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Abstract—Modern branch predictors predict the vast majority
of conditional branch instructions with near-perfect accuracy,
allowing superscalar, out-of-order processors to maximize specu-
lative efficiency and thus performance. However, this impressive
overall effectiveness belies a substantial missed opportunity in
single-threaded instructions per cycle (IPC). For example, we
show that correcting the mispredictions made by the state-of-
the-art TAGE-SC-L branch predictor on SPECint 2017 would
improve IPC by margins similar to an advance in process
technology node.

In this work, we measure and characterize these mispredic-
tions. We find that they categorically arise from either (1) a
small number of systematically hard-to-predict (H2P) branches;
or (2) rare branches with low dynamic execution counts. Using
data from SPECint 2017 and additional large code footprint
applications, we quantify the occurrence and IPC impact of these
two categories. We then demonstrate that increasing the resources
afforded to existing branch predictors does not alone address the
root causes of most mispredictions. This leads us to reexamine
basic assumptions in branch prediction and to propose new
research directions that, for example, deploy machine learning
to improve pattern matching for H2Ps, and use on-chip phase
learning to track long-term statistics for rare branches.

I. INTRODUCTION

Branch prediction is critical to the performance of modern
superscalar processors [1], [2], [3] and is implemented in
dedicated branch prediction units (BPUs). BPUs work by
training statistical models of branch directions observed as
instructions are retired, and then using these models to predict
unresolved directions for subsequent branches as they are
fetched. BPU predictions drive speculative execution, a key
technique for hiding latency in out-of-order CPUs.

Though state-of-the-art branch predictors achieve near-
perfect prediction accuracy on the vast majority of static
branches, substantial performance gains can be unlocked by
correcting their remaining mispredictions. Mispredictions de-
lay subsequent instructions, trigger instruction pipeline flushes,
and reduce speculation efficiency. For example, Fig. 1 shows
single-threaded performance for the SPECint 2017 bench-
marks on an execution pipeline based on Intel Skylake, as we
simulate future designs with increased pipeline capacity (i.e.,
fetch, decode, execution, load/store buffer, ROB, scheduler,
and retire resources) in the ChampSim simulator [4], [5]. Us-
ing the TAGE-SC-L 8KB branch predictor [6], mispredictions
represent an 18.5% instructions per cycle (IPC) opportunity at
baseline (1x scaling). This gain grows with pipeline scale, e.g.,
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Fig. 1: Without better branch prediction, scaling the pipeline ca-
pacity of an Intel Skylake configuration will produce diminishing
returns in single-threaded IPC for SPECint 2017.

to 55.3% at 4x scaling, a magnitude on par with advancing to
the next process technology node.

Microarchitectural advances in branch prediction are thus
a source of large potential IPC gains. However, we find only
marginal improvements from straightforward scaling of the
resources provided to existing predictors. Fig. 1 illustrates
this point: increasing TAGE-SC-L storage eight-fold to 64KB
returns just 2.7% additional IPC in a best-case scenario where
no additional prediction latency is incurred.

In this paper, we perform a deep dive into the causes
of these mispredictions, and demonstrate that fundamentally
new approaches to branch prediction are needed to address
them. We identify two primary issues: (1) systematically hard-
to-predict (H2P) branches; and (2) rare branches with low
dynamic execution counts over tens of millions of instructions.
In addition to degrading IPC, these branches trigger inefficient
consumption of BPU storage on a large scale, and exhibit
temporal behaviors inconsistent with the short-term statistics
emphasized in known algorithms. We propose new approaches
that deploy powerful machine learning models to improve the
pattern matching that drives H2P predictions (e.g. using low-
precision convolutional neural networks, as developed in our
companion paper [7]), as well as on-chip phase recognition to
capture long term predictive statistics.

ar
X

iv
:1

90
6.

08
17

0v
1 

 [
cs

.D
C

] 
 1

3 
Ju

n 
20

19



II. CURRENT STATE OF THE ART

We begin our analysis by reviewing the state of the art
in branch prediction. Over prior decades, the Championship
Branch Prediction (CBP) challenge [3] has served as the
primary platform to compare techniques using common bench-
marks and deployment assumptions. For example, submissions
to the most recent CBP held in 2016 were run on a simulator
that (1) standardized the inputs to the BPU to include the
instruction pointer (IP) value, the instruction type, the branch
target, and the observed direction for conditionals; and (2)
restricted BPU storage to 8KB or 64KB, but imposed no
restriction on prediction latency. These assumptions are com-
patible with ChampSim, which we use to close the loop from
prediction accuracy to core IPC for CBP2016 submissions.

