
When a Microsecond Is an
Eternity: High Performance
Trading Systems in C++

Carl Cook, Ph.D. Optiver

1

Introduction

About me:
● Software developer for several trading/finance companies
● Member of ISO SG14 (gaming, low latency, trading), but not a C++ expert

Today’s talk:
● What is electronic market making?
● Technical challenges
● Techniques for low latency C++, and then some surprises
● Measurement of performance

Disclaimer: This is not a discussion covering every C++ optimization technique - it’s
a quick sampler into the life of developing high performance trading systems

2

The three minute guide to electronic
market making

3

“The elements of good trading are: (1) cutting losses, (2) cutting losses, and (3)
cutting losses. If you can follow these three rules, you may have a chance.”

– Ed Seykota

● Two main activities:
○ Provide (continually updating) prices to the market
○ Spot profitable opportunities when they arise

● Objectives:
○ Make small, profitable, trades regularly
○ Avoid making large bad trades

● Aside from accurate pricing, successful algorithms are the fastest to:
○ Buy low
○ Sell high

● Success means being [any unit of time] faster than the competition

4

5

Photo by Alvin Loke / CC BY 2.0

https://commons.wikimedia.org/wiki/File%3AOlympic_Development_(Mens)_100m_Dash.jpg
http://creativecommons.org/licenses/by-sa/2.0

Safety first

If anything appears to be wrong:

● Pull all orders, then start asking questions - not the other way round
● A lot could happen in a few seconds in an uncontrolled system

The best approach is to automate detection of failures

6

Technical challenges

7

“If you’re not at all interested in performance, shouldn’t you be in the Python
room down the hall?”

– Scott Meyers

● The “hotpath” is only exercised 0.01% of the time - the rest of the time the
system is idle or doing administrative work

● Operating systems, networks and hardware are focused on throughput and
fairness

● Jitter is unacceptable - it means bad trades

8

The role of C++

From Bjarne Stroustrup:
“C++ enables zero-overhead abstraction to get us away from the hardware
 without adding cost”

However, even though C++ is good at saying what will be done, there are still other
factors:

● Compiler (and version)
● Machine architecture
● 3rd party libraries
● Build and link flags

We need to check what C++ is doing in terms of machine instructions...

9

10

… luckily there’s an app for that:

Same:
● Hardware
● Operating system
● Binary
● Background load

One server is tuned for
production (no hyper
threading, etc), the
other not

11

Calling std::sort on a std::vector<int>

How fast is fast?

12

Photo by Donald Tong / CC BY-SA 3.0

13

Burj Khalifa

Height:
 828 meters
 2,722 feet

Speed of light:
~ 1 foot per ns

https://en.wikipedia.org/wiki/File:Burj_Khalifa.jpg
https://creativecommons.org/licenses/by-sa/3.0/

Photo by Donald Tong / CC BY-SA 3.0

14

A very good minimum
time (wire to wire) for
a software-based
trading system is
around 2.5us

That’s less than the
time it takes light to
travel from the top of
the spire to the
ground

https://en.wikipedia.org/wiki/File:Burj_Khalifa.jpg
https://creativecommons.org/licenses/by-sa/3.0/

Low latency programming techniques

15

"When in doubt, use brute force."

 – Ken Thompson

Slowpath removal

16

Avoid this:

 if (checkForErrorA())
 handleErrorA();
 else if (checkForErrorB())
 handleErrorB();
 else if (checkForErrorC())
 handleErrorC();
 else
 sendOrderToExchange();

Tip: ensure that error handling code will not be inlined

Aim for this:

 int64_t errorFlags;
 ...
 if (!errorFlags)
 sendOrderToExchange();
 else

HandleError(errorFlags);

Template-based configuration

● It’s convenient to have some things controlled via configuration files
○ However virtual functions (and even simple branches) can be expensive

● One possible solution:
○ Use templates (often overlooked, even though everyone uses the STL)
○ This removes branches, eliminates code that won’t be executed, etc

17

// 1st implementation // 2nd implementation

struct OrderSenderA { struct OrderSenderB {

 void SendOrder() { void SendOrder() {

 } }

}; };

template <typename T>

struct OrderManager : public IOrderManager {

 void MainLoop() final {

 // ... and at some stage in the future...

 mOrderSender.SendOrder();

 }

 T mOrderSender;

};

18

std::unique_ptr<IOrderManager> Factory(const Config& config) {

 if (config.UseOrderSenderA())

 return std::make_unique<OrderManager<OrderSenderA>>();

 else

 return std::make_unique<OrderManager<OrderSenderB>>();

}

int main(int argc, char *argv[]) {

 auto manager = Factory(config);

 manager->MainLoop();

}

19

If you know at compile time which function is to be executed, then prefer lambdas

template <typename T>

void SendMessage(T&& lambda) {

 Msg msg = PrepareMessage();

 lambda(msg);

 send(msg);

}

SendMessage([&](auto& msg) {

 msg.instrument = x;

 msg.price = z;

 ...

