
The
architect’s
guide
to core banking.

Insight paper
Learn about the background of core banking and
how adopting cloud-native technology is finally
within reach for banks.

2

A future-proof and legacy-free
architecture.

Wouldn’t that be wonderful? Unfortunately, anyone who works in technology knows there is no such
thing as future proof. After all, there was a time that a terabyte required a million-dollar investment,
and we could not imagine ever needing more storage.

The real challenge is not to build an architecture that is future-proof. The challenge is to build an
architecture that is agile. One capable of adjusting to the change in customer demand. One that can
meet increasing requirements in terms of operational excellence, and compliance?

You have likely already adapted your front-end to meet a higher standard of customer experience.
But in the long term, you need more than good looks. The entire architecture needs to be truly agile.
This means replacing static legacy technology in the core with modern, cloud-based technology.

It was already in August 2019 that McKinsey identified the urgency for incumbent banks to shift from
their traditional core banking systems to a modern and cloud-native platform. We have now reached
a stage where innovative core banking suppliers can offer solutions to this urgent demand.

cloud-native
 core banking.

	 ‘McKinsey - Beyond digital transformations: Modernizing core technology for the AI bank of 	
	 the future’

Introduction

3

01
02
03
04
05
06
07

The target architecture: a composable
landscape

The definition of cloud native

Upgrading strategies

Selecting the right modular vendors

Managing data in a composable landscape

Experience matters

Some best practices

4

7

9

12

15

17

20

Content

4

01 The target
architecture:
a composable
landscape

5

For the best result, the layers have a modular setup, based on microservices, all connected via APIs.
This creates both resilience and agility. It creates a composable landscape where components can
be freely taken out and replaced for a more suitable component. Also, updates and improvements
can be made to a subset of the landscape without the necessity of updating everything. This way, it
is easier to fulfil future requirements we are currently not even aware of.

1.	 The target architecture: a composable landscape

A four-layer architecture
When building a digital bank, we identify four layers within the architecture:

The presentation layer This is the front-end. This is the layer clients and employees
use. In general, the client portion of this layer is already hosted
in the cloud or at a minimum built on non-legacy technology.
Mainly because ever upgrading devices and operating systems
demand this layer to be updated frequently and adherent to the
most modern standards.

The orchestration layer This layer handles client-related processes and data. It defines
how the other layers interact with each other.

The core This product layer contains all rules that define products and the
calculations that follow those rules. It contains the true essence
of banking.

Data This contains client data, and transactional data.

°neo 360

°neo
Accounts

°neo
Lending

Payment
Gateway

ºn
eo

 orchestration & data factory

Presentation
layer

Presentation
layer

Presentation
 layer

Presentation
 layer

Presentation
 layer

Presentation
 layer

6

02 The
definition
of cloud
native

7

8

The term cloud native means different things to different people. That is why it is important to
define it:

Ensuring enough cloud-native capabilities
To ensure the system you buy has enough cloud-native capabilities, include the following two things
in your vendor review:

	 1.	 Do a proof of concept. Get a sandbox to test some potential integrations.

	 2.	 Have the proof of concept include a business rule and product very specific to your
		 organization. Make sure the component offers the right configuration dimensions to 	
		 enable your specific business.

Cloud agnostic is the opposite of choosing a specific cloud ven-
dor to optimize the use of managed services. You develop without
commitment to a specific cloud vendor and use only services that
are available to all. Good to know is that also cloud-agnostic
platforms can be integrated with cloud-native platforms that are
native to a specific technology provider (e.g. Azure or AWS).

What is cloud agnostic ?

SaaS application is delivered over the internet and maintained
by the technology provider. Compared to on-premise techno-
logy, a SaaS application is not installed locally, which eliminates
related software maintenance and hardware management.
The application runs on servers in a data center; “the cloud”.

What is SaaS ?

It is possible to use the cloud as a hosting environment only.
Basically, you mimic an on-premise situation in the cloud.
Regardless of where something is hosted, the technology can
be containerized to make it easier to deploy portions of the
application, rather than the whole in one go. Since with the lift
and shift approach you keep the actual application the way it is,
you don’t use the specific cloud services. So therefore, you don’t
reap the full benefits of the cloud.

What is lift and shift ?

Cloud native is an approach to creating and running an applica-
tion that fully utilizes the cloud computing delivery model.
Compared to technology that is lifted to the cloud, cloud native
is built for the cloud and usually comes with significant benefits
in terms of efficiency, openness, and scalability. We believe that
cloud native means you choose a specific cloud vendor and
optimize the use of the managed services provided by that
particular vendor. °neo is native to azure.

What is cloud native ?

2.	 The definition of cloud native

03 Upgrading
strategies

9

10

How does one transition from traditional architecture to microservices-based architecture?
In short, there are three strategies:

	 A.	 Big bang

	 B.	 Eating the elephant

	 C.	 Satellite structure

Big bang
With a big bang, you do a full replacement of the entire core. This can be necessary due to big is-
sues with the current core system. Either it is too vulnerable in terms of security, or it is impossible to
comply with regulatory requirements.

