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Introduction

About me:
● Software developer for several trading/finance companies
● Member of ISO SG14 (gaming, low latency, trading), but not a C++ expert

Today’s talk:
● What is electronic market making?
● Technical challenges
● Techniques for low latency C++, and then some surprises
● Measurement of performance

Disclaimer: This is not a discussion covering every C++ optimization technique - it’s 
a quick sampler into the life of developing high performance trading systems 
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The three minute guide to electronic 
market making
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“The elements of good trading are: (1) cutting losses, (2) cutting losses, and (3) 
cutting losses. If you can follow these three rules, you may have a chance.” 

– Ed Seykota



● Two main activities:
○ Provide (continually updating) prices to the market
○ Spot profitable opportunities when they arise

● Objectives:
○ Make small, profitable, trades regularly
○ Avoid making large bad trades

● Aside from accurate pricing, successful algorithms are the fastest to:
○ Buy low
○ Sell high

● Success means being [any unit of time] faster than the competition
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Safety first

If anything appears to be wrong:

● Pull all orders, then start asking questions - not the other way round
● A lot could happen in a few seconds in an uncontrolled system

The best approach is to automate detection of failures
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Technical challenges
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“If you’re not at all interested in performance, shouldn’t you be in the Python 
room down the hall?”

– Scott Meyers



● The “hotpath” is only exercised 0.01% of the time - the rest of the time the 
system is idle or doing administrative work

● Operating systems, networks and hardware are focused on throughput and 
fairness

● Jitter is unacceptable - it means bad trades
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The role of C++

From Bjarne Stroustrup:
“C++ enables zero-overhead abstraction to get us away from the hardware 
  without adding cost”

However, even though C++ is good at saying what will be done, there are still other 
factors:

● Compiler (and version)
● Machine architecture
● 3rd party libraries
● Build and link flags

We need to check what C++ is doing in terms of machine instructions...
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… luckily there’s an app for that:



Same: 
● Hardware
● Operating system
● Binary
● Background load

One server is tuned for 
production (no hyper 
threading, etc), the 
other not
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Calling std::sort on a std::vector<int>



How fast is fast?
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Burj Khalifa

Height: 
 828 meters 
 2,722 feet
 

Speed of light:
~ 1 foot per ns

https://en.wikipedia.org/wiki/File:Burj_Khalifa.jpg
https://creativecommons.org/licenses/by-sa/3.0/
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A very good minimum 
time (wire to wire) for 
a software-based 
trading system is 
around 2.5us

That’s less than the 
time it takes light to 
travel from the top of 
the spire to the 
ground

https://en.wikipedia.org/wiki/File:Burj_Khalifa.jpg
https://creativecommons.org/licenses/by-sa/3.0/


Low latency programming techniques
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"When in doubt, use brute force."

 – Ken Thompson



Slowpath removal
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Avoid this:                                      

  if (checkForErrorA())
    handleErrorA();
  else if (checkForErrorB())
    handleErrorB();
  else if (checkForErrorC())
    handleErrorC();
  else
    sendOrderToExchange();

Tip: ensure that error handling code will not be inlined

Aim for this:

  int64_t errorFlags;
    ...
  if (!errorFlags)
    sendOrderToExchange();
  else

HandleError(errorFlags);
    



Template-based configuration

● It’s convenient to have some things controlled via configuration files
○ However virtual functions (and even simple branches) can be expensive

● One possible solution: 
○ Use templates (often overlooked, even though everyone uses the STL)
○ This removes branches, eliminates code that won’t be executed, etc
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// 1st implementation                  // 2nd implementation

struct OrderSenderA {                  struct OrderSenderB {

  void SendOrder() {                     void SendOrder() {

    ...                                     ...

  }                                      }

};                                     };

 

template <typename T>

struct OrderManager : public IOrderManager {

  void MainLoop() final {

    // ... and at some stage in the future...

    mOrderSender.SendOrder();

  }

  T mOrderSender;

};
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std::unique_ptr<IOrderManager> Factory(const Config& config) {

  if (config.UseOrderSenderA()) 

    return std::make_unique<OrderManager<OrderSenderA>>();   

  else

    return std::make_unique<OrderManager<OrderSenderB>>(); 

}

int main(int argc, char *argv[]) {

  auto manager = Factory(config);

  manager->MainLoop();

}
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If you know at compile time which function is to be executed, then prefer lambdas

template <typename T>

void SendMessage(T&& lambda) { 

  Msg msg = PrepareMessage();

  lambda(msg);

  send(msg);

}

SendMessage([&](auto& msg) { 

  msg.instrument = x; 

  msg.price = z;

    ...