});

Lambda functions are fast and convenient

20

Memory allocation

● Allocations are costly:
○ Use a pool of preallocated objects

● Reuse objects instead of deallocating:
○ delete involves no system calls (memory is not given back to the OS)

■ But: glibc free has 400 lines of book-keeping code
○ Reusing objects helps avoid memory fragmentation as well

● If you must delete large objects, consider doing this from another thread

21

Exceptions in C++

● Don’t be afraid to use exceptions (if using gcc, clang, msvc):
○ I’ve measured this in quite some detail:

■ They are zero cost if they don’t throw

● Don’t use exceptions for control flow:
○ That will get expensive:

■ My benchmarking suggests an overhead of at least 1.5us
○ Your code will look terrible

22

Prefer templates to branches

Branching approach:

 enum class Side { Buy, Sell };

 void RunStrategy(Side side) {

 const float orderPrice = CalcPrice(side, fairValue, credit);

 CheckRiskLimits(side, orderPrice);

 SendOrder(side, orderPrice);

 }

 float CalcPrice(Side side, float value, float credit) {

 return side == Side::Buy ? value - credit : value + credit;

 }

23

Templated approach:

 template<Side T>

 void Strategy<T>::RunStrategy() {

 const float orderPrice = CalcPrice(fairValue, credit);

 CheckRiskLimits(orderPrice);

 SendOrder(orderPrice);

 }

 template<>

 float Strategy<Side::Buy>::CalcPrice(float value, float credit) {

 return value - credit;

 }

 template<>

 float Strategy<Side::Sell>::CalcPrice(float value, float credit) {

 return value + credit;

 }

};
24

Multi-threading

Multithreading is best avoided for
latency-sensitive code:

● Synchronization of data via locking
will get expensive

● Lock free code may still require
locks at the hardware level

● Mind-bendingly complex to
correctly implement parallelism

● Easy for the producer to
accidentally saturate the consumer

25

If you must use multiple threads...

● Keep shared data to an absolute minimum
○ Multiple threads writing to the same cacheline will get expensive

● Consider passing copies of data rather than sharing data
○ e.g. a single writer, single reader lock free queue

● If you have to share data, consider not using synchronization, e.g.:
○ Maybe you can live with out-of-sequence updates

26

Data lookups

Software engineering textbooks typically suggest:

 struct Market {

 int32_t id;

 char shortName[4];

 int16_t quantityMultiplier;

 ...

 }

 Message orderMessage;

 orderMessage.price = instrument.price;

 Market& market = Markets.FindMarket(instrument.marketId);

 orderMessage.qty = market.quantityMultiplier * qty;

 ...

27

struct Instrument {

 float price;

 ...

 int32_t marketId;

}

Data lookups

Actually, denormalized data is not a sin. Why not just pull all the data you care
about in the same cacheline?

 struct Market {

 int32_t id;

 char shortName[4];

 int16_t quantityMultiplier;

 ...

 }

This is better than trampling your cache to “save memory”

28

 struct Instrument {

 float price;

 int16_t quantityMultiplier;

 ...

 int32_t marketId;

}

 See:
wg21.link/n1456

Fast associative containers (std::unordered_map)

29

Key Value

Key Value

Key Value

Bucket 1

Key Value

Bucket ...

Key Value

Key Value

Bucket N

{
std::pair<K, V>

Default max_load_factor: 1
Average case insert: O(1)
Average case find: O(1)

10K elements, keyed in the range std::uniform_int_distribution(0, 1e+12)

30

Complexity of find:

Average case: O(1)
Worst case: O(N)