 		 - Higher risk
		 - Extensive data migration
		 - No benefits until project fully completed 		 + Entire architecture is modernized

 	

3.	 Upgrading strategies

11

Eating the elephant
One bite at a time. That’s how you eat an elephant. By replacing segments of the business at a time,
you gradually upgrade the architecture. Because not everything is replaced simultaneously, you
have the opportunity to select the latest and most excellent vendors at every crossroads. The end
result in theory is more modern than the end state in a big bang approach. But there is the risk of
never being done.

	

		 - Progress is made in small steps
	 	 - Dependency on legacy systems remains for several years. 		 + Less risk
		 + Benefits are reaped instantly

Satellite structure
The third option is creating a new proposition, built on new technology. Legacy is not holding this
new proposition back.

	 	 - Dependency of original brand on legacy systems remains for several years
		 - Benefits only reaped within new brand
		 - Additional costs, not replacement costs
		 + Allows for a leaner proposition than the original one
		 + Technology can proof itself before introducing existing client base

3.	 Upgrading strategies

04 Selecting
the right
modular
vendors

12

13

Taking a best-in-breed approach means selecting vendors for your components. There are several
elements to be mindful of when selecting your vendors. We have discussed them in our paper “How
to select your cloud-based vendors”, which includes important questions to include in your RFI when
interviewing vendors. Here is a summary of the ten selection principles.

This is a true cloud quality. Cloud-native tooling has automatic
scaling. A lift-and-shift solution does not. This is a clear distinction
between ‘cloud ready’ and ‘cloud native’.

5. Scaling (automatic
 or manual)

It’s important to check if your vendors offer their platforms and
solutions
•	 cloud agnostic,
•	 cloud specific to a particular cloud e.g. AWS or Azure native, 	
	 or on-premise with the ability to host in the cloud.

Both the first and the second can refer to their solution as being
cloud native. Make sure you know which one is offered.

1. The cloud choice

Of course, your new system has APIs. Make sure to take a close
look at:
•	 What is included in the APIs: is it just data, or also events,
 	 processes, and more.
•	 The support offered for those APIs, like searchable docu-	
	 mentation, code examples, and cookbooks.

3. Ecosystem-friendly

Security is the top priority. You know this. So, make sure all data
is encrypted. When it comes to cloud solutions, make sure that
encryption covers both data storage and data in transit.

4. Data encryption

4.	 Selecting the right modular vendors

	 For more information, download your paper here.

Be mindful of the granularity of the system offered. Find a balance
between the safe, overseeable structure of a monolith and the
agile, scalable but potentially chaotic microservice structure.

2. The granularity of
 the system

14

9. Testing A well-tested system is vital. Make sure you know how changes
to the solution are tested. Is there manual testing, automated
testing, or hybrid testing?

10. Low-code
 configuration

The configuration enables you to meet custom requirements
without creating multiple codebases. Some configuration
requires a lot of coding experience or is poorly documented,
which creates a black box of capabilities. As with the API, you
want good documentation with clear information on the scope
of the configuration.

Always check the SLA (service level agreement) for availability
guarantees. A vendor of a cloud solution should be able to
provide 24/7 uptime and service. Just imagine that percentage
of downtime happening in the middle of black Friday and base
your selection on that.

6. Availability

Your landscape is unique to you. It may require specific things
from your vendors. Like custom fields or processes. Check if
that requires custom code or not.

8. Single codebase or
 multiple codebases

A vendor can offer periodic or continuous deployment. You want
small changes every day, and continuous innovation of your
landscape, rather than big upgrades every six months that come
with much work. This means taking a continuous deployment
approach. This is not a distinction between cloud-based and
on-premises. An on-premise solution could just as well have
continuous deployment. It’s a quality that tells a lot about the
way a solution is organized.

7. Deployment
 cadence

4.	 Selecting the right modular vendors

05 Managing
data in a
composable
landscape

15

16

Data is the new gold. Your new architecture should enable you to access that gold in the best
possible way.

With a traditional monolithic system, data access is relatively simple. With modular or composable
banking, every component has its own data storage. How do you avoid it becoming a big mess
and your data being everywhere? The answer is threefold.

But most importantly, your data must remain your own to access. In some cases, data is locked in
an application and can only be accessed with help of the vendor.

A consolidated data warehouse.

All data from your component-based architecture should be collected in a single
concise system.

A human-readable data model.

Your data, stripped from irrelevant data fields, should be accessible in a data 	
model that allows for analysis. A real person should be able to make sense of 	
this.

Multiple data access types.

You should be able to connect to your data warehouse using more than just an 	
API. As mentioned, you should have an export function for your reporting. 		
But you should also be able to flag data events and initiate tasks within your 	
landscape. Regardless of which module within your architecture is needed for 	
that task.

What we did: data can be unlocked via three methods:

		 APIs – every data field is accessible via the API. Custom fields are
		 automatically included in the API.

		 Events – every data change is an event. Any element within the ecosystem 	
		 can subscribe to an event and trigger a response.

		 Database reporting stack – a copy of the database is available at any 	
		 given time to allow for data analysis and reporting. This can be PowerBI or any 	
		 other analysis tool of your preference.