Depending on the algorithm, BPUs typically organize raw
data into three modalities: (1) the global branch history [8],
which is an ordered sequence of recently executed branch
directions at any point in a program; (2) each branch’s local
history [9], which is the ordered sequence of directions taken
by that branch in the past; and (3) the path history, which
consists of the IP values from recent branches. CBP2016
submissions model this data using the following algorithms:

Partial Pattern Matching (PPM) [10], [11] compares a
sequence of data against previously observed sequences of
increasing length, and returns the longest exact match. A
PPM branch predictor is implemented by hashing history data
over various lookback windows into tagged table entries that
track directions with a saturating counter. PPM predictors
achieve best performance when many history lengths are
tracked, and both the number of lengths and the number of
table entries used per length are the primary drivers of their
storage/accuracy tradeoff.

Perceptron Predictors mitigate a shortcoming of PPM’s exact
pattern matching by learning weights on different history po-
sitions [12], [13]. This improves accuracy when two branches’
directions are correlated by damping uncorrelated history data.
For PPM, uncorrelated or noisy history data explodes the
number of unique sequences associated with branch statistics;
perceptron predictors more compactly capture correlations by
instead training and storing positional weights. At prediction
time, weights are multiplied by a global history sequence,
summed, and thresholded to generate a prediction.

Domain-Specific Models fit BPU data to templates of pro-
gram execution behavior. Examples include loop predictors
that predict exit conditions [14], the Wormhole predictor and
Inner-Most Loop Iteration counter (IMLI) that track correla-
tions between branches in nested loops [15], [16], and the
Store/Load Predictor, which tracks data dependencies affecting
branch conditions [17]. These predictors are derived from
detailed expert analysis, and target specific program behaviors
found to cause mispredictions in design-time benchmarks.

Ensemble Models generate a single prediction from
multiple trained models, implementing a form of boosting.
For example, the statistical corrector uses a perceptron-like

model to apply weights to predictions of constituent predictors.

TAGE-SC-L is the CBP2016 winner, and we focus on
it in this paper. It implements an ensemble predictor that
combines PPM predictions from histories whose lengths fol-
low a geometric-series (TAGE) with the IMLI loop predictor
(L). The statistical corrector (SC) arbitrates between available
predictions.

III. MISPREDICTION CHARACTERISTICS

Below, we describe the two datasets we used to quantify
mispredictions.

A. H2P branches in SPECint 2017

We primarily used traces of SPECint 2017 benchmarks to
study H2Ps. This dataset was constructed by first compiling
each SPECint 2017 benchmark in the single-threaded “SPEC-
speed” configuration, and then tracing the resulting binaries
over multiple application inputs (i.e., “workloads”). Similar
to Amaral et al. [18], we expanded the set of application
inputs (see Table I) for each benchmark in order to capture
greater diversity in program statistics and invariant behaviors
across distinct application inputs. Each workload was traced
for 10B instructions, which we post-processed into 30M-
instruction slices; this slice length matches the default gran-
ularity of SimPoint phase labeling and maintains consistency
with prior analyses [19]. The slices were then clustered via
SimPoint [20] and labeled accordingly. Doing so verifies that
our 10B-instruction trace length captures a variety of distinct
application phases (9.5 phases, on average). However, we
emphasize that the branch misprediction statistics shown in
Table I are not collected from just the SimPoints, but across
all 30M-instruction slices of each workload trace (i.e., 333
slices total for each 10B-instruction workload trace). This
methodology helps capture stable statistics over time, i.e., over
multiple occurrences of the phases.

Within each 30M-instruction slice of every workload, we
screen branches and identify as H2Ps those that (1) have less
than 99% prediction accuracy under TAGE-SC-L 8KB, (2)
execute at least 15,000 times, and (3) generate at least 1,000
mispredictions in the slice. Our screening criteria are chosen
to identify branches that exhibit behaviors consistent with sys-
tematic misprediction, and that produce sufficient history data
to train machine learning models [7]. We screen using TAGE-
SC-L 8KB because it represents a practical implementation of
the state-of-the-art under common CPU resource budgets that
we encounter today; in Section IV, we present a limit study
of scaling up TAGE-SC-L resources and its effect on H2Ps.