});

Lambda functions are fast and convenient
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Memory allocation

● Allocations are costly:
○ Use a pool of preallocated objects

● Reuse objects instead of deallocating:
○ delete involves no system calls (memory is not given back to the OS)

■ But: glibc free has 400 lines of book-keeping code
○ Reusing objects helps avoid memory fragmentation as well 

● If you must delete large objects, consider doing this from another thread
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Exceptions in C++

● Don’t be afraid to use exceptions (if using gcc, clang, msvc):
○ I’ve measured this in quite some detail:

■ They are zero cost if they don’t throw

● Don’t use exceptions for control flow:
○ That will get expensive:

■ My benchmarking suggests an overhead of at least 1.5us
○ Your code will look terrible
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Prefer templates to branches

Branching approach:

  enum class Side { Buy, Sell };

  void RunStrategy(Side side) { 

    const float orderPrice = CalcPrice(side, fairValue, credit);

    CheckRiskLimits(side, orderPrice);

    SendOrder(side, orderPrice);

  }

  float CalcPrice(Side side, float value, float credit) {

    return side == Side::Buy ? value - credit : value + credit;

  }
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Templated approach:

 template<Side T> 

 void Strategy<T>::RunStrategy() {

   const float orderPrice = CalcPrice(fairValue, credit);

   CheckRiskLimits(orderPrice);

   SendOrder(orderPrice);

 }

 template<>

 float Strategy<Side::Buy>::CalcPrice(float value, float credit) {

   return value - credit;

 }

 template<>

 float Strategy<Side::Sell>::CalcPrice(float value, float credit) {

   return value + credit;

 }

};
24



Multi-threading

Multithreading is best avoided for 
latency-sensitive code:

● Synchronization of data via locking 
will get expensive

● Lock free code may still require 
locks at the hardware level

● Mind-bendingly complex to 
correctly implement parallelism

● Easy for the producer to 
accidentally saturate the consumer
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If you must use multiple threads...

● Keep shared data to an absolute minimum
○ Multiple threads writing to the same cacheline will get expensive

● Consider passing copies of data rather than sharing data
○ e.g. a single writer, single reader lock free queue

● If you have to share data, consider not using synchronization, e.g.:
○ Maybe you can live with out-of-sequence updates
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Data lookups

Software engineering textbooks typically suggest:

  struct Market {

    int32_t id;

    char shortName[4];

    int16_t quantityMultiplier;

      ...

  }

  Message orderMessage;

  orderMessage.price = instrument.price;

  Market& market = Markets.FindMarket(instrument.marketId);

  orderMessage.qty = market.quantityMultiplier * qty;

  ...

27

struct Instrument {

  float price;

    ...

  int32_t marketId;

}



Data lookups

Actually, denormalized data is not a sin. Why not just pull all the data you care 
about in the same cacheline?

  struct Market {

    int32_t id;

    char shortName[4];

    int16_t quantityMultiplier;

      ...

  }

This is better than trampling your cache to “save memory”

28

       struct Instrument {

  float price;

  int16_t quantityMultiplier;

    ...

  int32_t marketId;

}



         See:
wg21.link/n1456

Fast associative containers (std::unordered_map)
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Key Value

Key Value

Key Value

Bucket 1

Key Value

Bucket ...

Key Value

Key Value

Bucket N

{
std::pair<K, V>

Default max_load_factor: 1
Average case insert: O(1)
Average case find: O(1)



10K elements, keyed in the range std::uniform_int_distribution(0, 1e+12)
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Complexity of find:

Average case: O(1)
Worst case: O(N)



Run on (32 X 2892.9 MHz CPU s), 2017-09-08 11:39:44

Benchmark                                 Time

----------------------------------------------

FindBenchmark<unordered_map>/10          14 ns 

FindBenchmark<unordered_map>/64          16 ns 

FindBenchmark<unordered_map>/512         16 ns 

FindBenchmark<unordered_map>/4k          20 ns 

FindBenchmark<unordered_map>/10k         24 ns

----------------------------------------------

 