5.	 Managing data in a composable landscape

06 Experience
matters

17

18

A great user experience brings operational efficiency and employee happiness and retention. This
in place can result in customer satisfaction and retention. So it is of great importance, even for a
core banking system, to offer a great user experience.

When modules and components are created in a monolithic system, they are usually created by the
same people working on the core software, resulting in a relatively consistent user experience, visu-
al design, and code base.

Design consistency is crucial to user experience. If you plan on integrating third-party modules, it’s
almost certain that they won’t fit your own product’s design out of the box, so additional work will
always be required. How much work depends on how customizable they are; hence, customisability
is a powerful consideration when selecting which modules to use.

When integrating the design of third-party modules, there are two high-level approaches:

Make integrations
obvious

Here you don’t try and hide the fact it’s not native to your product.
This is basically telling the user “We didn’t make this, but you can
still use it.” If you go this route, make it visually clear that integrat-
ed functions are ‘different’. You can do this by wrapping them in a
different container or including the third-party logo. This approach
will be necessary if your selected modules are not customizable.

How to prioritize module selection with respect to design:
In composing your banking landscape, it is likely you run into various vendors offering more or less
the same. Here are three guidelines to prioritize with respect to design.

	 1. Functionality first

	 It seems an obvious one, but functionality comes first. This is where we deliver the core value 	
	 to users. Aesthetics take a back seat to users ‘getting the job done’.

	 The alternative is Form over function. If something doesn’t offer the required functionality, no 	
	 amount of impressive design is going to compensate for that.

Blend them in Choose modules that can be customized and style them as close
to your own design 	 as possible. How well you can do this will al-
ways depend on how customizable the modules are.

6.	 Experience matters

19

“ “
2. Visual customisability

Even a slight variation in spacing, sizing, and font styling can shatter the user experience, and 	
make it obvious that this piece ‘doesn’t belong here’, so the more customizable, the better. 	
The pieces that should be customizable, in order of importance:

	 •	 Colors

	 •	 Font styles and sizes

	 •	 Buttons styling (size and shape)

	 •	 Spacing (usually margins and padding)

	 •	 Additional styling (drop shadows, 3D effects)

	 •	 Animations (hover behavior, transitions, etc.)

	

3. UX Customisability

It’s rare that you’ll encounter modules that allow you to customize user flows and where 		
and when certain elements appear, but they do exist. In such cases, you’ll be able to change 	
the placement of buttons and input fields, which when coupled with visual customizations, 	
allows you to create an experience similar to that of your core product.

Ultimately, the quality of the user experience is only partially defined by visual consis-
tency. The best user experience is created for your users and validated by your users.
We recommend you speak to your users regularly and validate each integration as part of your
product development process.

What we did:

When creating

°neo we employed intensive
user research and validation
practices and they gave us
absolute confidence in our
designs, and our product.

6.	 Experience matters

07 Some
best
practices

20

21

Finally, we want to leave you with some best practices for transitioning your core system.

Talk to your peers

Gather information and talk to other financial institutions. Include Fintech
initiatives and incumbents. Get as many insights as you can and become
familiar with the vast offering of components available. Include your CCO
in these conversations to amplify your business case.

Finding the right partner

Aside from modular vendors, make sure you find a trusted core banking
supplier to help you with the transition. Essential questions to ask yourself
are: Is there a cultural fit? Is the platform based on modern technology?
Do they have a vision for the future of banking? Do they understand the
day-to-day reality of your business?

Perform a risk assessment

With potential partners, perform a risk assessment. Define assessment
criteria, examine the organization, and make sure you have a clear over-
view of any risks. Don’t forget to map the dependencies on this partner.
Are you free to configure any specifics for your organization or do you
need their assistance in your operational activities?

Designing and testing workflows

Design and test workflows with your vendor. Creating a proof of concept is
an efficient way to do so. It gives you the possibility to see and experience
how a specific element works, test functionality, and determine if the
selected vendor can help you achieve your goals.

7.	 Some best practices

About Five Degrees

Five Degrees was founded by bankers in 2010. Our launching customer KNAB was based on our
technology to become the first challenger bank in Europe in 2012. Soon incumbent banks through-
out Western Europe, the United States, and Canada also chose Five Degrees as their digital bank-
ing technology provider. In 2018, Five Degrees added lending to its product suite by the acquisition
of Libra EHF, the market leader in lending technology in Iceland. Today, over 40 banks in Europe
and North America use our technology.

Over 150 colleagues work from our offices in Amsterdam, Reykjavik, Lisbon, and Novi Sad. After a
decade of on-premise solutions, we now offer our product °matrix as a SaaS solution.
We launched our latest product °neo in 2021. The °neo core banking platform was built for the cloud
from the ground up to continue to allow our clients to meet ever-changing market demands

Let’s start a conversation. Connect with us.

We are happy to show you our cloud-native core banking platform and see if we are a good fit for
your business.

www.fivedegrees.com

sales@fivedegrees.com

(+31) 088 008 6400

Connect with us

Be the Be the
best bank best bank
you can be.you can be.