The branch statistics shown in Table I convey two important
messages. First, there exist a small number of H2Ps that
consistently produce mispredictions every time the application
executes—on average, 29 H2Ps appear in three or more
workloads per benchmark. These H2Ps present a clear target
for specialized prediction mechanisms. Second, over all work-
loads, 55.3% of the mispredictions in each 30M-instruction
slice are caused by just 10 H2Ps on average. Fig. 2 plots
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SPECint2017
Benchmark

Avg #
Phases

# Static Branches
Avg.
Acc.

Avg.
Acc.
excl.
H2Ps

# App.
Inputs

H2P Appearance
Across Inputs

# Static H2P
Branches Avg. Dyn.

Execs per H2P
per Slice

% Mispreds
due to H2Ps

per SliceTotal
Median

per
Slice

Total
3+

Inputs
Avg per

Input
Avg per

Slice

600.perlbench s 6.5 13,865 1,863 0.987 0.989 4 62 16 21.5 1 93,815 17.3%
605.mcf s 11.4 1,755 99 0.921 0.998 8 29 20 19.0 10 249,195 96.9%
620.omnetpp s 11.8 7,099 823 0.975 0.994 5 46 28 28.0 8 74,630 77.6%
623.xalancbmk s 7.5 8,563 3,103 0.997 0.998 4 28 8 14.5 6 75,329 28.6%
625.x264 s 13.9 4,892 1,068 0.946 0.975 14 23 7 6.0 1 65,593 54.2%
631.deepsjeng s 9.4 3,162 856 0.946 0.963 12 68 49 40.0 13 44,412 31.2%
641.leela s 8.8 3,623 582 0.880 0.960 10 77 68 56.5 34 35,614 66.4%
648.exchange2 s 8.4 3,765 1,330 0.986 0.992 5 38 19 20.0 7 142,320 44.7%
657.xz s 7.6 2,373 211 0.897 0.980 5 163 50 63.0 10 75,759 80.5%
MEAN 9.5 5,455 1,104 0.952 0.984 7 59 29 30.0 10 95,185 55.3%

TABLE I: Summary statistics of our SPECint 2017 data set, which includes an expanded collection of inputs for each benchmark.
Metrics are averaged over 10B-instruction traces from each input. Accuracy and H2P statistics are reported for TAGE-SC-L 8KB.
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Fig. 2: Cumulative fraction of mispredictions due to H2Ps for
SPECint 2017 benchmarks. The top five “heavy hitters” account
for 37% of dynamic mispredictions on average.

the cumulative fraction of mispredictions for H2Ps in each
benchmark ranked by total number of dynamic executions.
We see that the top five in their respective benchmarks account
for 37% of dynamic mispredictions on average, and dub these
“heavy-hitters.” Taken together, this means that just a handful
of static branches cause a disproportionately large number
of dynamic mispredictions, and that devoting resources to
improve their prediction accuracy is an attractive strategy for
increasing performance.

B. Rare branches in large code footprint (LCF) traces

Table I excludes 603.gcc s because we notice that its much
larger code footprint includes many more branches that make
small but significant contributions to overall mispredictions.
To study this effect further, we collected a set of similarly
large code footprint (LCF) traces.

LCF binaries all have many more static branch IPs per
30M-instruction slice than our SPECint 2017 dataset, as
shown by comparing Table I to Table II. We chose appli-
cations with static branch counts above that of SPEC 2017

Application
Static

Branch
IPs

Avg. Dyn.
Execs per

Static Branch

Avg. Acc.
per Static

Branch
H2Ps

602.gcc s 6,152 715.6 0.88 5
Game 45,996 55.2 0.73 1
RDBMS 16,096 314.3 0.92 8
NoSQL Database 7,449 331.0 0.93 2
Real-time
Analytics

5,595 856.0 0.83 6

Streaming Server 3,144 1404.7 0.78 6
MEAN 14,072 612.8 0.85 5.2

TABLE II: Summary branch statistics from large code footprint
applications under TAGE-SC-L 8KB. Metrics shown are over
30M-instruction traces.