Run on (32 X 2892.9 MHz CPU s), 2017-09-08 11:39:44

Benchmark Time

--

FindBenchmark<unordered_map>/10 14 ns

FindBenchmark<unordered_map>/64 16 ns

FindBenchmark<unordered_map>/512 16 ns

FindBenchmark<unordered_map>/4k 20 ns

FindBenchmark<unordered_map>/10k 24 ns

--

56.54% frontend cycles idle

21.61% backend cycles idle

0.67 insns per cycle

0.84 stalled cycles per insn

branch-misses # 0.63% of all branches

cache-misses # 0.153% of all cache refs

31

Alternatively, consider open addressing, e.g. Google’s dense_hash_map

 ✓ Key/Value pairs are in contiguous memory - no pointer following between nodes

 ✘ Complexity around collision management

32

Key Value Key Value Key Value

 1 2 3 4 5

A lesser-known approach: a hybrid of both chaining and open addressing

Goals:
● Predictable cache access patterns (no jumping all over the place)
● Prefetched candidate hash values

33

It’s possible to implement this as a drop-in substitute for std::unordered_map

Hash
73

Ptr

34

Value
Key
73

Key 73 ➔ Hash 73 ➔ Index 1

✘✓ ✓

✓

✓

Key 12 ➔ Hash 12 ➔ Index 3

Hash
98

Hash
12

Ptr Ptr

Value
Key
98

Value
Key
12

 1 2 3 4 5

Run on (32 X 2892.9 MHz CPU s), 2017-09-08 11:40:08

Benchmark Time

--

FindBenchmark<array_map>/10 7 ns

FindBenchmark<array_map>/64 7 ns

FindBenchmark<array_map>/512 7 ns

FindBenchmark<array_map>/4k 9 ns

FindBenchmark<array_map>/10k 9 ns

--

38.26% frontend cycles idle

6.77% backend cycles idle

1.6 insns per cycle

0.24 stalled cycles per insn

branch-misses # 0.22% of all branches

cache-misses # 0.067% of all cache refs

 35

 ((always_inline)) and ((noinlne))

● The inline keyword is somewhat misunderstood
○ It mainly means: multiple definitions are permitted

● ((always_inline)) and ((noinline)) are a stronger hint to the compiler
○ But be careful: measure

An example: forcing methods to be not inlined

CheckMarket();

if (notGoingToSendAnOrder)

 ComplexLoggingFunction();

else

 SendOrder();

36

__attribute__((noinline))

void ComplexLoggingFunction()

{

 ...

}

Remember, the full hotpath is only exercised very infrequently - your cache has
most likely been trampled by non-hotpath data and instructions

Keeping the cache hot

37

Market data
decoder

Execution
engine

Strategy

Market data
decoder

Market data
decoder

Strategy

Market data
decoder

Market data
decoder

Market data
decoder

Execution
engine

Strategy

A simple solution: run a very frequent dummy path through your entire system,
keeping both your data cache and instruction cache primed

Bonus: this also trains the hardware branch predictor correctly

38

Market data
decoder

Execution
engine

Strategy

Market data
decoder

Execution
engine

Strategy

Market data
decoder

Execution
engine

Strategy

Market data
decoder

Execution
engine

Strategy

Market data
decoder

Market data
decoder

Execution
engine

Strategy

Execution
engine

Strategy

Intel Xeon E5 processor

39

Source:
Intel Corporation

● Don’t share L3 - disable all but 1 core (or lock the cache)

● If you do have multiple cores enabled, choose your neighbours carefully:
○ Noisy neighbours should probably be moved to a different physical CPU

40

Surprises and war stories

41

"I have always wished for my computer to be as easy to use as my telephone;
my wish has come true because I can no longer figure out how to use my
telephone."

– Bjarne Stroustrup

Placement new can be slightly inefficient

 Quick refresher:
#include <new>

Object* object = new(buffer)Object;

● However, if you use:
○ Any version of gcc without -std=c++17 or -std=c++1z
○ Any version of gcc below 7.1 (May 2017)
○ Any version of clang below 3.4 (January 2014)

● Placement new will perform a null pointer check on the memory passed in
○ And if null is passed in:

■ The returned object is also null
■ No calls to the constructor or destructor will take place

42

● Why do compilers check whether memory passed in might be null?
○ The C++ spec was ambiguous about what placement new must do

● Marc Glisse/Jonathan Wakely (wg21.link/cwg1748) clarified this in 2013:
○ Passing null to placement new is now Undefined Behaviour [5.3.4.15]

● For several trading systems written in gcc, this inefficiency had a considerable
negative performance effect:

○ More instructions mean fewer opportunities to inline and optimize

● There is a workaround: declare a throwing type-specific placement new

 void* Object::operator new(size_t, void* mem) /* can throw */ {

 return mem;

 }

43

Small string optimization support

std::unordered_map<std::string, Instrument> instruments;

return instruments.find({“IBM”}) != instruments.end();

● This will avoid an allocation with:
○ gcc 5.1 or greater, and if the string is 15 characters or less
○ clang if the string is 22 characters or less

● However, if you are using gcc >= 5.1 and an ABI compatible linux distribution
such as Redhat/Centos/Ubuntu/Fedora, then you are probably still using the
old std::string implementation
○ Including C.O.W. semantics
○ First mentioned (as slow) by Herb Sutter in 1999!