#    56.54%  frontend cycles idle

#    21.61%  backend  cycles idle  

#     0.67   insns per cycle  

#     0.84   stalled cycles per insn

branch-misses        #     0.63%  of all branches                                         

cache-misses                 #     0.153% of all cache refs 
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Alternatively, consider open addressing, e.g. Google’s dense_hash_map

  ✓ Key/Value pairs are in contiguous memory - no pointer following between nodes

 ✘ Complexity around collision management
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Key Value Key Value Key Value
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A lesser-known approach:  a hybrid of both chaining and open addressing

Goals:
● Predictable cache access patterns (no jumping all over the place)
● Prefetched candidate hash values
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It’s possible to implement this as a drop-in substitute for std::unordered_map

Hash
73

Ptr

34

Value
Key
73

Key 73 ➔ Hash 73 ➔ Index 1

✘✓ ✓ 

✓ 

✓ 

Key 12 ➔ Hash 12 ➔ Index 3

Hash
98

Hash
12

Ptr Ptr

Value
Key
98

Value
Key
12

     1                           2                           3                          4                         5



Run on (32 X 2892.9 MHz CPU s), 2017-09-08 11:40:08

Benchmark                                 Time   

----------------------------------------------

FindBenchmark<array_map>/10               7 ns 

FindBenchmark<array_map>/64               7 ns        

FindBenchmark<array_map>/512              7 ns        

FindBenchmark<array_map>/4k               9 ns      

FindBenchmark<array_map>/10k              9 ns

----------------------------------------------

#    38.26%  frontend cycles idle

#     6.77%  backend  cycles idle  

#     1.6    insns per cycle     

#     0.24   stalled cycles per insn

branch-misses        #     0.22%  of all branches                                                 

cache-misses     #     0.067% of all cache refs                                                   

   35



 ((always_inline)) and ((noinlne))

● The inline keyword is somewhat misunderstood
○ It mainly means: multiple definitions are permitted

● ((always_inline)) and ((noinline)) are a stronger hint to the compiler
○ But be careful: measure

An example: forcing methods to be not inlined

CheckMarket();

if (notGoingToSendAnOrder)

  ComplexLoggingFunction();

else 

  SendOrder();
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__attribute__((noinline))

void ComplexLoggingFunction() 

{ 

  ... 

}



Remember, the full hotpath is only exercised very infrequently - your cache has 
most likely been trampled by non-hotpath data and instructions

Keeping the cache hot
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A simple solution: run a very frequent dummy path through your entire system, 
keeping both your data cache and instruction cache primed

Bonus: this also trains the hardware branch predictor correctly
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Intel Xeon E5 processor
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Source: 
Intel Corporation



● Don’t share L3 - disable all but 1 core (or lock the cache)

● If you do have multiple cores enabled, choose your neighbours carefully:
○ Noisy neighbours should probably be moved to a different physical CPU
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Surprises and war stories
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"I have always wished for my computer to be as easy to use as my telephone; 
my wish has come true because I can no longer figure out how to use my 
telephone."

– Bjarne Stroustrup



Placement new can be slightly inefficient

   Quick refresher:
#include <new>

Object* object = new(buffer)Object;

● However, if you use:
○ Any version of gcc without -std=c++17 or -std=c++1z
○ Any version of gcc below 7.1 (May 2017)
○ Any version of clang below 3.4 (January 2014)

● Placement new will perform a null pointer check on the memory passed in
○ And if null is passed in:

■ The returned object is also null
■ No calls to the constructor or destructor will take place
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● Why do compilers check whether memory passed in might be null?
○ The C++ spec was ambiguous about what placement new must do

● Marc Glisse/Jonathan Wakely (wg21.link/cwg1748) clarified this in 2013:
○ Passing null to placement new is now Undefined Behaviour [5.3.4.15]

● For several trading systems written in gcc, this inefficiency had a considerable 
negative performance effect:

○ More instructions mean fewer opportunities to inline and optimize

● There is a workaround: declare a throwing type-specific placement new

   void* Object::operator new(size_t, void* mem) /* can throw */ {

      return mem;

   }
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Small string optimization support

std::unordered_map<std::string, Instrument> instruments;

return instruments.find({“IBM”}) != instruments.end();

● This will avoid an allocation with:
○ gcc 5.1 or greater, and if the string is 15 characters or less
○ clang if the string is 22 characters or less