623.xalancbmk s, the next largest footprint after 603.gcc s. In
addition to 603.gcc s, we include five additional applications
(a game, a RDMBS, a NoSQL database, a real-time analytics
engine, and a streaming server) which were traced from live
deployments. For these, we analyze a single 30M-instruction
trace for each application. Though less comprehensive than the
SPEC2017 dataset, this is nonetheless sufficient to illustrate
the rare branch problem in large code footprints.

Table II summarizes branch statistics for the LCF appli-
cations. There are two observations of note: (1) the aver-
age accuracy of TAGE-SC-L 8KB for these applications is
significantly lower (0.85) than for the SPECint 2017 dataset
(0.952); (2) for the large number of static branches in each
application (mean: 14,072), the average number of dynamic
executions per static branch is small (mean: 612.8). Fig. 3
further breaks out these summary statistics into distributions of
branches over the entire dataset. As we can see, the distribution
of dynamic executions (middle) skews towards the left, with
fully 85% of static branch IPs executing less than 100 times.
Additionally, the distribution of dynamic mispredictions (left)
skews towards zero, i.e., the vast majority of branches are
predicted with high accuracy. This is corroborated by the
distribution of prediction accuracy (right), where 55% of
branches are predicted with 0.99 accuracy or greater. Yet, there
is a significant fraction (12%) of static branch IPs which are
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Fig. 3: The distributions of dynamic mispredictions (left), dynamic executions (middle), and prediction accuracy (right) of branches
in the LCF data set, under TAGE-SC-L 8KB.
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Fig. 4: (a) For the LCF dataset, branches with low dynamic execution count have a wide spread in prediction accuracy under
TAGE-SC-L 8KB. Each data point is a branch. (b) Standard deviation of branches binned by dynamic execution count.

predicted with an accuracy of 0.10 or lower.
Fig. 4a plots dynamic execution count against prediction

accuracy for each static branch IP. This shows that rare
branches, i.e., those with low dynamic execution counts, have
a wide spread in prediction accuracy. In a sense, this is
unsurprising because rare branches have fewer samples of
path and direction history and thus their collected statistics
are lower-confidence. Fig. 4b quantifies this spread, showing
the standard deviation in prediction accuracy when we bin
dynamic executions (bin width = 100). The first bin, with
less than 100 dynamic executions, has a standard deviation
in accuracy of 0.35, but this drops off precipitously to just
0.08 for branches with 100–200 dynamic executions.

In summary, LCF applications have many rare branches,
which are static branches that are predicted poorly, but execute
only a handful of times and thus do not meet the H2P criteria
as a source of systematic misprediction. We also note that both
scenarios are present in the above datasets, but to varying

degrees—the SPECint 2017 dataset showcases H2Ps more
than rare branches, whereas the opposite is true for the LCF
dataset.

C. The effect of CPU pipeline scaling on mispredictions

One key observation is that H2Ps and rare branches do not
have equal impact on performance when the CPU pipeline
is scaled up, e.g., in future cores. Fig. 1 shows that, for the
smaller code footprint applications in SPECint 2017, H2Ps
account for 75.7% of the potential IPC gain of perfect branch
prediction at baseline. When the pipeline is scaled up, the
proportion shifts to near parity, with H2Ps accounting for
54.8% of the opportunity. For the LCF dataset, non-H2P
rare branches play the central role, as shown in Fig. 5. At
the baseline 1x pipeline scale, H2Ps represent just 37.8%
of the performance opportunity, and this even drops slightly
to 33.7% at 32x pipeline scale. Together, this data shows
that while H2Ps represent an outsized portion of the IPC
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Fig. 5: For the large code footprint traces, H2Ps play a dramat-
ically diminished role as CPU pipeline scales up.

impact for SPECint 2017 on existing CPUs, as pipelines scale
and application sizes grow, rare branches become an equally
important source of potential performance.

IV. SCALING BPU RESOURCES IS NOT ENOUGH

Aside from the practical limitations imposed by area and
latency constraints [21], simply increasing BPU resources is
insufficient to capture the sizable remaining IPC opportunity
due to branch mispredictions. As we saw earlier, for a given
CPU pipeline width and depth, scaling TAGE-SC-L global
history table sizes, e.g., from 8KB to 64KB, as in Fig. 1, gives
poor returns. We next analyze the reasons for this behavior.