44

Overhead of C++11 static local variable initialization

struct Random {

 int get() {

 // threadsafe!

 static int i = rand();

 return i;

 }

};

int main() {

 Random r;

 return r.get();

}

45

Random::get():

 movzx eax, BYTE PTR guard var

 test al, al

 je .L13 // not yet initialized

 mov eax, DWORD PTR get()::i

 ret

.L13

 // acquire and set the guard var

5-10% overhead compared to
non-static access, even if binary is
single threaded

std::function may allocate

46

struct Point {

 double dimensions[3];

};

int main() {

 std::function<void()> no_op { [point = Point{}] {} };

}

main:

 mov edi, 24

 call operator new(unsigned long)

P0419

47

Consider inplace_function (D0419R0):
● http://github.com/WG21-SG14/SG14/blob/master/SG14/inplace_function.h
● Drop-in replacement for std::function
● Defaults to a 32 byte internal buffer

 int main() {
 inplace_function<void()> no_op { [point = Point{}] {} };
 }

 main:

 xor eax, eax

 ret

 inplace_function<void(), 16> no_op { [point = Point{}] {} };
 // error: static assertion failed: Closure larger than buffer

P0419

https://github.com/WG21-SG14/SG14/blob/master/Docs/Proposals/NonAllocatingStandardFunction.pdf

std::pow can be slow

std::pow is a transcendental function, meaning it goes into a second, slower
phase if the accuracy of the result isn’t acceptable after the first phase

 auto base = 1.00000000000001, exp1 = 1.4, exp2 = 1.5;
 std::pow(base, exp1) = 1.0000000000000140

 std::pow(base, exp2) = 1.0000000000000151

 Benchmark Time Iterations

 pow(base, 1.4) [glibc 2.17] 53 ns 13142054

 pow(base, 1.4) [glibc 2.21] 53 ns 13142821

 pow(base, 1.5) [glibc 2.17] 478195 ns 1457

 pow(base, 1.5) [glibc 2.21] 63348 ns 11113

See http://entropymine.com/imageworsener/slowpow for a nice discussion

48

http://entropymine.com/imageworsener/slowpow

Measurement of low latency systems

49

“Bottlenecks occur in surprising places, so don't try to second guess and put in
a speed hack until you've proven that's where the bottleneck is.”

 – Rob Pike

Measurement of low latency systems

● Two common approaches:
○ Profiling: examining what your code is doing (bottlenecks in particular)
○ Benchmarking: timing the speed of your system

● Caution: profiling is not necessarily benchmarking
○ Profiling is useful for catching unexpected things
○ Improvements in profiling results are not a 100% guarantee that your

system is now faster

50

Measurement of low latency systems

 ✘ Sampling profilers (e.g. gprof)
○ They miss the key events

 ✘ Instrumentation profilers (e.g. callgrind)
○ They are too intrusive
○ They don’t catch I/O slowness/jitter

 ✘ Microbenchmarks (e.g. Google benchmark)
○ They are not representative of a realistic environment
○ Takes some effort to force the compiler to not optimize out the test
○ Heap fragmentation can have an impact on subsequent tests

They are all useful in some ways, but not for micro-optimization of code

51

Measurement of low latency systems

 ✓ Most useful: measure end-to-end time in a production-like setup

52

Switch with high precision hardware-based
timestamping (appended to each packet)

Server which replays
exchange market data

and accepts orders

Server under test - listens
to market data and sends

orders

Server which captures and parses each
network packet it sees, and calculates

response time (accurate to a few
nanoseconds)

Summary

53

“A language that doesn't affect the way you think about programming is not
worth knowing.”

 – Alan Perlis

● Have a good knowledge of C++ well, including your compiler

● Understand the basics of machine architecture, and how it will impact your
code

● Aim for very simple runtime logic:
○ Compilers optimize simple code the best
○ Prefer approximations instead of perfect precision where appropriate
○ Do expensive work only when you have spare time

● Conduct accurate measurement - this is essential

54

Thanks for listening!

carl.cook@gmail.com

55