● However, if you are using gcc >= 5.1 and an ABI compatible linux distribution 
such as Redhat/Centos/Ubuntu/Fedora, then you are probably still using the 
old std::string implementation
○ Including C.O.W. semantics
○ First mentioned (as slow) by Herb Sutter in 1999!
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Overhead of C++11 static local variable initialization

struct Random {

  int get() {

    // threadsafe!

    static int i = rand(); 

    return i;

  }

};

int main() {

  Random r;

  return r.get();

}
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Random::get():

  movzx eax, BYTE PTR guard var   

  test al, al

  je .L13 // not yet initialized

  mov eax, DWORD PTR get()::i

  ret

.L13

   // acquire and set the guard var

5-10% overhead compared to 
non-static access, even if binary is 
single threaded



std::function may allocate
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struct Point { 

  double dimensions[3]; 

};

int main() {

  std::function<void()> no_op { [point = Point{}] {} };

}

main:

 mov edi, 24

 call operator new(unsigned long)

P0419
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Consider inplace_function (D0419R0):
● http://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h
● Drop-in replacement for std::function
● Defaults to a 32 byte internal buffer

  int main() {
    inplace_function<void()> no_op { [point = Point{}]  {} };
  }

  main:

   xor eax, eax

   ret

  
  inplace_function<void(), 16> no_op { [point = Point{}]  {} };
  // error: static assertion failed: Closure larger than buffer

  

P0419

https://github.com/WG21-SG14/SG14/blob/master/Docs/Proposals/NonAllocatingStandardFunction.pdf


std::pow can be slow

std::pow is a transcendental function, meaning it goes into a second, slower 
phase if the accuracy of the result isn’t acceptable after the first phase

    auto base = 1.00000000000001, exp1 = 1.4, exp2 = 1.5;
  std::pow(base, exp1) = 1.0000000000000140

  std::pow(base, exp2) = 1.0000000000000151

  Benchmark                           Time     Iterations                               

  -------------------------------------------------------

  pow(base, 1.4) [glibc 2.17]        53 ns        13142054

  pow(base, 1.4) [glibc 2.21]        53 ns        13142821

  pow(base, 1.5) [glibc 2.17]    478195 ns            1457

  pow(base, 1.5) [glibc 2.21]     63348 ns           11113

                      
See http://entropymine.com/imageworsener/slowpow for a nice discussion 
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http://entropymine.com/imageworsener/slowpow


Measurement of low latency systems
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“Bottlenecks occur in surprising places, so don't try to second guess and put in 
a speed hack until you've proven that's where the bottleneck is.”

 – Rob Pike



Measurement of low latency systems

● Two common approaches:
○ Profiling: examining what your code is doing (bottlenecks in particular)
○ Benchmarking: timing the speed of your system

● Caution: profiling is not necessarily benchmarking
○ Profiling is useful for catching unexpected things
○ Improvements in profiling results are not a 100% guarantee that your 

system is now faster
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Measurement of low latency systems

   ✘ Sampling profilers (e.g. gprof) 
○ They miss the key events

   ✘ Instrumentation profilers (e.g. callgrind)
○ They are too intrusive
○ They don’t catch I/O slowness/jitter

   ✘ Microbenchmarks (e.g. Google benchmark)
○ They are not representative of a realistic environment
○ Takes some effort to force the compiler to not optimize out the test
○ Heap fragmentation can have an impact on subsequent tests

They are all useful in some ways, but not for micro-optimization of code
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Measurement of low latency systems

    ✓ Most useful: measure end-to-end time in a production-like setup 
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Switch with high precision hardware-based 
timestamping (appended to each packet)

Server which replays 
exchange market data 

and accepts orders

Server under test - listens 
to market data and sends 

orders

Server which captures and parses each 
network packet it sees, and calculates 

response time (accurate to a few 
nanoseconds)



Summary
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“A language that doesn't affect the way you think about programming is not 
worth knowing.” 

 – Alan Perlis



● Have a good knowledge of C++ well, including your compiler

● Understand the basics of machine architecture, and how it will impact your 
code

● Aim for very simple runtime logic:
○ Compilers optimize simple code the best
○ Prefer approximations instead of perfect precision where appropriate
○ Do expensive work only when you have spare time

● Conduct accurate measurement - this is essential
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Thanks for listening!

carl.cook@gmail.com
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