A. H2Ps have high history variation

TAGE-SC-L 64KB tracks branch histories with lengths up
to 3,000 (TAGE-SC-L 8KB allows up to 1,000). However,
we show that longer history lengths inject more variation
into the predictive signatures. We characterize this variation
by analyzing an H2P’s dependency branches, i.e., previously-
retired branches whose conditions share an operand with
the H2P, and are therefore predictive at ground truth. For
a dynamic execution of an H2P, we compute its operand
dependency graph over the prior 5,000 instructions. This graph
links instructions that read a common piece of data by tracking
chains of reads/writes to memory and registers. We identify as
a dependency branch any prior conditional branch instruction
that reads a data value that is also read when computing the
H2P’s condition. For each H2P, we perform this analysis for
all of its dynamic executions over the entire trace to produce a
distribution over the history positions of predictive dependency
branches as they appear to the BPU.

Table III shows the min and max history positions of
these distributions and the number of dependency branches for
the top H2P heavy hitter of each SPECint 2017 benchmark.
We observe that the maximum history lengths across all
benchmarks fall within the history length limit of TAGE-SC-
L 64KB. This suggests that TAGE-SC-L 64KB has sufficient
history to predict the H2P, but that other factors contribute to
its poor prediction accuracy. In Fig. 6, we plot the distributions
of history positions for dependency branches associated with

Benchmark Dep. Branches Min Hist Pos Max Hist Pos

605.mcf s 43 2 1,221
620.omnetpp s 188 3 801
623.xalancbmk s 176 1 1,879
625.x264 s 3 1 34
631.deepsjeng s 484 1 878
641.leela s 186 2 762
648.exchange2 s 167 1 863
657.xz s 157 1 530

TABLE III: Summary of dependency branch statistics for the
top H2P heavy hitter branch in SPECint 2017 benchmarks.

each heavy hitter. Notably, we see that any given dependency
branch appears in many different positions, and that the
likelihood of it again appearing in the same position is highly
non-uniform. Together, this data shows that predictions based
on position-specific correlations or the recurrence of exact
patterns must contend with an enormous amount of stochastic
variation, and that variation increases with history length.

We directly measure the effect of this variation by tracking
how TAGE-SC-L 64KB’s table resources are allocated for
H2P branches over time. TAGE-SC-L reserves entries for
longer history lengths when the longest-matching sequence
produces mispredictions, while marking incorrect or rarely
used table entries for reallocation to other branches. Thus,
H2P branches with high history sequence variation will result
in abnormally high reallocation rates. Across our traces, we
find that non-H2P branches are associated with a small number
of allocations and that their entries are rarely reallocated—
the median number of allocations per non-H2P branch is 4,
while the median number of unique entries allocated to each
is also 4. In contrast, H2P branches consume an outsized
proportion of table entries, with few of these entries producing
useful predictions. The median number of allocations per H2P
is 13,093, while the median number of unique table entries
allocated to each H2P is only 3,990. The discrepancy between
these numbers is due to entries being allocated, then scrapped
for use by another branch, and eventually being allocated
for the same H2P branch once again. On average, we find
that each non-H2P branch individually accounts for less than
0.01% of allocations, whereas each H2P branch accounts
for 3.6%. This behavior shows that TAGE-SC-L’s underlying
pattern matching mechanism struggles to group predictive
statistics in H2P history data, and that a large portion of
storage resources are wasted as a result.

B. Rare branches have poor statistics

Table II indicates that LCF applications have a large number
of static branches that are only executed a handful of times.
This suggests that the baseline 8KB storage for TAGE-SC-L
may quickly fill with entries that are not reused.

