturally deal with large
distributions.

There are many potential advantages to using quantum methods to enhance the capabilities of Deep Hedging algorithms.
First, for neural networks with deep architectures, as is the case for time-series data, feature orthogonality can improve
interpretability, help to avoid vanishing gradients and result in faster and better training. Second, quantum compound
neural networks can explore a larger dimensional optimization landscape and thus might train to more accurate models,
once we ensure that barren plateau phenomena do not occur. Third, quantum neural networks are natively appropriate
to be used in distributional reinforcement learning algorithms, which can lead to considerably better models, as we
show for the toy example developed in this work. Finally, the quantum circuits that we need to implement in order
to train competitive quantum models for Deep Hedging are rather small, since the number of qubits and depth of the
quantum circuit is basically equal to the maturity time.

Note that our hardware experiments were done with a maturity of 10 days, due to the fact that we had to simulate the
training of the quantum models on a classical computer which very soon becomes infeasible. In principle, one can train
directly on the quantum computer, using for example a parameter shift rule to compute the gradients [46], in which case
even with the current state of the quantum hardware (or with the hardware that will arrive in the next years) one can
indeed train a Quantum Deep Hedging model for a maturity time of a month or more. In this case, the quantum model
can no longer be simulated classically.

Moreover, we believe our quantum reinforcement learning methods have applications beyond Deep Hedging, for
example for algorithmic trading or option pricing, and it would be interesting to develop specific quantum methods for
such problems. Note that in these use cases the training data can be produced efficiently, removing the bottleneck of
loading large amounts of data onto the quantum computer.

The open questions regarding our work in quantum reinforcement learning are centered around three aspects. First,
there is a need to expand the results regarding the trainability of the quantum neural networks proposed in this work to
other settings. Second, the question of how to extend the quantum environment built for the GBM to other environments
such as the Heston model studied in [33] arises. Finally, there is a need to design new distributional losses that make
use of temporal difference methods to learn the value functions in the Deep Hedging context. One approach to this is
using the theoretical framework that allows for such design as developed in [72], while another approach is using the
moment matching approach as described in [73]. Currently, the work focuses on the expectation of the value function,
but it is important to consider other moments that can be matched for both the overall expectation and the expectation
per subspace.
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