In theory, simply increasing storage (i.e., increasing the
table capacity) to accommodate more of these branches should
proportionately improve IPC. We perform a limit study that
incrementally increases total TAGE-SC-L storage from 8KB
to 1024KB, as shown in Fig. 7. For each LCF application, we
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(a) 605.mcf s (b) 620.omnetpp s (c) 623.xalancbmk s

(d) 625.x264 s (e) 631.deepsjeng s (f) 641.leela s

(g) 641.exchange s (h) 657.xz s

Fig. 6: Distribution of the history position of dependency branches for example H2P heavy hitters in each of the SPECint 2017
benchmarks shown. The size and color of each data point is proportional to the occurrence of that dependency branch at the
corresponding history position. Some data points are invisible because of low occurrence.

define the IPC opportunity as the IPC gap between TAGE-SC-
L 8KB and perfect branch prediction. Then, at each storage
size, we measure the portion of the IPC opportunity captured
by TAGE-SC-L. We repeat this analysis for different CPU
pipeline scales to extrapolate to future designs.

It is immediately apparent that even at 1x (Skylake) pipeline
scale, TAGE-SC-L captures less than half of the IPC op-
portunity, even when afforded an impractically high 1024KB
of storage. For almost all the measured LCF applications,
the greatest IPC gain comes from increasing storage from
8KB to 64KB, after which improvements plateau. Worse
yet, as the pipeline capacity is increased, scaling up storage
yields dramatically diminished returns—at 32x pipeline scale,
a maximum of only 34% of the IPC opportunity is captured.

We show that this lack of further improvement despite
additional resources owes to that fact there are insufficient
opportunities to both learn and later reuse predictions for

rare branches in LCF traces. In Section III-B, Fig 3 (middle)
showed that, for LCF applications, 96% of static branches
have fewer than 1,000 dynamic executions, 85% have fewer
than 100, and that these rare branches have a wide spread
in prediction accuracy (Fig. 4). Using the largest TAGE-
SC-L 1024KB storage configuration, we simulate the impact
of predicting all branches with more than 1,000 dynamic
executions perfectly at 1x pipeline scale, and repeat this for
all branches with more than 100 dynamic executions. These
results are reported in Fig. 8, and show that, on average, 34.3%
of the IPC opportunity in large code footprint application is
due to rare branches (i.e., static branches with fewer than 1,000
dynamic executions) and 27.4% is due to the rarest branches
(i.e., static branches with fewer than 100 dynamic executions).
We observe that, with such a large portion of IPC tied to
branches with fewer than 100 dynamic executions over 30M
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(e) 16x
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Fig. 7: Scaling up CPU pipeline together with the number of table entries for TAGE-SC-L has diminishing returns.

instructions, rare branches supply too few statistics to support
stable learning and later reuse at runtime.

V. NEW DIRECTIONS FOR BRANCH PREDICTION

The large IPC opportunity we have demonstrated and the
inability of existing branch predictors to tap into it suggests
that the time is ripe for reconsidering fundamental assumptions
made in BPU design. Since TAGE-SC-L already does so well
on the vast majority of branches, we argue that it should be left
in place. Any additional resources given to the BPU should

be devoted to augmenting it with other methods that directly
address the challenges laid out in Section IV.

A. Reconsidering the deployment scenario

A key assumption in the design of branch predictors is the
way in which they are deployed. This can be categorized based
on whether predictive statistics are captured (i.e., trained) on-
line or offline, and similarly whether predictions are generated
(i.e., via inference) online or offline. Here, we define online as
performing computations on the BPU and offline as employing
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Fig. 8: The fraction of IPC opportunity remaining even after
perfectly predicting all branches with more than 1,000 (blue)
and 100 (orange) dynamic execution counts.

computations that require data, such as branch history or other
microarchitectural state information, to be moved elsewhere.

Historically, branch predictors have assumed strict require-
ments that training and inference could only be performed
online. However, this scenario limits the power of the algo-
rithms available for pattern recognition, as well as their ability
to exploit long-range statistical relationships. For example, the
lightweight pattern recognition mechanisms found in percep-
tron predictors make a best-case assumption that pattern com-
plexity is relatively low. Meanwhile, predictors such as TAGE-
SC-L track statistics using low-bit width saturating counters
that allow for just a small, fixed amount of hysteresis, and
thereby make the implicit assumption that direction statistics
are stable only in the short-term.

To successfully resolve the issues that existing branch
predictors cannot, we argue that branch prediction techniques
should not adhere solely to online-training/online-inference
assumptions. By relaxing the constraints to allow for offline
training, we open the door not only to training over a much
richer set of data, but also to employing more powerful pattern
recognition algorithms from machine learning.

B. Using richer training data

Branch predictors that solely perform online training are
limited to the data available within the BPU as an application
runs. Constraints on BPU storage capacity, e.g. due to layout,
further impose an assumption that recent program state is
the best predictive signal of a branch outcome. This ignores
the possibility of contributions coming from distant program
states, such as prior executions of the same SimPoint phase,
or even statistics derived from prior application executions.
Furthermore, online branch predictors must be application-
agnostic, or general enough to perform universally well for
all applications.

Offline training (for online prediction), however, has no such
limitations. In particular, we argue that the key advantage
to offline training is the ability to train predictors from a
much larger set of statistics specific to a target application,
for example aggregated over multiple executions. Successful

offline training would thus rest upon collecting multiple long-
duration traces of an application, executing over multiple
distinct application inputs, as in the trace collection method-
ology we employed above. We note that this differs markedly
from the relatively short single-input traces employed in CBP
challenges, and corresponds to a large shift in the basic
assumptions of current branch predictor development.

For H2P branches, where long history lengths are useful for
capturing predictive signals in dependency branch correlations
(recall Fig. 6 in Section IV-A) but are also the source of high
history variation, offline training supports the ability to identify
ground-truth predictors such as dependency branches. One
actionable way to exploit analyses similar to ours is to design
filters for a BPU to reduce data variation when predicting
H2Ps. This would reduce the difficulty of on-BPU learning
and make more efficient use of limited on-BPU storage when
folded into existing algorithms such as TAGE-SC-L.

Offline training provides an additional method to address
LCF applications that we found to be capacity limited, i.e.
those that saw performance gains when TAGE-SC-L storage
grew from 8KB to 64KB. This is because, under storage
pressure at 8KB, TAGE must “forget” predictive patterns to
make room for new ones. Identifying and storing predictive
signatures that are stable over the long term would reduce the
burden on TAGE to repeatedly relearn the same predictions.

Offline training is particularly useful for the many pockets
of code in LCF traces that execute infrequently over a single
invocation of an application. At the extreme, whenever an
application is launched, TAGE learns from scratch, no matter
how many times the application had been invoked in the
past. This leaves on the table a significant opportunity for
model reuse and iterative refinement. Recording statistics over
multiple invocations of the same application—and over distinct
application inputs—increases the number and variation in
the samples of rare branches found in these pockets. As a
result, offline training can yield more stable, higher confidence
predictive signatures for the rare branches that plague LCF
traces than online methods.

Beyond generating a rich trace library, it is also possible
to incorporate data other than branch histories, from sources
outside the BPU. One example is program phase information.
Program phases are a well-known phenomenon [19] and can
exist on different time scales. These can be inferred to a
degree from the recurrence interval of dynamic branches (i.e.,
the number of instructions between two consecutive dynamic
executions of the same static branch IP). For instance, if a
branch has a very short recurrence interval, then it may be
part of a tight loop. Conversely, a very large recurrence interval
may be indicative of a much more macro-level program phase,
spanning perhaps hundreds of thousands or even millions of
basic blocks. Fig. 9 shows the distribution of the median
recurrence interval of static branch IPs in the LCF dataset.
In aggregate, the applications in this dataset have median
recurrence intervals peaking between 100,000 and 1,000,000
instructions (ignoring the singleton branches in the first bin),
suggesting that phases of sufficient and varied sizes are
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Fig. 9: The distribution of the median recurrence interval of
branches in the LCF dataset. The recurrence interval is defined
as the number of instructions between two consecutive dynamic
executions of the same static branch IP. The distribution indicates
that phase-like behaviors on relatively long timescales exist in
the LCF dataset, and that these phases can be exploited as an
additional input signal to helper predictors.

available to exploit. Phase information can be derived from
architectural counter values over time, as in recent works [22],
[23]. Conditioning branch histories on such phase information
serves as another way to improve training by reducing the
variation in the branch history data.

Yet another example of off-BPU information that could
easily be incorporated into offline training are the register
values immediately preceding a dynamic branch. For data-
dependent branches, which typically resist prediction when
using global branch histories alone, this could be an additional
correlative input signal to boost prediction accuracy. In Fig. 10,
we plot the distribution of the register values (lower 32-bits)
written to each of 18 tracked registers, immediately preceding
the dynamic executions of the top H2P heavy-hitter in each of
the SPECint 2017 benchmarks shown. Two observations can
be made readily: (1) that one distribution is drastically different
from the next, indicating that we should focus on training
branch-specific predictors; and (2) that there is complex but
recognizable structure in the distributions, suggesting that
more sophisticated machine learning algorithms such as neural
networks may be useful for extracting the underlying patterns.

C. Using machine learning models

By removing the requirement of online training, we also
effectively remove all computational constraints from the
training process. Whereas online training methods are limited
to the storage and operation complexity available on-BPU,
training offline, e.g., over the above trace datasets, can take
advantage of the virtually unlimited compute and storage
resources of cloud computing infrastructures. This admits
the use of powerful machine learning algorithms such as
convolutional neural networks (CNNs), which can more fully
extract patterns from the high-volume, high-complexity, and
high-variation H2P and rare branch data. We refer to pow-

erful predictors specialized to individual branches as helper
predictors since they are intended to be deployed alongside
an existing baseline predictor such as TAGE-SC-L. In our
companion paper on CNN helper predictors [7], we show that
models trained offline on applications traced over multiple
inputs can generalize to unseen inputs, thereby significantly
improving online prediction accuracy upon deployment.

Of course, performing inference online using models that
were trained offline can still be computationally expensive, but
other works [22], [24], [7] have shown that it is indeed feasible
to implement even sophisticated machine learning inference
algorithms within current area and latency constraints. In the
case of our CNN helper predictors, we take advantage of low-
precision (2-bit) neural networks [25] and a custom input
encoding method to simplify the forward pass (inference)
computation to require just a handful of bitwise operations.

D. Amortizing offline training costs

One key issue that offline-training/online-inference predic-
tors face is whether the high cost of collecting comprehensive
training data and of offline training is worth the effort and
resources. We argue that such an approach is particularly well-
suited to data center applications, where performance is of
paramount importance and where the training costs can be
amortized through economies of scale. Under this framework,
a customer’s critical data center application would first be
instrumented and then traced. Subsequently, helper predictors
would be trained offline on the collected traces. Once trained,
the predictors’ model parameters (e.g., network weights in the
case of a CNN) could be stored as application metadata, e.g.,
under a new segment type in an ELF binary. The application
would be installed on machines across the data center, where
each machine’s OS would manage loading the predictor(s)
onto the BPU. This ensures that gains in prediction accuracy
can be applied at scale. Once this infrastructure is in place,
it then becomes possible to periodically update models with
additional training data. In this way, helper predictors can be
iteratively refined over time, a key advantage over existing
online BPU mechanisms. Of course, the exact mechanics of
this deployment model is the subject of future work, but
we note that it is consistent with other runtime hardware
optimizations in the recent literature [26], [27], [24], [22].

VI. CONCLUSIONS

In this paper, we characterized branch mispredictions un-
der the state-of-the-art TAGE-SC-L branch predictor. Using
SPECint 2017 benchmarks and a set of large code footprint
applications, we demonstrate that there remains an untapped
IPC opportunity due to these mispredictions, the size of which
is on par with advancing process technology. We identified
hard-to-predict (H2P) and rare branches as two classes of
branches whose mispredictions account for this missed IPC
opportunity, and showed that simply scaling up the storage
capacity of TAGE-SC-L global history tables does not rescue
these mispredictions.
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Fig. 10: Distribution of register values written immediately preceding the top H2P heavy hitter branch in each of the SPECint2017
benchmarks. We record the bottom 32-bits of register writes in 18 tracked registers. The x-axis plots the actual register value and
is log scale. Each data point represents a register and a written value; its size and color is proportional to the number of times the
value was written to the register.

From these measurements and analyses, it is clear that
branch prediction is far from being solved and that there
remains substantial headroom for BPU improvement. In re-
sponse, we propose new assumptions for branch predictor
development—namely, offline training on data aggregated over
multiple application executions. This approach enables new re-
search directions that directly address the causes of mispredic-
tions for both H2P branches and rare branches. These include
exploiting more diverse training data to improve statistical
power for rare branches, as well as additional computational
resources to train specialized helper predictors for specific
branches.
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